
Part 6

Extensions



Extensions

The development above has mainly focussed on

§ binary treatment,

§ linear models,

§ average treatment effects,

§ single time-point studies,

but extensions can be developed to handle each case.
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Continuous treatments

For continuous treatments, if necessary we may carry out ad-
justment via the conditional expectation

bpXq “ E
O
Z |X rZ |X s

rather than (for example) the propensity score which is based
on the conditional probability model

fO
Z |X pZ |Xq.
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Continuous treatments

Example: G-estimation

The model
Y “ Zψ ` µ0pX ;βq ` ε

which forms the basis of the G-estimation procedure can be
utilized if Z is continuous.

This relies on the construction of a model for EO
Z |X rZ |X s

‚ justified by a focus on orthogonality under the covariance
inner product;

‚ focus on conditional uncorrelatedness rather than condi-
tional independence.
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Continuous treatments

For IPW estimation, the construction

rµIPWpzq “
1

n

n
ÿ

i“1

1tzupZi qYi

fO
Z |X pZi |Xi q

.

also works in the continuous case as

E
O
X ,Y ,Z

«

1tzupZqY

fO
Z |X pZ |Xq

ff

“ µpzq

but in practice this estimator can be variable in finite sample.
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Continuous treatments

The focus on EO
Z |X rZ |X s emphasizes the role of regression ap-

proaches to constructing the treatment model: we denote

ξpXq ” ξpX ;αq “ E
O
Z |X rZ |X s.

In most cases, some form of generalized linear model will
suffice, with estimating equation such as

n
ÿ

i“1

xJi pzi ´ ξpxiαqq “ 0

for parameter α so that the fitted values

ξpxi pαq i “ 1, . . . ,n

can be computed.
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Continuous treatments

In any subsequent procedure, these fitted values are used in
estimating the causal effects: for example, in G-estimation,
we consider the plug-in estimator

pδG “

n
ÿ

i“1

Yi pZi ´ ξpXi pαqq

n
ÿ

i“1

Zi pZi ´ ξpXi pαqq

In IPW estimation, for binary treatment, we use

pµIPWp1q “
1

n

n
ÿ

i“1

Zi Yi

epXi ; pαq
.
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Advanced modelling

The application of many of the causal adjustment methods
rely on regression modelling for

§ the outcome mean model

µpx, zq “ EY |X ,Z rY |X “ x,Z “ zs

§ the propensity or balancing score

epxq “ PrrZ “ 1|X “ xs bpxq “ EZ |X rZ |X “ zs
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Advanced modelling

In either case we can utilize

§ linear/generalized linear models

§ flexible models (eg splines)

§ prediction-based approaches (eg machine learning meth-
ods, regression trees, neural networks)

§ ensemble methods (eg model averaging, boosting)

to construct fitted versions of each model.
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Advanced modelling

The advanced methods can be effective, but there are poten-
tial pitfalls:

1. The quantification of uncertainty;
§ no ready analytic answers, typically relies on bootstrap;

§ large computational burden

2. Positivity violations.
§ prediction (of treatment mechanism) is not the fundamen-

tal goal;

§ can be overcome using methods that target balance/over-
lap.
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Beyond linear models

If the outcome variable Y is discrete, or it is contended that
the outcome mean model

E
O
Y |X ,Z rY |X “ x,Z “ zs “ µpx, z;β, ψq

is not linear (in the treatment or parameters), it is necessary
to extend some of the previous concepts.

In the following,

§ X is the random vector of confounders, and x its observed
values,

§ x is the vector of functions of x that form the linear pre-
dictor,

§ X is the random variable version of x.
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Beyond linear models

Suppose that a log-linear model is deemed appropriate:

logµpx, z;β, ψq “ xββ ` zxψψ

Regarding this as the structural model, we then have that

ErYpzqs ” E
E
Y |Z rY |Z “ zs “ E

E
X rexptXββ ` zXψψus

which would then invoke the estimator

rµpzq “
1

n

n
ÿ

i“1

exptxβi
pβ ` zxψi

pψu.

where ppβ, pψq are estimated from a correctly specified model.
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Beyond linear models

Then in the binary treatment case

ErYp1qs

ErYp0qs
“
E

E
X rexptXββ ` Xψψus

EE
X rexptXββus

but notice that unlike in the linear case

ErYp1qs ´ ErYp0qs
ErYp1qs

ErYp0qs

depend on both β and ψ. Also

ErYp1qs

ErYp0qs
‰ E

„

Yp1q

Yp0q



in general.
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Beyond linear models

The above model assumes that

µpx,1;β, ψq “ µpx,0;β, ψq exptxψψu.

with the effect of Z represented conditional on X ; marginally,
ψ alone does not capture the effect of treatment.

We could formulate a model for the potential outcomes where

Yp1q “ Yp0q exptxψψu

that is

log Yp1q ´ log Yp0q “ xψψ.
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Beyond linear models

If we can estimate β and ψ consistently, then we can recover
APO and ATE estimators from them. By standard regression
arguments, we know that correct specification of the outcome
model is needed.

For the log-linear model,

logµpx, z;β, ψq “ xββ ` zxψψ

the standard estimating equation takes the form

n
ÿ

i“1

˜

xJβi

zixJψi

¸

pyi ´ exptxβiβ ` zixψiψuq “ 0.
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Beyond linear models

We might try to make inference robust to mis-specification
using a G-estimation-like strategy, and modify the estimating
equation to be

n
ÿ

i“1

˜

xJβi

pzi ´ epxi qqxJψi

¸

pyi ´ exptxβiβ ` zixψiψuq “ 0

where epxi q is the propensity score; if necessary, this can be
estimated using a further parametric model

n
ÿ

i“1

xJi pzi ´ epxi ;αqq “ 0.
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Beyond linear models

In the linear case, this modification led to consistent estima-
tion of ψ as the resulting estimating equation is unbiased ,
that is

EX ,Y ,Z rpZ ´ epXqqXJψpY ´ Xββ ´ ZXψψqs “ 0

provided xψψ correctly captures the effect of treatment, and
either

§ propensity score epXq, or

§ treatment-free mean component xββ

is correctly specified.
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Beyond linear models

In the log-linear case, the equivalent requirement would be

EX ,Y ,Z rpZ ´ epXqqXJψpY ´ exptXββ ` Zxψψqus “ 0.

However, this requirement is not met if the treatment-free
mean component is mis-specified, even if the propensity score
model is correctly specified.

491



Beyond linear models

Suppose in reality

EY |X ,Z rY |X “ x,Z “ zs “ µpx, zq “ µ0pxq exptzxψψu.

Then

EY |X ,Z rY´ exptxββ ` Zxψψqu|X “ x,Z “ zs

“ µ0pxq exptzxψψu ´ exptxββ ` zxψψqu

“ exptzxψψupµ0pxq ´ exptxββuq

which cannot be made independent of z unless

µ0pxq ” exptxββu.
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Beyond linear models

We must modify the estimating function to be

ϕpX ,Y ,Zq “ pZ´epXqqXJψexpt´ZXψψupY´exptXββ`ZXψψuq

so that

EY |X ,Z rϕpX ,Y ,Zq|X “ x,Z “ zs

“ pz ´ epxqqxJψ expt´zxψψu exptzxψψupµ0pxq ´ exptxββuq

“ pz ´ epxqqxJψpµ0pxq ´ exptxββuq
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Beyond linear models

It then follows that

EZ |X rEY |X ,Z rϕpX ,Y ,Zq|X “ x,Z “ zs | X “ xs

“ xJψpµ0pxq ´ exptxββuqEZ |X rpZ ´ epXqq|X “ xs “ 0

if the propensity model is correctly specified. Thus for consis-
tent estimation, we need to solve

n
ÿ

i“1

˜

xJβi

pzi ´ epxi qqxJψi
expt´zixψiψu

¸

pyi´exptxβiβ`zixψiψuq “ 0
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Beyond linear models

If outcome Y is binary, we might attempt to use a logistic
model and estimate using

n
ÿ

i“1

˜

xJβi

zixJψi

¸

pyi ´ expittxβiβ ` zixψiψuq “ 0.

where

expitpxq “
ex

1` ex
.

This method is not robust to mis-specification of the mean
model, and it cannot be rescued using the previous trick.
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Beyond linear models

A solution is found by noting that

exptxψψu “
PrrY “ 1|Z “ 1,X “ xs{PrrY “ 0|Z “ 1,X “ xs

PrrY “ 1|Z “ 0,X “ xs{PrrY “ 0|Z “ 0,X “ xs

”
PrrZ “ 1|Y “ 1,X “ xs{PrrZ “ 0|Y “ 1,X “ xs

PrrZ “ 1|Y “ 0,X “ xs{PrrZ “ 0|Y “ 0,X “ xs

that is, ψ parameterizes the conditional log-odds ratio.
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Beyond linear models

Therefore we can construct a doubly robust estimator assum-
ing that either

§ the model for Y given X and Z , or

§ the model for Z given X and Y

is correctly specified, given that the log-odds model is cor-
rectly specified.
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Beyond linear models

The R package drgee uses the estimating procedure based on
first estimating parameters in the two systems

n
ÿ

i“1

˜

xJγi

yixJψi

¸

`

zi ´ expitpxγiγ ` yixψiψ
:q
˘

“ 0

and
n
ÿ

i“1

˜

xJβi

zixJψi

¸

`

yi ´ expitpxβiβ ` zixψiψ
;q
˘

“ 0

utilizing two additional nuisance parameters ψ: and ψ;. This
yields estimates of β and γ.
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Beyond linear models

Then ψ is estimated using

n
ÿ

i“1

pzi ´ e˚pxi ;ψ, pβ, pγqqx
J
ψi

´

yi ´ expitpxβi
pβ ` zixψiψq

¯

“ 0

where

e˚px;ψ, pβ, pγq “

«

1`
1´ expitpxγpγq

expitpxγpγq

expitpxβ pβq

expitpxβ pβ ` xψψq

ff´1

.

It can be shown that this is an unbiased estimating equation.
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Average Treatment Effect on the Treated

In the binary case, we have mainly focussed on the estimation
of the average treatment effect (ATE)

ErYp1q ´ Yp0qs “ E
E
Y |Z rY | Z “ 1s ´ EE

Y |Z rY | Z “ 0s

The average treatment effect on the treated (ATT) is

ErYp1q ´ Yp0q | Z “ 1s

using the potential outcome notation.
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Average Treatment Effect on the Treated

That is, the ATT aims to identify the causal effect on interven-
ing to change Z “ 0 to Z “ 1 but only in the subpopulation of
individuals who are observed to receive treatment

Note that

ErYp1q ´ Yp0qs “ ErYp1q ´ Yp0q | Z “ 0sPrrZ “ 0s

` ErYp1q ´ Yp0q | Z “ 1sPrrZ “ 1s
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Average Treatment Effect on the Treated

In this calculation, we imagine

§ the observational distribution fO
X ,Y ,Z generating the ob-

served data tpxi , yi , zi q, i “ 1, . . . ,nu

§ in the subgroup observed to have Z “ 1, we then con-
sider a second (hypothetical) experimental intervention
to change Z to z which over-rides the original Z if z “ 0,

§ we then consider comparison of hypothetical outcomes
between the two hypothetical subgroups indexed by z.
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Average Treatment Effect on the Treated

X

tYp0q,Yp1qu

Z

Y

fX pxq fZ |X pz|xq fYp0q,Yp1q|X py0, y1|xq fY |Z ,Yp0q,Yp1qpy|z, y0, y1q

defines the observational distribution, where

fY |Z ,Yp0q,Yp1qpy|z, y0, y1q “

"

1 y “ p1´ zqy0 ` zy1

0 otherwise
.
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Average Treatment Effect on the Treated

Then

fY |X ,Z py|x, zq

“

ż

fY |X ,Z ,Yp0q,Yp1qpy|x, z, y0, y1qfYp0q,Yp1q|X ,Z py0, y1|x, zq dy0 dy1

“

ż

fY |Z ,Yp0q,Yp1qpy|z, y0, y1qfYp0q,Yp1q|X py0, y1|xq dy0 dy1

“ fYpzq|X py|xq

as the integral reduces to a evaluation at a single point where
py0, y1q satisfy

y “ p1´ zqy0 ` zy1.
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Average Treatment Effect on the Treated

For the ATT, we can represent the quantity of interest using
a modified DAG that proposes a second hypothetical binary
treatment, A .

We allow Z to cause A , and then allow Z to act as a selection
mechanism, but ensure that

X KK A | Z .

505



Average Treatment Effect on the Treated

X

tYp0q,Yp1qu

Z A

Y

where the implied joint model is

fX pxqfZ |X pz|xqfYp0q,Yp1q|X py0, y1|xqfA |Z pa|zqfY |A ,Yp0q,Yp1qpy|a, y0, y1q

This is the new ‘experimental’ distribution E .
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Average Treatment Effect on the Treated

Again

f E
Y |A ,Yp0q,Yp1qpy|a, y0, y1q “

"

1 y “ p1´ aqy0 ` ay1

0 otherwise
.

As A is binary, the model fA |Z pa|zq must take the form

f E
A |Z pa|zq “ pa

z p1´ pzq
1´a a, z P t0,1u

for 0 ď pz ď 1 for z “ 0,1.

We can then express the ATT via the new DAG as

E
E
Y |A ,Z rY |A “ 1,Z “ 1s ´ EE

Y |A ,Z rY |A “ 0,Z “ 1s
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Average Treatment Effect on the Treated

We have that from the DAG that

f E
Y |A ,X ,Z py|a, x, zq ” f E

Y |A ,X py|a, xq

and hence as before

f E
Y |A ,X py|a, xq

“

ż

f E
Y |A ,Yp0q,Yp1qpy|a, y0, y1qf

E
Yp0q,Yp1q|A ,X py0, y1|a, xq dy0 dy1

“ f E
Ypaq|X py|xq.

Also from the DAG, X KK A | Z , so for all a, x, z

f E
X |A ,Z px|a, zq ” f E

X |Z px|zq.
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Average Treatment Effect on the Treated

For a “ 0,1, we therefore have

E
E
Y |A ,Z rY | A “ a,Z “ zs

“

ĳ

y f E
Y |A ,X py | a, xqf

E
X |Z px | zq dy dx.

Note that there is a potential incompatibility in the condition-
ing between

f E
Y |A ,X py | a, xq and f E

X |Z px | zq

when we try to write the integral in terms of the data gener-
ating mechanism.
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Average Treatment Effect on the Treated

As before, choosing the form of

f E
Y |A ,X py | a, xq

is to be avoided if possible.

We seek to resolve the incompatibility using the importance
sampling trick, and write the expectation with respect to the
observational model

fO
Y |X ,Z py|x, zqf

O
Z |X pz|xqf

O
X pxq.
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Average Treatment Effect on the Treated

First note that

f E
X |Z px | zq “

f E
Z |X pz | xqf E

X pxq

f E
Z pzq

so the integral can be rewritten

1

f E
Z pzq

ĳ

y f E
Y |A ,X py | a, xqf

E
Z |X pz | xqf E

X pxq dy dx.
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Average Treatment Effect on the Treated

For t “ 0,1, we can re-write the integrand using the impor-
tance sampling trick as

y f E
Y |A ,X py | a, xq

f E
Z |X pz | xq

f E
Z |X pa | xq

f E
Z |X pa | xqf E

X pxq

which can be rearranged to

#

y
f E
Z |X pz | xq

f E
Z |X pa | xq

+

f E
Y |A ,X py | a, xq f E

Z |X pa | xqf E
X pxq,
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Average Treatment Effect on the Treated

Comparing the observational and experimental DAGs, we see
that for all x and z

f E
Z |X pz | xq ” fO

Z |X pz | xq f E
X pxq ” fO

X pxq f E
Z pzq ” fO

Z pzq.

Also, we have for any t and y that

f E
Y |A ,X py | t , xq ” fO

Y |X ,Z py | x, tq.

Therefore we have

f E
Y |A ,X py | a, xq f E

Z |X pa | xqf E
X pxq ” fO

Y |X ,Z py | x, aq fO
Z |X pa | xqfO

X pxq.
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Average Treatment Effect on the Treated

Thus

E
E
Y |A ,Z rY | A “ a,Z “ zs

“
1

fO
Z pzq

ĳ

#

y
fO
Z |X pz | xq

fO
Z |X pa | xq

+

fO
X ,Y ,Z px, y, aq dy dx

“
1

fO
Z pzq

¡

#

1tauptqy
fO
Z |X pz | xq

fO
Z |X pt | xq

+

fO
X ,Y ,Z px, y, tq dy dx dt

“
1

fO
Z pzq

E
O
X ,Y ,Z

«

1taupZqY
fO
Z |X pz | Xq

fO
Z |X pZ | Xq

ff

.
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Average Treatment Effect on the Treated

For the ATT, we are interested only in z “ 1. The moment-
based estimator is therefore

pE
E
Y |A ,Z rY | A “ a,Z “ 1s “

n
ř

i“1
1taupZi qw1pXi ,Zi qYi

n
ř

i“1
1t1upZi q

where

wzpXi ,Zi q “
fO
Z |X pz | Xi q

fO
Z |X pZi | Xi q
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Average Treatment Effect on the Treated

When a “ 1,

1taupZi qw1pXi ,Zi q “ 1t1upZi q “ Zi w.p. 1

as the weight is identically 1, so therefore

pE
E
Y |A ,Z rY | A “ 1,Z “ 1s “

n
ř

i“1
Zi Yi

n
ř

i“1
Zi

that is, the mean in the treated group.
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Average Treatment Effect on the Treated

When a “ 0,

1taupZi qw1pXi ,Zi q “ 1t0upZi q
fO
Z |X p1 | Xi q

fO
Z |X pZi | Xi q

“ p1´ Zi q
fO
Z |X p1 | Xi q

fO
Z |X p0 | Xi q

.
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Average Treatment Effect on the Treated

Therefore

pE
E
Y |A ,Z rY | A “ 0,Z “ 1s “

n
ř

i“1
p1´ Zi qwpXi qYi

n
ř

i“1
Zi

where

wpXi q “
fO
Z |X p1 | Xi q

fO
Z |X p0 | Xi q

“
epXi q

1´ epXi q

That is, this estimator is a weighted sum of contributions from
the untreated individuals.
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Average Treatment Effect on the Treated

Thus the estimator for the ATT is

n
ř

i“1
pZi ´ p1´ Zi qwpXi qqYi

n
ř

i“1
Zi

.

Under the standard assumptions, this estimator is consistent
for the ATT and asymptotically normally distributed if epxq is
correctly specified; that is, it is singly robust .
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Average Treatment Effect on the Treated

To achieve double robustness, we proceed in the usual fash-
ion and augment the estimand for a “ 0 as follows:

ErYp0q | Z “ 1s “ ErYp0q ´ µpX ,0q|Z “ 1s ` ErµpX ,0q|Z “ 1s

where

µpx, zq “ ErY | X “ x,Z “ zs

is the modelled conditional mean for Y .
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Average Treatment Effect on the Treated

To estimate the first term, we use

pErYp0q ´ µpX ,0q | Z “ 1s “

n
ř

i“1
p1´ Zi qwpXi qpYi ´ µpXi ,0qq

n
ř

i“1
Zi

as in the singly robust case. For the second term, we have

pErµpX ,0q | Z “ 1s “

n
ř

i“1
ZiµpXi ,0q

n
ř

i“1
Zi
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Average Treatment Effect on the Treated

Therefore

pErYp0q | Z “ 1s

“

n
ř

i“1
p1´ Zi qwpXi qpYi ´ µpXi ,0qq ` ZiµpXi ,0q

n
ř

i“1
Zi

which yields the augmented ATT estimator

n
ř

i“1
pZi ´ p1´ Zi qwpXi qqpYi ´ µpXi ,0qq

n
ř

i“1
Zi

.
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Instrumental variables

Suppose we have the following system:

W

UZ

Y

Unmeasured

where U KK W , and Y KK W | Z .
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Instrumental variables

We aim to find out the causal effect of Z on Y (both scalars).

§ There is an open biasing path ZUY

§ We cannot condition on U to block this path as it is un-
measured.
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Instrumental variables

Suppose the structural model underlying this system is linear

Yi “ β0 ` Ziψ0 ` uiζ ` εi

where

Erεi |ui s “ 0

and for all i , Zi KK εi .

Clearly, regressing Y on Z alone will lead to inconsistent esti-
mation of ψ0.
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Instrumental variables

Suppose now that W (also scalar) is observed and we in fact
have the two-equation structural system

Yi “ β0 ` Ziψ0 ` uiζ ` εi

Zi “ γ0 `Wiγ1 ` εi

with εi uncorrelated with Wi and εi . Then, by the usual trick,
we have

Wi Yi “ Wiβ0 `Wi Ziψ0 `Wiuiζ `Wiεi

Wi Zi “ Wiγ0 `W2
i γ1 `Wi εi
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Instrumental variables

Taking expectations and standardizing, using the usual argu-
ments from linear regression, we have

CovrW ,Y s “ ψ0CovrW ,Z s

CovrW ,Z s “ γ1VarrW s

as Wi and Ui are independent by assumption.

Hence on rearrangement we have that

ψ0 “
CovrW ,Y s

CovrW ,Z s
“

CovrW ,Y s{VarrW s

CovrW ,Z s{VarrW s
“

CovrW ,Y s{VarrW s

γ1
.
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Instrumental variables

This suggests a procedure to estimate ψ0:

(i) regress Z on W to obtain estimate pγ1

(ii) regress Y on W to obtain estimate pλ1

(iii) form the estimate of ψ0 as

pψ0 “
pλ1

pγ1

This is a an instrumental variable ratio estimator using the
instrument W .
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Instrumental variables

W

UZ

Y

Unmeasured
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Instrumental variables

Note

‚ For this method to work, we cannot have an interaction
between Z and U in the structural model

‚ If there is only weak association between W and Z , so
that γ1 is close to zero, this estimator can have undesir-
able properties.

‚ Statistical properties of pψ0 not trivial to derive.
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Instrumental variables

A common situation in which the linear model is not quite
appropriate is when W and Z are both binary. For example,
we might have in a randomized study

§ W is the randomized allocated treatment indicator; eg

W “ 1 ùñ “allocated to treatment arm”

§ Z is the actual treatment received indicator; eg

Z “ 1 ùñ “took treatment”

§ Could have W “ 1,Z “ 0 (non-compliance);

§ In some situations, could have W “ 0, Z “ 1.
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Instrumental variables

Then we have by iterated expectation, for w “ 0,1

ErY |W “ ws “ErY |W “ w,Z “ 0sPrrZ “ 0|W “ ws

` ErY |W “ w,Z “ 1sPrrZ “ 1|W “ ws

“ ErY |Z “ 0sPrrZ “ 0|W “ ws

` ErY |Z “ 1sPrrZ “ 1|W “ ws

as Y KK W | Z .
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Instrumental variables

Therefore

ErY |W “ 1s “ ErY |Z “ 0sPrrZ “ 0|W “ 1s

` ErY |Z “ 1sPrrZ “ 1|W “ 1s

ErY |W “ 0s “ ErY |Z “ 0sPrrZ “ 0|W “ 0s

` ErY |Z “ 1sPrrZ “ 1|W “ 0s
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Instrumental variables

Hence subtracting the second equation from the first

ErY |W “ 1s ´ ErY |W “ 0s

“ ErY |Z “ 0spPrrZ “ 0|W “ 1s ´ PrrZ “ 0|W “ 0sq

` ErY |Z “ 1spPrrZ “ 1|W “ 1s ´ PrrZ “ 1|W “ 0sq
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Instrumental variables

But

PrrZ “ 0|W “ 1s´PrrZ “ 0|W “ 0s

“ PrrZ “ 1|W “ 0s ´ PrrZ “ 1|W “ 1s

Therefore

ErY |W “ 1s ´ ErY |W “ 0s

“ pPrrZ “ 1|W “ 1s ´ PrrZ “ 1|W “ 0sq

ˆ pErY |Z “ 1s ´ ErY |Z “ 0sq
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Instrumental variables

That is, provided PrrZ “ 1|W “ 1s ‰ PrrZ “ 1|W “ 0s

ErY |Z “ 1s´ErY |Z “ 0s

“
ErY |W “ 1s ´ ErY |W “ 0s

PrrZ “ 1|W “ 1s ´ PrrZ “ 1|W “ 0s

or equivalently

ErY |Z “ 1s ´ ErY |Z “ 0s “
ErY |W “ 1s ´ ErY |W “ 0s

ErZ |W “ 1s ´ ErZ |W “ 0s
.
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Instrumental variables

As W is observed, we can deploy the moment-based estimator

n
ÿ

i“1

Wi Yi

n
ÿ

i“1

Wi

´

n
ÿ

i“1

p1´Wi qYi

n
ÿ

i“1

p1´Wi q

n
ÿ

i“1

Wi Zi

n
ÿ

i“1

Wi

´

n
ÿ

i“1

p1´Wi qZi

n
ÿ

i“1

p1´Wi q

This is the binary analogue of the earlier regression-based
ratio estimator.
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Instrumental variables

In terms of potential outcomes, we can consider potential out-
comes for treatment received

tZp0q,Zp1qu

corresponding to two settings t0,1u of W , and potential out-
comes for outcome

tYpw, zq,w “ 0,1, z “ 0,1u

corresponding to the four possible combinations of W and Z .
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Instrumental variables

We have the “consistency” requirement relating the potential
outcomes to the observed data:

Z “ p1´WqZp0q `W Zp1q

and

Y “
1
ÿ

z“0

1
ÿ

w“0

1twupWq1tzupZqYpw, zq.
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Instrumental variables

We must have that for z “ 0,1

Yp1, zq “ Yp0, zq

as Y KK W |Z by assumption. We have ignorability

tYpw, zq,Zpwq : @ w, zu KK Z .

Consequently

Yp0,0q “ Yp1,0q ” Yp0q

Yp0,1q “ Yp1,1q ” Yp1q

which simplifies the causal quantity of interest.
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Instrumental variables

We are interested in the contrast

ErYp1q ´ Yp0qs ” ErYpW ,1q ´ YpW ,0qs.

We have that

Y “ p1´ ZqYp0q ` ZYp1q

“ Yp0q ` pYp1q ´ Yp0qqZ

which suggests the linear model for the observed data

Yi “ β0 ` ψ0Zi ` εi
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Instrumental variables

We also need that W {KKZ , that is

ErZp1qs ‰ ErZp0qs or PrrZp1q “ 1s ‰ PrrZp0q “ 1s

§ Manipulation of W does change Z ;

§ From the assumptions and the DAG, we can state

ErZp1q ´ Zp0qs ” ErZ |W “ 1s ´ ErZ |W “ 0s.
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Instrumental variables

Recall the earlier formula

ErY |Z “ 1s ´ ErY |Z “ 0s “
ErY |W “ 1s ´ ErY |W “ 0s

ErZ |W “ 1s ´ ErZ |W “ 0s
.

We now have that the denominator on the right hand side is
non-zero.

For the numerator, we have

ErY |W “ 1s “ ErYp0q ` pYp1q ´ Yp0qqZ |W “ 1s

“ ErYp0q ` pYp1q ´ Yp0qqZp1qs

ErY |W “ 0s “ ErYp0q ` pYp1q ´ Yp0qqZp0qs
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Instrumental variables

Thus, taking the difference we have

ErY |W “ 1s ´ ErY |W “ 0s “ ErpYp1q ´ Yp0qqpZp1q ´ Zp0qqs

so therefore

ErY |Z “ 1s ´ ErY |Z “ 0s “
ErpYp1q ´ Yp0qqpZp1q ´ Zp0qqs

ErZp1q ´ Zp0qs
.

We now try to understand the causal implications of this iden-
tity.
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Instrumental variables

Stratum Zp1q Zp0q Description

Compliers 1 0 Follows treatment protocol,
takes assigned treatment w.

Defiers 0 1 Defies treatment protocol,
takes other treatment 1´ w.

Always Takers 1 1 Ignores treatment protocol,
takes treatment 1.

Never Takers 0 0 Ignores treatment protocol,
takes treatment 0.
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Instrumental variables

In the observed data:

W Z Possible strata

1 0 Defier, Never Taker

0 1 Defier, Always Taker

1 1 Complier, Always Taker

0 0 Complier, Never Taker

We can never conclude with certainty to which stratum an
individual belongs from the observed data.
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Instrumental variables

It is common (and reasonable in most cases) to assume that

PrrZp1q ě Zp0qs “ PrrZp1q ´ Zp0q ě 0s “ 1

that is, being assigned W “ 1 cannot decrease the value of
Zpwq compared with being assigned W “ 0.

i.e. being allocated treatment increases or leaves unchanged
the received treatment status variable.

This monotonicity assumption rules out the possibility of the
Defier stratum.
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Instrumental variables

Assuming PrrZp1q ´ Zp0q ě 0s “ 1

W Z Possible strata

1 0 Defier, Never Taker

0 1 Defier, Always Taker

1 1 Complier, Always Taker

0 0 Complier, Never Taker
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Instrumental variables

To get a further simplification in the expression

ErpYp1q ´ Yp0qqpZp1q ´ Zp0qqs

ErZp1q ´ Zp0qs
.

we use iterated expectation using the partitioning event

Zp1q ą Zp0q

which is an event occurs if and only if

Zp1q “ 1 and Zp0q “ 0.
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Instrumental variables

We have in the numerator

ErpYp1q ´ Yp0qqpZp1q ´ Zp0qqs

“ ErpYp1q ´ Yp0qqpZp1q ´ Zp0qq|Zp1q ą Zp0qsPrrZp1q ą Zp0qs

` ErpYp1q ´ Yp0qqpZp1q ´ Zp0qq|Zp1q ď Zp0qsPrrZp1q ď Zp0qs

and similarly in the denominator

ErpZp1q ´ Zp0qqs

“ ErpZp1q ´ Zp0qq|Zp1q ą Zp0qsPrrZp1q ą Zp0qs

` ErpZp1q ´ Zp0qq|Zp1q ď Zp0qsPrrZp1q ď Zp0qs
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Instrumental variables

Stratum Zp1q Zp0q Zp1q ´ Zp0q

Compliers 1 0 1

Defiers 0 1 -1

Always Takers 1 1 0

Never Takers 0 0 0
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Instrumental variables

We therefore have in the numerator:

ErpYp1q ´ Yp0qqpZp1q ´ Zp0qqs

“ ErpYp1q ´ Yp0qq|Zp1q ą Zp0qsPrrZp1q ą Zp0qs

as only the contribution Zp1q “ 1 and Zp0q “ 0 remains.

Similarly in the denominator:

ErpZp1q ´ Zp0qqs “ PrrZp1q ą Zp0qs
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Instrumental variables

Therefore

ErY |Z “ 1s ´ ErY |Z “ 0s “
ErpYp1q ´ Yp0qqpZp1q ´ Zp0qqs

ErZp1q ´ Zp0qs

” ErpYp1q ´ Yp0qq|Zp1q ą Zp0qs.

It is therefore evident that the IV estimation procedure esti-
mates the causal contrast

ErpYp1q ´ Yp0qq|Zp1q ą Zp0qs
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Instrumental variables

As

Zp1q ą Zp0q ðñ Zp1q “ 1,Zp0q “ 0

the quantity

ErpYp1q ´ Yp0qq|Zp1q ą Zp0qs

is termed the

§ complier average treatment effect (CATE), or

§ complier average causal effect (CACE), or

§ local average treatment effect (LATE),

as Zp1q ą Zp0q identifies the Complier stratum.
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Instrumental variables

Note

‚ If we observe Z “ 1, the subject could be a Complier or
Always Taker; we do not know who the Compliers are.

‚ The Compliers may be different depending on the instru-
ment W chosen.

‚ In general the three quantities

ATE : ErpYp1q ´ Yp0qqs

ATT : ErpYp1q ´ Yp0qq|Z “ 1s

CATE : ErpYp1q ´ Yp0qq|Zp1q ą Zp0qs

are not equal.
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Instrumental variables

Note

‚ It is often in practice realistic to make the assumption

PrrZ “ 1|W “ 0s “ 0

which asserts that the Always Takers stratum is empty,
and that all subjects for whom Z “ 1 are Compliers.

It follows that

ErY |Z “ 1s ´ ErY |Z “ 0s

PrrZ “ 1|W “ 1s
“ ErpYp1q ´ Yp0qq|Z “ 1s

which equates to the ATT.
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Instrumental variables

Extension: with measured confounders

W

X UZ

Y

Unmeasured

We have U KK W , and Y KK W | Z ,X .
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Instrumental variables

We can extend the previous logic by appealing to conditional
ignorability

tYpw, zq,Zpwq : @ w, zu KK Z |X

and develop similar methods.
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Instrumental variables

Suppose we have the following confounded system:

X UZ

Y

Unmeasured

No adjustment method is feasible.
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Instrumental variables

Including the propensity score, we have

X UZ

Y

epXq

Unmeasured

This does not directly help with unmeasured confounding.
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Instrumental variables

However, consider a variable W , with ErW s “ 0, such that

Z “ epXq `W

so that

W “ Z ´ epXq “ Z ´ ErZ |X s

We have

ErW epXqs “ ErpZ ´ epXqqepXqs “ ErpepXq ´ epXqqepXqs “ 0

by iterated expectation. Therefore W and epXq must be un-
correlated.
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Instrumental variables

We also have that

ErWZ s “ ErpZ ´ epXqqZ s “ ErZ ´ZepXqs “ ErepXqp1´ epXqqs

as Z2 “ Z (w.p. 1). Therefore as ErW s “ 0,

CovrW ,Z s “ ErepXqp1´ epXqqs ą 0

under the usual positivity assumption 0 ă epxq ă 1.

Hence W {KKZ .
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Instrumental variables

If we consider W a manipulable variable, we could propose
the following DAG:

W

X UZ

Y

epXq

Unmeasured

It is evident that Y KK W | X ,Z , and also that U KK W .
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Instrumental variables

Thus

W “ Z ´ epXq “ Z ´ ErZ |X s.

is an instrumental variable. We can compute the ratio estima-
tor based on the earlier identity

ψ0 “
CovrW ,Y s

CovrW ,Z s

that is

pψ0 “

n
ÿ

i“1

Wi Yi

n
ÿ

i“1

Wi Zi

“

n
ÿ

i“1

pZi ´ epXi qqYi

n
ÿ

i“1

pZi ´ epXi qqZi

which is identical to the singly robust G-estimator.
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Mediation

Statistical methods for causal mediation analysis can also be
formulated using potential outcomes:

Z M Y

where z and m will represent potential levels of treatment Z
and mediator M respectively, with potential outcome

Ypz,mq

and potential mediator value in light of Z “ z

Mpzq.
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Mediation

In general, both Z and M can take arbitrary values, but we
most commonly consider the case when

§ Z is binary t0,1u

§ M is
§ binary,

§ discrete, or

§ continuous.
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Mediation

Then following Imai et al. (Statistical Science, 2010)

§ the total causal effect (TCE) of treatment is based on

Ypz,Mpzqq

i.e. set Z “ z and observe the consequence.

For example

τ “ ErYp1,Mp1qq ´ Yp0,Mp0qqs.
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Mediation

§ the causal mediation effect (CME) is based on

Ypz,Mpz˚qq

i.e. set Z “ z and observe the consequence of changing
the mediator as if Z “ z˚

For example

δpzq “ ErYpz,Mp1qq ´ Ypz,Mp0qqs z “ 0,1.
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Mediation

§ the direct effect (DE) of treatment is based on

Ypz˚,Mpzqq

i.e. set the mediator as if Z “ z, and observe the conse-
quence of changing treatment according to z˚.

For example

ζpzq “ ErYp1,Mpzqq ´ Yp0,Mpzqqs z “ 0,1.
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Mediation

Terminology:

Imai et al. Pearl Robins

Total effect τ ATCE Total Total

Indirect effect δpzq ACME Natural Pure/Total

Direct effect ζpzq ADE Natural Pure/Total

with

Pure : z “ 0 Total : z “ 1.
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Mediation

That is,

ErYp1,Mp1qq ´ Yp0,Mp0qqs

“ ErYp1,Mp1qq ´ Yp1,Mp0qqs

` ErYp1,Mp0qq ´ Yp0,Mp0qqs

so that

τ “ δp1q ` ζp0q “ δp0q ` ζp1q.
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Mediation

We have in the observed data that

M “ p1´ ZqMp0q ` ZMp1q

and, if M is binary say,

Y “ p1´ Zqp1´Mq Yp0,0q

` p1´ ZqM Yp0,1q

` Zp1´Mq Yp1,0q

` Z M Yp1,1q

etc.
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Mediation

X

tYpz,mq : z “ 0,1,m “ 0,1u

tMp0q,Mp1qu

Z

M

Y
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Mediation

The DAG encompasses two ignorability assumptions

(i) tYpz˚,mq,Mpzqu KK Z | X “ x;

(ii) Ypz˚,mq KK Mpzq | Z “ z,X “ x;

for all z, z˚,m and x, and relies upon two positivity assump-
tions

0 ă PrrZ “ z|X “ xs ă 1

and

0 ă PrrMpzq “ m|X “ x,Z “ zs ă 1.
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Mediation

Imai et al (2010) gives the following identities:

δpzq “

¡

yfY |M ,X ,Z py|m, x, zqfM |X ,Z pm|x,1qfX pxq dy dm dx

´

¡

yfY |M ,X ,Z py|m, x, zqfM |X ,Z pm|x,0qfX pxq dy dm dx

ζpzq “

¡

yfY |M ,X ,Z py|m, x,1qfM |X ,Z pm|x, zqfX pxq dy dm dx

´

¡

yfY |M ,X ,Z py|m, x,0qfM |X ,Z pm|x, zqfX pxq dy dm dx
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Mediation

As for the ATT case, the challenge in estimating these quan-
tities using moment-based methods is the mis-match in the
terms

fY |M ,X ,Z py|m, x, zqfM |X ,Z pm|x, z
˚q

whenever z ‰ z˚.
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Mediation

Model-based estimation via the mean-model

µpm, x, zq “

ż

y fY |M ,X ,Z py|m, x, zq dy

and the mediator model

fM |X ,Z pm|x, zq.

is possible.
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Longitudinal Data

It is quite common to encounter longitudinal data with

§ treatment

§ confounders

§ outcome

recorded over several time points for each individual.

578



Longitudinal Data

For example

X1

Z1

Y1

X2

Z2

Y2
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Longitudinal Data

In such cases, and for the analysis of direct effects (within
an interval) the methods already established can be utilized
sequentially.

For cumulative (across interval) effects of treatment on a sin-
gle terminal outcome, adjustment methods need careful ap-
plication.
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Longitudinal Data

For a two time point setting:

X1

Z1

X2

Z2

Y

In this formulation, the time ordering

X1 ÝÑ Z1 ÝÑ X2 ÝÑ Z2 ÝÑ Y

delimits the possible causal pathways.
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Longitudinal Data

We can consider the expected counterfactual outcomes asso-
ciated with treatment patterns

ErYpz1, z2qs

or equivalently

E
E
Y |Z1,Z2

rY |Z1 “ z1,Z2 “ z2s

where the experimental distribution E assumes randomized
treatments.
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Longitudinal Data

To learn about the APOs for different treatment patterns from
observational data is not straightforward.

§ Z1 has a direct effect on Y , but also has a mediated effect
via X2 and Z2;

§ Z2 has a direct effect on Y , but it is confounded by X2; to
remove this confounding we need to condition on X2;

§ However, conditioning on X2 blocks the directed path
from Z1 to Y and hence affects the causal effect.

Therefore, we cannot break the confounding by blocking paths
by conditioning to get at the aggregate effect.
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Marginal structural models

We may use inverse weighting to break the confounding as in
the single interval case. For example, for APO

µpz1, z2q “ E
E
Y |Z1,Z2

rY |Z1 “ z1,Z2 “ z2s

we may use the estimator

rµpz1, z2q “
1

n

n
ÿ

i“1

1tz1u
pZ1i q1tz2u

pZ2i q

fO
Z1,Z2|X1,X2

pZ1i ,Z2i |X1i ,X2i q
Yi

Each outcome data point is re-weighted by the IPW weight
across the whole treatment sequence.
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Marginal structural models

In the re-weighted data, model-based analysis can also be
used: for example, we could propose a marginal model

E
E
Y |Z1,Z2

rY |Z1 “ z1,Z2 “ z2s “ β0 ` ψ1z1 ` ψ2z2

or, using the total treatment

E
E
Y |Z1,Z2

rY |Z1 “ z1,Z2 “ z2s “ β0 ` ψ0pz1 ` z2q

and then perform a weighted least squares analysis (WLS) to
estimate pψ1, ψ2q or ψ0.

Such a model is termed a marginal structural model (MSM).
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Marginal structural models

That is for example

ppβ0, pψ1, pψ2q “ arg min
pβ0,ψ1,ψ2q

n
ÿ

i“1

wi pyi ´ β0 ´ ψ1z1i ´ ψ2z2i q
2

where

wi “
1

fO
Z1,Z2|X1,X2

pz1i , z2i |x1i , x2i q

where

fO
Z1,Z2|X1,X2

pz1, z2|x1, x2q “ fO
Z1|X1

pz1|x1qf
O
Z2|X1,X2,Z1

pz2|x1, x2, z1q.
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Marginal structural models

An alternative weight

wi “
fO
Z1,Z2

pz1i , z2i q

fO
Z1,Z2|X1,X2

pz1i , z2i |x1i , x2i q

where

fO
Z1,Z2

pz1i , z2i q “ fO
Z1
pz1qf

O
Z2|Z1

pz2|z1q

is modelled could be used. This generalizes the earlier form
of IPW estimator.

If a non-parametric model for fO
Z1,Z2

pz1i , z2i q is adopted, then
the new weight essentially reduces to the original weight.
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Marginal structural models

Using a parametric model,

wi “
fO
Z1,Z2

pz1i , z2i ; pαq

fO
Z1,Z2|X1,X2

pz1i , z2i |x1i , x2i ; pγq

where

§ α “ pα1, α2q is estimated from the model

fO
Z1,Z2

pz1, z2;αq “ fO
Z1
pz1;α1qf

O
Z2|Z1

pz2|z1;α2q

§ γ “ pγ1, γ2q is estimated from the model

fO
Z1,Z2|X1,X2

pz1, z2|x1, x2; γq “ fO
Z1|X1

pz1|x1; γ1q

ˆ fO
Z2|X1,X2,Z1

pz2|x1, x2, z1; γ2q
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Marginal structural models

It is also possible to carry out a conditional analysis given
baseline predictors X1 which are not subject to the influence
of any treatment: for example

E
E
Y |Z1,Z2,X1

rY |Z1 “ z1,Z2 “ z2,X1 “ x1s “ β0`x1β1`ψ1z1`ψ2z2

for which the so-called stabilized weights

wi “
fO
Z1,Z2|X1

pz1i , z2i |x1i q

fO
Z1,Z2|X1,X2

pz1i , z2i |x1i , x2i q

should be used.
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Marginal structural models

Separate models are needed for numerator and denominator

§ Denominator:

fO
Z1,Z2|X1,X2

pz1, z2|x1, x2q “ fO
Z1|X1

pz1|x1qf
O
Z2|X1,X2,Z1

pz2|x1, x2, z1q

§ Numerator:

fO
Z1,Z2|X1,X2

pz1, z2|x1q “ fO
Z1|X1

pz1|x1qf
O
Z2|X1,Z1

pz2|x1, z1q

parameterized by α and γ respectively, say.
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Marginal structural models

That is, after cancelling terms,

wi “
fO
Z2|X1,Z1

pz2|x1, z1; pαq

fO
Z2|X1,X2,Z1

pz2|x1, x2, z1; pγq

This weight may be less extreme than the unstabilized coun-
terpart.

Note that conditioning on X1 in the outcome model is neces-
sary to account for possible confounding.
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Marginal structural models

Note

The term ‘stabilized’ is slightly misleading; the introduction of
the numerator term changes the estimand , so the original and
stabilized versions of the MSM estimate different quantities.

In many cases the stabilized weights will be more uniform,
and this has the effect of reducing estimator variance, but the
estimation target is changed.
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Optimal Dynamic Treatment Regimes

For treatment sequence pz1, z2q, we seek the optimal treat-
ment sequence pzopt

1 , zopt

2 q to maximize expected response.

§ The objective is to establish a sequence of decision rules
to be applied at each treatment interval;

§ For interval k “ 1,2, the decision rule for interval k must
utilize the information available only up to and including
(the start of) that interval;

§ The decision rule should be hyperopic, that is, prioritize
long-term outcomes over short-term (myopic) outcomes;

§ The rules will be learned from observational data, where
optimal treatment is not necessarily guaranteed.
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Optimal Dynamic Treatment Regimes

To solve this problem, a recursive approach is adopted

§ optimal treatment sequence will be personalized , that is,
dependent on an individual’s characteristics;

§ the computation will use reverse (or Bellman) optimiza-
tion;

§ first optimize Stage 2 treatment, and then optimize Stage
1 treatment assuming optimal treatment at Stage 2 .
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Optimal Dynamic Treatment Regimes

Decompose the expected (counterfactual) response as

ErYpz1, z2qs “ ErYpzopt

1 , zopt

2 qs

´
 

ErYpzopt

1 , zopt

2 q ´ Ypz1, z
opt

2 qs
(

´
 

ErYpz1, z
opt

2 q ´ Ypz1, z2qs
(

This is the basis of the Structural Nested Mean Model (SNMM).
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Optimal Dynamic Treatment Regimes

Further

ErYpzopt

1 , zopt

2 q ´ Ypz1, z
opt

2 qs “ ErYpzopt

1 , zopt

2 q ´ Yp0, zopt

2 qs

´ ErYpz1, z
opt

2 q ´ Yp0, zopt

2 qs

ErYpz1, z
opt

2 q ´ Ypz1, z2qs “ ErYpz1, z
opt

2 q ´ Ypz1,0qs

´ ErYpz1, z2q ´ Ypz1,0qs
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Optimal Dynamic Treatment Regimes

We specify models

ErYpz1, z2q ´ Ypz1,0qs “ pX2ψ2qz2 Stage 2

ErYpz1, z
opt

2 q ´ Yp0, zopt

2 qs “ pX1ψ1qz1 Stage 1

where

§ X2 can depend on all data – including observed treat-
ments – observed up to Stage 2.

§ X1 can depend on all data observed up to Stage 1.
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Optimal Dynamic Treatment Regimes

1. Use G-estimation on Y conditioning on px1, z1, x2, z2q at
second stage to estimate ψ2 using a proposed mean model

Y “ X21β2 ` z2X22ψ2 ` ε

2. For each individual infer the optimal Stage 2 treatment

zopt

2 “ 1tX22
pψ2 ą 0u

3. Form pseudo-outcome Y1

Y1 “ Y ´ pX22
pψ2qpz

opt

2 ´ z2q
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Optimal Dynamic Treatment Regimes

4. Use G-estimation on Y1 conditioning on px1, z1q at first
stage to estimate ψ1 using a proposed mean model

Y1 “ X11β1 ` z1X12ψ1 ` ε

5. For each individual infer the optimal Stage 1 treatment

zopt

1 “ 1tX11
pψ1 ą 0u

The method is robust to mis-specification of the nuisance mean
model , provided the treatment model is correctly specified.
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Optimal Dynamic Treatment Regimes

Can infer optimized potential outcome

Y ` pX12
pψ1qpz

opt

1 ´ z1q ` pX22
pψ2qpz

opt

2 ´ z2q

which takes the observed outcome Y and adds

§ the additional benefit of optimal treatment at stage 1

pX12
pψ1qpz

opt

1 ´ z1q

§ the additional benefit of optimal treatment at stage 2

pX22
pψ2qpz

opt

2 ´ z2q.
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Causal discovery

Many of the adjustment methods rely upon the construction
of estimators assuming knowledge of

§ confounder structure

§ time-ordering

§ propensity score construction

all of which depend on knowledge of the data generating DAG.

In many applications, the DAG is unknown.
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Causal discovery

There are several approaches to causal discovery, that is,
learning the DAG from the observed data

§ PC algorithm: pcalg in R

§ SGS algorithm

Both rely on recursive identification of conditional indepen-
dencies, identification of colliders and edge orientation pro-
cedures based on statistical tests.

Can be effective, but typically need large sample sizes.
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	Extensions

