
EFFICIENT ESTIMATION USING PROJECTION: RECAP

• Score function: In parametric model, fZ(z; θ), the score function Sθ(z, θ0) is defined by

Sθ(z, θ0) =
∂

∂θ
{log fZ(z; θ)}θ=θ0 =

[
Sψ(z, θ0)

Sβ(z, θ0)

]
q × 1

r × 1

parameter of interest

nuisance parameter

NB: Tsiatis uses β as the parameter of interest, and η as the nuisance parameter

• Influence function and asymptotic linearity: An estimator ψ̂n of parameter ψ0 is asymptotically
linear if there exists a q-dimensional function, ϕ(Z), with

E[ϕ(Z)] = 0q E[ϕ(Z){ϕ(Z)}>] <∞, nonsingular

such that
√
n(ψ̂n − ψ0) =

1√
n

n∑
i=1

ϕ(Zi) + op(1). (1)

Then as
1√
n

n∑
i=1

ϕ(Zi)
d−→ Normal

(
0q,E[ϕ(Z){ϕ(Z)}>]

)
(2)

it follows that
√
n(ψ̂n − ψ0) also has this asymptotic distribution. If such a ϕ(.) exists it is termed

the influence function for the estimator, and it is unique (see Tsiatis Theorem 3.1, p23: it is straight-
forward to show that if the representation in equation (1) holds for two different influence func-
tions, then those two influence functions are almost surely equal).

• Influence function examples:
(a) Likelihood estimation: In likelihood estimation, we have the log-likelihood

`n(θ) =
n∑
i=1

log fZ(zi; θ) =
n∑
i=1

`(zi, θ).

say. Under regularity conditions, by the mean-value theorem,

˙̀
n(θ) = ˙̀

n(θ0) + ῭
n(θ′)(θ − θ0)

where ‖θ′ − θ0‖ < ‖θ − θ0‖, and where

˙̀
n(θ) =

∂`n(θ)

∂θ
῭
n(θ) =

∂2`n(θ)

∂θ∂θ>
.

are (p × 1) and (p × p) respectively. Evaluating at θ = θ̂n, and noting that ˙̀
n(θ̂n) = 0p, we

have on rearrangement and multiplying through by 1/
√
n that{

− 1

n
῭
n(θ′)

}√
n(θ̂n − θ0) =

1√
n

˙̀
n(θ0)

where ‖θ′ − θ0‖ < ‖θ̂n − θ0‖. As n −→∞, we have for the random variable version{
1

n
῭
n(θ′)

}
p−→ E

[
∂2 log fZ(Z; θ)

∂θ∂θ>

∣∣∣∣
θ=θ0

]
= E

[
῭(Z, θ0)

]
say, as θ̂n

p−→ θ0. Therefore
√
n(θ̂n − θ0) =

{
−E
[
῭(Z, θ0)

]}−1 1√
n

˙̀
n(θ0) + op(1)

which yields the influence function

ϕ(Z) ≡ ϕ(Z, θ0) =
{
−E
[
῭(Z, θ0)

]}−1
˙̀(Z, θ0) = J −1(θ0) ˙̀(Z, θ0) ≡ J −1(θ0)Sθ(Z, θ0).
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(b) m-estimation: In m-estimation, we replace the score equation for θ by the general form

n∑
i=1

m(Zi, θ) = 0p

for function m(., .), with

(i) E[m(Z, θ)] = 0p

(ii) E[{m(Z, θ)}>m(Z, θ)] <∞

(iii) E[m(Z, θ){m(Z, θ)}>] nonsingular

for all possible data generating θ. Using the same mean-value theorem expansion as in the
likelihood case, we have

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

ϕm(Zi) + op(1)

for the influence function associated with m

ϕm(Z) = {−E [ṁ(Z, θ0)]}−1m(Z, θ0).

• Asymptotic variance: For the more generalm-estimation case, by the CLT and elementary results
for the Normal distribution, we have that

√
n(θ̂n − θ0) −→ Normal(0p,J −1IJ −>)

where
I ≡ I(θ0) = E[m(Z, θ0){m(Z, θ0)}>] J ≡ J (θ0) = −E[ṁ(Z, θ0)]. (3)

These p× p matrices are typically estimated by

În =
1

n

n∑
i=1

m(Zi, θ̂n){m(Zi, θ̂n)}> Ĵn = − 1

n

n∑
i=1

ṁ(Zi, θ̂n).

In the likelihood case, we have

Var[ϕ(Z)] = J −1(θ0)Var[ ˙̀(Z, θ0)]J −1(θ0)

where, under standard likelihood theory,

I(θ0) = Var[ ˙̀(Z, θ0)] = E
[

˙̀(Z, θ0){ ˙̀(Z, θ0)}>
]
≡ −E

[
῭(Z, θ0)

]
that is I(θ0) = J (θ0) so that

Var[ϕ(Z)] =
{

E
[

˙̀(Z, θ0){ ˙̀(Z, θ0)}>
]}−1

= I−1(θ0)

which is the asymptotic variance of θ̂n.

• Differentiable parameter: Consider a q-dimensional parameter of interest Ψ(θ), and let

Γ(θ) =
∂Ψ(θ)

∂θ>
q × p. (4)

We say that Ψ(θ) is a differentiable parameter: in the parametric model, this is differentiability in
the ordinary calculus sense.
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• Key Theorem: see Tsiatis Theorem 3.2 and Corollary 1 (pp 28–37). Suppose that estimator Ψ̂n is
regular and asymptotically linear (RAL) with influence function ϕ(.) such that E[{ϕ(Z)}>ϕ(Z)] <
∞. Then

E[ϕ(Z) {Sθ(Z, θ0)}>] = Γ(θ0).

Special case: If θ is partitioned θ = (ψ>, β>)> and Ψ(θ) ≡ ψ (ie just taking the first q components
of θ), then by differentiation we have that

Γ(θ0) =

[
Iq×q 0q×r

0r×q 0r×r

]

and so
(i) E[ϕ(Z) {Sψ(Z, θ0)}>] = Iq×q, and

(ii) E[ϕ(Z) {Sβ(Z, θ0)}>] = 0q×r.
That is, ϕ(Z) is orthogonal to Sβ(Z, θ0); note that this is “orthogonality” in the uncorrelatedness
sense rather than the Hilbert space (geometric) sense; all elements of ϕ(Z) are uncorrelated with
all elements of Sβ(Z, θ0).

Notes:
(a) The Theorem applies to m-estimators (see Tsiatis pp 33–34).
(b) The converse of the result is also true: if an influence function ϕ(X) satisfies the Theorem,

then it is the (unique) influence function for an RAL estimator (see Tsiatis pp 38–41).
(c) Part (ii) of the Theorem implies that if B is an arbitrary deterministic q × r matrix, then

E
[
{ϕ(Z)}>{BSβ(Z, θ0)}

]
=

q∑
j=1

r∑
k=1

bjkE[ϕj(Z)Sβk(Z, θ0)] = 0

and hence ϕ(Z) is orthogonal (in the Hilbert space sense) to all such BSβ(Z, θ0). Because B
is arbitrary, we can therefore say that ϕ(Z) is orthogonal to the space, Λ, constructed as

Λ = {BSβ(Z, θ0) : B an arbitrary q × r matrix}.

Thus if ϕ(Z) is an RAL estimator for ψ, it must be an element in the space that orthogonal
to Λ, which we denote ϕ(X) ∈ Λ⊥.

(d) Tangent space: Extending the above ideas, we can also consider the tangent space related
to the entire θ vector, T , namely

T = {BSθ(Z, θ0) : B an arbitrary q × p matrix}

that is, the space constructed by taking matrix multiples of the p × 1 score vector Sθ(Z, θ0).
This also defines a linear subspace ofHq, and as by direct calculation

BSθ(Z, θ0) ≡ [B1 B2]

[
Sψ(Z, θ0)

Sβ(Z, θ0)

]
= B1Sψ(Z, θ0) + B2Sβ(Z, θ0)

say, we observe that elements in T can be represented as the sum of elements in the set

Tψ = {BSψ(Z, θ0) : B an arbitrary q × q matrix}

and elements in Λ, and using the direct sum notation for vector spaces, ⊕, we write

T = Tβ ⊕ Λ.

See Tsiatis, pp 42–43.
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(e) To identify Λ⊥, we consider the projecting an arbitrary element h ∈ Hq (the space of zero-
mean random functions of Z identified in lectures) onto Λ and taking the residual. The
projection of h on Λ, denoted Π(h|Λ) can be easily computed; we have from the results in
lectures that

Π(h|Λ) = B0Sβ(Z, θ0)

where B0 satisfies
E[(h−B0Sβ(Z, θ0))

>{BSβ(Z, θ0)}] = 0

for any q × r deterministic matrix B. It follows (Tsiatis pp 16–18) that

B0 = E[hS>β ]{E[SβS
>
β ]}−1

so that
Π(h|Λ) = E[hS>β ]{E[SβS

>
β ]}−1Sβ(Z, θ).

Therefore Λ⊥ is the space
{h−Π(h|Λ) : h ∈ Hq} ⊂ Hq

and we conclude that suitable influence functions must take this form.
(f) The results above characterize the set of all influence functions that satisfy the Key Theorem

(see Theorem 3.4, Tsiatis pp 45–46): this set can be written

ϕ(Z) + T ⊥

where ϕ(Z) is an arbitrary influence function, and T ⊥ is the space perpendicular to T .

• Efficiency: Once we have identified all influence functions that satisfy the Key Theorem, we can
select the optimal or efficient influence function, ϕeff(Z), in this collection as the influence function
that has the smallest variance: we know that the asymptotically, the variance of an RAL estimator
is given by (2) as

E[ϕ(Z){ϕ(Z)}>]

so we now look for ϕeff(Z) such that

E[ϕ(Z){ϕ(Z)}>]− E[ϕeff(Z){ϕeff(Z)}>]

is non-negative definite for any other ϕ(Z).
(a) Efficient Influence Function: Tsiatis Theorem 3.5 (pp 46–47) demonstrates that the efficient

influence function for estimating Ψ(θ0) takes the form

ϕeff(Z) = ϕ(Z)−Π(ϕ(Z)|T >) = Π(ϕ(Z)|T )

where ϕ(Z) is arbitrary and explicitly that

ϕeff(Z) = Γ(θ0){J (θ0)}−1Sθ(Z, θ0)

where Γ(θ0) is defined in equation (4) and J is defined by equation (3).

(b) Efficient Score Function: The efficient score function Seff
ψ (Z, θ0) is computed by projecting

Sψ(Z, θ0) onto the nuisance tangent space and taking the residual, that is

Seff
ψ (Z, θ) = Sψ(Z, θ)−Π(Sψ(Z, θ)|Λ)

specifically
Seff
ψ (Z, θ) = Sψ(Z, θ)− E[SψS

>
β ]{E[SβS

>
β ]}−1Sβ(Z, θ).

Then
ϕeff(Z) = {E[Seff

ψ {Seff
ψ }>}−1Seff

ψ (Z, θ0)

See Corollary 2, p 47.
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(c) The smallest variance thus is given by

{E[Seff
ψ {Seff

ψ }>]}−1

where, denoting

Vψψ = E[SψS
>
ψ ] Vψβ = E[SψS

>
β ] Vββ = E[SβS

>
β ]

we have

E[Seff
ψ {Seff

ψ }>] = E

[{
Sψ −VψβV

−1
ββSβ

}{
Sψ −VψβV

−1
ββSβ

}>]
= Vψψ −VψβV

−1
ββV

>
ψβ

so therefore the smallest variance is{
Vψψ −VψβV

−1
ββV

>
ψβ

}−1
.

(d) In likelihood-based estimation, this smallest variance is precisely the same variance ob-
tained when using joint estimation of ψ and β, that is, it is the relevant q × q block of the
matrix

{I(θ0)}−1 = {E[SθS
>
θ ]}−1
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