
Part 5

Semiparametric Inference



Semiparametric Inference

The semiparametric theory of estimation that can be used to
justify several of the previous causal inference methods.

We consider models that include

§ parametric components (with a finite dimensional param-
eter of interest)

§ nonparametric components (with an infinite dimensional
parameter that is usually a nuisance parameter)
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Semiparametric Inference

Example: Ordinary Least Squares

Ordinary least squares is a semiparametric approach:

pθ “ arg min
θ

n
ÿ

i“1

pyi ´ µpxi ; θqq
2

‚ parametric mean model µpx; θq, θ P Rd say

‚ nonparametric distributional assumption for the condi-
tional distribution of Y given X “ x.
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Semiparametric Inference

Example: Ordinary Least Squares

If
εi “ Yi ´ µpXi ; θq

we assume only that
ż

fε|X pt |xq dt “ 1

ż

t fε|X pt |xq dt “ 0

and
ż

t2 fε|X pt |xq dt ă 8

but make no other assumptions.
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Linear models: a recap

Suppose we have a linear model

Yi “ xi1β ` xi2ψ ` εi

where

§ xi1 is 1ˆ r

§ β is r ˆ 1

§ xi2 is 1ˆ q

§ ψ is q ˆ 1

Let θ be the concatenation of β and ψ, so that θ is p ˆ 1 with
p “ q ` r.
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Linear models: a recap

In vector form, for a random sample of size n, we have

Y “ X1β ` X2ψ ` ε

We require linear independence of the columns of the com-
bined matrix

rX1 X2s .
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Linear models: a recap

Note that

§ X1β is an arbitrary point in the linear subspace of Rn

spanned by the columns of X1 – denote this linear sub-
space Λ.

§ X2ψ is an arbitrary point in the linear subspace of Rn

spanned by the columns of X2.
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Linear models: a recap

For OLS estimation we need to solve
˜

XJ1

XJ2

¸

py´ X1β ´ X2ψq “ 0p

We can write the left hand side
˜

XJ1

XJ2

¸

ε

which is an element in a p-dimensional space.
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Linear models: a recap

Suppose that ψ is the parameter of interest . For any ψ, we
may write the model

pY´ X2ψq “ X1β ` ε

and hence for nuisance parameter β deduce that

rβ “ pXJ1 X1q
´1XJ1 py´ X2ψq.

This follows from the usual OLS result; note that

rβ ” rβpψq

is a function of ψ.
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Linear models: a recap

We then have that

X1
rβ “ X1pX

J
1 X1q

´1XJ1 py´ X2ψq “ H1py´ X2ψq

say, with

H1 “ X1pX
J
1 X1q

´1XJ1 pn ˆ nq.

Note that H1 is symmetric, and that

H1H1 “ HJ1 H1 “ H1.
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Linear models: a recap

Note that

§ the n ˆ 1 vector X1
rβ is a specific point in the space Λ.

§ for any ψ, X1
rβ is the closest point in Λ to py´ X2ψq;

§ the matrix H1 projects py´ X2ψq onto Λ to compute X1
rβ.

§ the ‘residual ’ vector after finding X1
rβ is

py´ X2ψq ´ X1
rβ “ py´ X2ψq ´H1py´ X2ψq

“ pIn ´H1qpy´ X2ψq
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Linear models: a recap

§ Note that for any values of β and ψ

tpIn ´H1qpy´ X2ψqu
JtX1βu “ py´ X2ψq

JpIn ´H1q
JX1β

“ 0

where X1β is an arbitrary point in Λ, as

pIn ´H1q
JX1 “ pIn ´HJ1 qX1

“ X1 ´H1X1 as HJ1 “ H1

“ X1 ´ tX1pX
J
1 X1q

´1XJ1 uX1

“ X1 ´ X1 “ 0.
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Linear models: a recap

Therefore the residual vector

pIn ´H1qpy´ X2ψq

is orthogonal to Λ.
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Linear models: a recap

Returning to the estimation of ψ, we now have the reduced
form model

pY´ X2ψq “ X1
rβ ` ε

or equivalently

pY´ X2ψq “ H1pY´ X2ψq ` ε

that is

pIn ´H1qY “ pIn ´H1qX2ψ ` ε.

which is a linear form in ψ that can be solved using OLS as
usual.
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Linear models: a recap

Note that the estimating equation is

XJ2 pIn ´H1qpy´ X2ψq “ 0

again implying a need for orthogonality between the columns
of X2 and the residual quantity pIn ´H1qpy´ X2ψq.

Note also that for any β

pIn ´H1qpy´ X2ψq “ pIn ´H1qpy´ X1β ´ X2ψq.

as

pIn ´H1qX1 “ pIn ´H1q
JX1 “ 0.
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Hilbert spaces

Hilbert space: A (real) Hilbert space H is a vector space that

§ has an associated inner product x., .y, such that for ele-
ments h1,h2,h3 P H

xh1,h2y P R

can be computed and has certain properties.
§ xh1,h2y “ xh2,h1y

§ xah1 ` bh2,h3y “ axh1,h3y ` bxh2,h3y

§ xh ,hy ě 0
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Hilbert spaces

§ has a metric defined in terms of the inner product that
defines the concept of norm, distance and hence conver-
gence in the space.

§ norm:

}h} “
a

xh ,hy

§ distance:

dph1,h2q “ }h1 ´ h2} “
a

xh1 ´ h2,h1 ´ h2y

380



Hilbert spaces

We may deduce that for h1,h2,h3 P H, for example

dph1,h3q ď dph1,h2q ` dph2,h3q

}h1 ` h2} ď }h1} ` }h2}

|xh1,h2y| ď }h1}}h2}

§ is complete: essentially, Cauchy sequences of elements of
H converge to a limit point that is also in H.
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Hilbert spaces

We are most used to dealing with Hilbert spaces when the
elements h are d -dimensional real vectors, with

xh1,h2y “ hJ1 h2 “

d
ÿ

j“1

h1j h2j

for which the usual concepts of Euclidean distance etc apply.
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Hilbert spaces

Consider the Hilbert space Hq of q-dimensional functions of
random variable Z , with

ErhpZqs “ 0q ErthpZquJhpZqs ă 8

for h P Hq , with the covariance inner product

xh1,h2y “ Erth1pZqu
Jh2pZqs h1,h2 P Hq .

so that }h}2 “ xh ,hy. We say that h1 and h2 are orthogonal if

xh1,h2y ” ErhJ1 h2s “ 0.

In this formulation, all expectations are taken with respect to
the distribution of random variable Z .
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Subspaces and Projections

Consider arbitrary Hilbert space H. For k linearly indepen-
dent functions h1, . . . ,hk P H consider the linear subspace, U
of H defined by

U ”

#

u : u “
k
ÿ

j“1

aj hj , pa1, . . . , ak q P Rk

+

.

U is the subspace spanned by h1, . . . ,hk . Points in the sub-
space are identified uniquely by the coefficients

pa1, . . . , ak q.
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Subspaces and Projections

For each h P H, there is a unique value u0 P U such that

}h ´ u0} ă }h ´ u} @u P U ,u ‰ u0.

that is, u0 is the nearest point in U to h .

§ u0 is the projection of h onto U , sometimes denoted

Πph |Uq;

§ the element h ´ u0 P H is orthogonal to U , that is for all
u P U

Erph ´ u0q
Jus “ 0.

§ }h}2 “ }u0}
2 ` }h ´ u0}

2.
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Subspaces and Projections

Suppose that v ” vpZq is an r-dimensional function of Z with

ErvpZqs “ 0r ErtvpZquJvpZqs ă 8.

Let

Uv ” tBv : B an arbitrary q ˆ r real matrixu

define a q-dimensional linear subspace of Hq derived from v.

That is, all elements of Uv can be expressed

Bv

for some (non-stochastic) matrix B.
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Subspaces and Projections

For h P Hq , the projection of h onto Uv must take the form
B0v, with B0 satisfying

xh ´B0v,Bvy “ 0 @B P Rqˆr

that is,

Erph ´B0vqJBvs “ 0
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Subspaces and Projections

Now, this equation can be re-written elementwise as

q
ÿ

i“1

r
ÿ

j“1

BijErph ´B0vqi vj s “ 0

where subscripting identifies elements of the vector/matrix.

As this must hold for all B, it needs to hold for such matrices
that have 1 in position pi , jq and zero elsewhere, which implies

Erph ´B0vqi vj s “ 0 @pi , jq

and hence that

Erph ´B0vqvJs “ 0.
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Subspaces and Projections

Thus we may deduce that

B0 “ ErhvJs
 

ErvvJs
(´1

(�)

so that

B0v “ ErhvJs
 

ErvvJs
(´1

v. (�)

§ ErhvJs ” CovZ rhpZq, vpZqs is q ˆ r;

§ ErvvJs ” VarZ rvpZqs is r ˆ r;

§ it is assumed that ErvvJs is non-singular.
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Parametric Inference

Suppose Z1, . . . ,Zn are i.i.d. with pdf fZ pz; θq with θ P Rp , and

θ “

«

ψ

β

ff

q ˆ 1

r ˆ 1

with true value θ0 comprised of ψ0 and β0.

§ ψ – parameter of interest;

§ β – nuisance parameter.

The data generating model is thus fZ pz; θ0q.
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Step 1: Asymptotically Linear Estimators

An estimator pψn of parameter ψ0 is asymptotically linear if
there exists a q-dimensional function, ϕpZq, with

ErϕpZqs “ 0q ErϕpZqtϕpZquJs ă 8, nonsingular

such that

?
np pψn ´ ψ0q “

1
?

n

n
ÿ

i“1

ϕpZi q ` opp1q.
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Step 1: Asymptotically Linear Estimators

Then as

1
?

n

n
ÿ

i“1

ϕpZi q
d
ÝÑ Normal

`

0q ,ErϕpZqtϕpZqu
Js
˘

?
np pψn ´ ψ0q also has this asymptotic distribution.

If such a ϕp.q exists, it is unique; it is termed the influence
function for the estimator.
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Step 1: Asymptotically Linear Estimators

Example: Sample mean

If Z1, . . . ,Zn are a random sample from a population with finite
mean θ and variance σ2, then the estimator

pθn “
1

n

n
ÿ

i“1

Zi

yields the representation

?
nppθn ´ θ0q “

1
?

n

n
ÿ

i“1

pZi ´ θ0q

so we can deduce the influence function

ϕpZq ” ϕpZ , θ0q “ Z ´ θ0.

393



Step 1: Asymptotically Linear Estimators

Example: Sample mean

By the Central Limit Theorem, we have that as n ÝÑ 8

?
nppθn ´ θ0q

d
ÝÑ Normalp0, σ2q

where
σ2 ” ErpZ ´ θ0q

2s ” E
“

tϕpZqu2
‰

.
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Step 1: Asymptotically Linear Estimators

Recall that in likelihood estimation, we have the log-likelihood

`npθq “
n
ÿ

i“1

log fZ pzi ; θq “
n
ÿ

i“1

`pzi , θq.

say. Under regularity conditions, by the mean-value theorem,

9̀
npθq “ 9̀

npθ0q ` :̀
npθ

1qpθ ´ θ0q

where }θ1 ´ θ0} ă }θ ´ θ0}, and where

9̀
npθq “

B`npθq

Bθ
:̀
npθq “

B2`npθq

BθBθJ
.

are pp ˆ 1q and pp ˆ pq respectively.
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Step 1: Asymptotically Linear Estimators

Evaluating at θ “ pθn , and noting that 9̀
nppθnq “ 0p , we have on

rearrangement and multiplying through by 1{
?

n that

"

´
1

n
:̀
npθ

1q

*

?
nppθn ´ θ0q “

1
?

n
9̀
npθ0q

where

}θ1 ´ θ0} ă }pθn ´ θ0}
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Step 1: Asymptotically Linear Estimators

As n ÝÑ 8, we have for the random variable version

"

1

n
:̀
npθ

1q

*

p
ÝÑ E

«

B2 log fZ pZ ; θq

BθBθJ

ˇ

ˇ

ˇ

ˇ

θ“θ0

ff

“ E

”

:̀pZ , θ0q

ı

say, as
pθn

p
ÝÑ θ0.
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Step 1: Asymptotically Linear Estimators

Therefore

?
nppθn ´ θ0q “

!

´E

”

:̀pZ , θ0q

ı)´1 1
?

n
9̀
npθ0q ` opp1q

which yields the influence function

ϕpZq ” ϕpZ , θ0q “

!

´E

”

:̀pZ , θ0q

ı)´1
9̀pZ , θ0q

“ J ´1pθ0q 9̀pZ , θ0q

say.
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Step 1: Asymptotically Linear Estimators

To obtain the asymptotic variance, we compute

VarrϕpZqs “ J ´1pθ0qVarr 9̀pZ , θ0qsJ ´1pθ0q

where, under standard likelihood theory,

Ipθ0q “ Varr 9̀pZ , θ0qs “ E

”

9̀pZ , θ0qt 9̀pZ , θ0qu
J
ı

” ´E

”

:̀pZ , θ0q

ı

that is Ipθ0q “ J pθ0q so that

VarrϕpZqs “
!

E

”

9̀pZ , θ0qt 9̀pZ , θ0qu
J
ı)´1

“ I´1pθ0q

which is the asymptotic variance of pθn .
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Step 2: Regular Estimators

Consider the local data generating process (LDGP)

Z1n , . . . ,Znn „ fZ pz; θnq i.i.d.

with
?

npθn ´ θ
˚q ÝÑ constant

as n ÝÑ 8.

Estimator pψn of ψn is regular if its limiting distribution does
not depend on θn .
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Step 2: Regular Estimators

That is, in the Normal case, pψn is regular if

?
np pψn ´ ψ

˚q
d
ÝÑ Normalp0,Σ˚q

under fZ pz; θ˚q implies that

?
np pψn ´ ψnq

d
ÝÑ Normalp0,Σ˚q

under fZ pz; θnq.
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Step 3: Score Functions

The score function Sθpz, θ0q is defined by

Sθpz, θ0q “
B

Bθ
tlog fZ pz; θquθ“θ0

“

«

Sψpz, θ0q

Sβpz, θ0q

ff

q ˆ 1

r ˆ 1

with the subscript denoting the variable with respect to which
the derivative is being taken.
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Step 4: Key Theorem for RAL Estimators

Consider a q-dimensional parameter of interest Ψpθq, and let

Γpθq “
BΨpθq

BθJ
q ˆ p.

Suppose that pΨn is regular and asymptotically linear (RAL)
with influence function ϕp.q such that ErtϕpZquJϕpZqs ă 8.

Then

ErϕpZq tSθpZ , θ0qu
J
s “ Γpθ0q.
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Step 4: Key Theorem for RAL Estimators

Special case: If

Ψpθq ” ψ

then

Γpθ0q “

«

Iqˆq 0qˆr

0rˆq 0rˆr

ff

and so

(i) ErϕpZq tSψpZ , θ0qu
J
s “ Iqˆq ;

(ii) ErϕpZq tSβpZ , θ0qu
J
s “ 0qˆr .

That is, ϕpZq is orthogonal to SβpZ , θ0q.
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Step 5: m-estimation

In m-estimation, we replace the score equation for θ

n
ÿ

i“1

SθpZi , θq ”
n
ÿ

i“1

9̀pZi , θq “ 0p

by the more general form

n
ÿ

i“1

mpZi , θq “ 0p

for function mp., .q
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Step 5: m-estimation

We must have

(i) ErmpZ , θqs “ 0p

(ii) ErtmpZ , θquJmpZ , θqs ă 8

(iii) ErmpZ , θqtmpZ , θquJs nonsingular

for all possible data generating θ.
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Step 5: m-estimation

Using the same logic as in the likelihood case, we have

?
nppθn ´ θ0q “

1
?

n

n
ÿ

i“1

ϕmpZi q ` opp1q

for the influence function associated with m

ϕmpZq “ t´E r 9mpZ , θ0qsu
´1 mpZ , θ0q.
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Step 5: m-estimation

We have by the CLT and elementary results for the Normal
distribution that

?
nppθn ´ θ0q ÝÑ Normalp0p ,J ´1IJ ´Jq

where

I ” Ipθ0q “ ErmpZ , θ0qtmpZ , θ0qu
Js

and

J ” J pθ0q “ ´Er 9mpZ , θ0qs.
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Step 5: m-estimation

These p ˆ p matrices are typically estimated by

pIn “
1

n

n
ÿ

i“1

mpZi , θ0qtmpZi , θ0qu
J

pJn “ ´
1

n

n
ÿ

i“1

9mpZi , θ0q

with θ0 replaced by estimator pθn .
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Step 6: The Geometry of Influence Functions

Consider probability model fZ pz; θq, θJ “ pψJ, βJq.

§ Hq : Hilbert space of q-dimensional zero-mean functions
with finite variance, with the covariance inner product.

§ T : linear subspace of Hq – the tangent space

T ” tBSθpz, θq : B a q ˆ p matrixu

that is, the space spanned by the score Sθ.

§ Λ: linear subspace of Hq – the nuisance tangent space

Λ ” tBSβpz, θq : B a q ˆ r matrixu

that is, the space spanned by the nuisance score Sβ.

410



Step 6: The Geometry of Influence Functions

By the previous theorem, if pψn is an RAL estimator of ψ with
influence function ϕpZq P Hq , then we must have

E

”

ϕpZq tSβpZ , θ0qu
J
ı

“ 0qˆr

that is, ϕpZq is orthogonal to the nuisance tangent space.

We write

ϕpZq P ΛK.

where

ΛK ” “space orthogonal to Λ.”
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Step 6: The Geometry of Influence Functions

We have that

Hq “ Λ‘ ΛK

that is, any h P Hq can be written

h “ s1 ` s2

for s1 P Λ, s2 P ΛK, with s1 orthogonal to s2.
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Step 6: The Geometry of Influence Functions

For any h P H, write s0 for the projection of h onto Λ

Πph |Λq “ s0

that is, s0 is the unique point in Λ that is at the “foot” of the
perpendicular dropped from h onto Λ.

Then as h “ s0 ` ph ´ s0q, we can deduce that

Πph |ΛKq “ h ´ s0

by the projection theorem.
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Step 6: The Geometry of Influence Functions

By the results on page 389, we know how to compute s0 ex-
plicitly; we have that for any h P Hq

Πph |Λq “ ErhSJβ s
 

ErSβSJβ s
(´1

Sβ

so therefore all elements in the space ΛK can be written

h ´Πph |Λq “ h ´ ErhSJβ s
 

ErSβSJβ s
(´1

Sβ.

414



Step 6: The Geometry of Influence Functions

Finally, as

BSθ “ B

„

Sψ
Sβ



we can further decompose

T “ Tψ ‘ Λ

where

Tψ ” tB1SψpZ , θ0q : B1 a q ˆ q matrixu .
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Step 7: Constructing an Estimating Function

Let influence function ϕpZq satisfy the Theorem on page 403.
Set

mpZ , ψ, βq “ ϕpZq ´ ErϕpZqs

where the expectation is taken with respect to fZ p.;ψ, βq. The
function mpZ , ψ, βq has mean zero and finite variance

Then pψn satisfying

n
ÿ

i“1

mpZi , pψn , pβnp pψnqq “ 0p

is RAL with influence function ϕpZq.

416



Step 8: Efficient Influence Function

The efficient influence function, ϕeffpZq, is the influence func-
tion with the smallest variance.

For an arbitrary influence function ϕpZq, using the projection
theorem, it is evident that

ϕeffpZq “ ϕpZq ´ΠpϕpZq|T Kq ” ΠpϕpZq|T q.
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Step 8: Efficient Influence Function

If we denote

Ipθ0q “ E

”

SθpZ , θ0q tSθpZ , θ0qu
J
ı

we have explicitly that to estimate Ψpθ0q

ϕeffpZq “ Γpθ0q tIpθ0qu
´1 SθpZ , θ0q

where, recall,

Γpθq “
BΨpθq

BθJ
q ˆ p.
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Step 8: Efficient Influence Function

The efficient score function for ψ is obtained by projecting the
score SψpZ , θ0q onto the nuisance tangent space Λ, and taking
the residual.

By the result on page 389

ΠpSψ|Λq “ ErSψSJβ s
 

ErSβSJβ s
(´1

SβpZ , θ0q

so therefore the efficient score function for ψ is

S eff
ψ pZ , θ0q “ SψpZ , θ0q ´ ErSψSJβ s

 

ErSβSJβ s
(´1

SβpZ , θ0q
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Step 8: Efficient Influence Function

The efficient influence function for ψ is

ϕeff
ψ pZq “

!

E

”

S eff
ψ

 

S eff
ψ

(J
ı)´1

S eff
ψ pZ , θ0q

which has variance

!

E

”

S eff
ψ

 

S eff
ψ

(J
ı)´1

This result is the generalization of the earlier results.
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Step 9: Semiparametric modelling

Consider the class of semiparametric models

P ” tfZ pz;ψ, βp.qq : ψ is q ˆ 1, βp.q is infinite dimensionalu

with true model f0pzq “ fZ pz;ψ0, β0p.qq.

βp.q represents an unknown density function, say
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Step 9: Semiparametric modelling

Consider the parametric submodel

Pψ,γ ” tfZ pz;ψ, γq : ψ is q ˆ 1, γ is r ˆ 1u

where

(i) Pψ,γ Ă P;

(ii) f0pzq P Pψ,γ; that is

f0pzq ” fZ pz;ψ0, γ0q.

The parametric submodel is identical to the true model
for one setting of the parameters pψ, γq.
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Step 9: Semiparametric modelling

Note

The parametric submodel is simply a way to allow us to com-
pute score functions explicitly.

Note that the parametric submodel is in general specified in
terms of the true model.
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Step 9: Semiparametric modelling

Example: Restricted Moment Model

The restricted moment model

Yi “ µpXi ;ψq ` εi

where βp.q specifies the density of εi admits the parametric
submodel where

εi „ Normalp0, σ2q

that is, γ ” σ2.
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Step 9: Semiparametric modelling

Example: Proportional Hazards Model

In the proportional hazards model with hazard function

λpt |X ;ψ, βq “ βptq exptxψu

with βp.q nonparametrically specified, with true values of the
parameters ψ0 and β0p.q.
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Step 9: Semiparametric modelling

Example: Proportional Hazards Model

A parametric submodel takes the form

λpt |X ;β, γq “ β0ptq exptγ1g1ptq ` ¨ ¨ ¨ ` γrgrptqu exptxψu

for specified functions g1ptq, . . . ,grptq.

This parametric model is specified in terms of the true model
β0ptq which is not known. However, if we specify ψ “ ψ0, and

γ1 “ ¨ ¨ ¨ “ γr “ 0

we recover the true model.
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Step 10: Semiparametric inference

Consider the Hilbert space Hq , and the parametric submodel.

(i) nuisance tangent space

Λγ ” tBSγpZ , ψ0, γ0q : B a q ˆ r matrixu

where

SγpZ , ψ0, γ0q

is the score function component corresponding to γ from
the parametric submodel.
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Step 10: Semiparametric inference

(ii) efficient influence function

ϕeff
ψ,γpZq “ tIpψ0, γ0qu

´1 S eff
ψ,γpZ , ψ0, γ0q

where

Ipψ0, γ0q “ E

”

S eff
ψ,γpZ , ψ0, γ0q

 

S eff
ψ,γpZ , ψ0, γ0q

(J
ı
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Step 10: Semiparametric inference

(iii) efficient score function for ψ is

S eff
ψ pZ , ψ0, γ0q “ SψpZ , ψ0, γ0q ´ΠpSψpZ , ψ0, γ0q|Λγq.

As ever, the RHS is defined in terms of pψ0, γ0q, which is
identical to pψ0, β0p.qq by assumption.
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Step 10: Semiparametric inference

(iv) smallest asymptotic variance amongst RAL estimators for
ψ is

!

E

”

S eff
ψ pZ , ψ0, γ0q

 

S eff
ψ pZ , ψ0, γ0q

(J
ı)´1

All expectations are taken with respect to the true model

fZ pz;ψ0, γ0q ” fZ pz;ψ0, β0q.
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Step 10: Semiparametric inference

§ An estimator for ψ is RAL for the semiparametric model
if it is RAL for every parametric submodel;

§ Any influence function of an RAL estimator in the semi-
parametric model must be an influence function of an
RAL estimator within a parametric submodel;

§ Any influence function of an RAL estimator in the semi-
parametric submodel must be orthogonal to all paramet-
ric submodel nuisance tangent spaces;

§ The variance of any RAL semiparametric influence func-
tion must be no smaller than the variance on page 430.
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Step 11: The Restricted Mean Model

Suppose scalar response Y follows the model

Y “ µpX ;ψq ` ε

with ψ a q ˆ 1 vector. Suppose P ” tfZ pz;ψ, βpqq, z “ py, xqu
with

fY ,X py, xq ” fε,X py ´ µpx;ψq, xq

with the requirement Erε | X s “ 0.
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Step 11: The Restricted Mean Model

Write

fε,X pε, xq “ β1pε, xqβ2pxq

where

§ Conditional model:

β1pε, xq ” fε|X pε|xq

§ Marginal model;

β2pxq ” fX pxq.

Suppose the true (data generating) functions are

β10pε, xq β20pxq.
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Step 11: The Restricted Mean Model

We require for all x

ż

β1pε, xq dε “ 1

ż

ε β1pε, xq dε “ 0

and that β2pxq is non-negative and satisfies

ż

β2pxq dx “ 1.

With no further restrictions, we have a semiparametric speci-
fication with these infinite dimensional nuisance parameters.
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Step 11: The Restricted Mean Model

A parametric submodel is

Pψ,γ ” tfZ pz;ψ, γq “ fε|X py ´ µpx;ψq|x; γ1qfX px; γ2qu

where γ1 is r1 ˆ 1 and γ2 is r2 ˆ 1, with r “ r1 ` r2.

Denote the true model

f0pzq “ fε|X py ´ µpx;ψq|x; γ10qfX px; γ20q.
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Step 12: Efficient Inference

We have in the parametric submodel

log fZ pz;ψ, γq ” log fε|X pε|x; γ1q ` log fX px; γ2q.

Therefore

Sγ1pε, x;ψ0, γ0q “
B

Bγ1

 

log fε|X pε|x; γ1q
(

γ1“γ10

Sγ2pε, x;ψ0, γ0q “
B

Bγ2
tlog fX px; γ2quγ2“γ20

We will suppress the dependence on pψ0, γ0q.
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Step 12: Efficient Inference

A typical element in the parametric submodel nuisance tan-
gent space is given by

BSγpε,Xq “ B1Sγ1pε,Xq `B2Sγ2pXq

where

§ B1 is q ˆ r1,

§ B2 is q ˆ r2.

We define the spaces Λγ , Λγ1 and Λγ2 by

BSγpε,Xq P Λγ B1Sγ1pε,Xq P Λγ1 B2Sγ2pXq P Λγ2 .
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Step 12: Efficient Inference

That is, in terms of the corresponding spaces

Λγ “ Λγ1 ‘ Λγ2

with Λγ1 and Λγ2 orthogonal as

ErSγ1pε,XqtSγ2pXqu
Js “ 0r1ˆr2

by iterated expectation.
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Step 12: Efficient Inference

Let

§ Λ be the mean-square closure of all parametric submodel
nuisance tangent spaces

Λ ” tmean-square closure of all Λγ1 ‘ Λγ2u;

§ Λ1s “ tmean-square closure of all Λγ1u;

§ Λ2s “ tmean-square closure of all Λγ2u

For Λ, the mean-square closure is the set of functions that can
be represented as the limit of sequences of score functions
arising from the parametric submodels.
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Step 12: Efficient Inference

§ Λ2s is a subspace of Hq arising from the unknown fX pxq
(which is essentially unrestricted )

§ comprising elements that are eligible score functions;

§ where every bounded element αpxq P Λ2s is the score for
some parametric submodel, for example

fX px; γ2q “ f0pxqp1` γ
J
2 αpxqq

for γ2 small enough.

See Tsiatis, pp 78–79.
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Step 12: Efficient Inference

§ Λ1s is a subspace of Hq comprising functions apε,Xq

§ which satisfy

(i) Erapε,Xq|X s “ 0q ;
This says that apε, xq must be a score function.

(ii) Erapε,Xqε|X s “ 0q

This says that apε, xq must be a uncorrelated with ε for all
x, and enforces the requirement

Erε|X s “ 0 w.p. 1.

§ which arise from some parametric submodel, for example

fε|X pε|x; γ1q “ f0pε|xqp1` γ
J
1 apε, xqq

See Tsiatis, pp 80–81.
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Step 12: Efficient Inference

Let

αpXq P Λ2s and apε,Xq P Λ1s .

Then

EX ,εrαpXq
Japε,Xqs “ EX

“

αpXqJEε|X rapε,Xq | X s
‰

“ 0

by iterated expectation, as

Eε|X rapε,Xq | X s “ 0q .

Therefore Λ1s and Λ2s are orthogonal , and we have precisely
characterized the nuisance tangent space as

Λ “ Λ1s ‘ Λ2s .
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Step 12: Efficient Inference

The space Λ1s is a space of q-dimensional random functions,
apε,Xq, say, defined by two conditions:

Erapε,Xq|X s “ 0q (C1)

Erapε,Xqε|X s “ 0q (C2)

443



Step 12: Efficient Inference

Suppose αpXq P Λ2s . Then, for any apε,Xq satisfying (C1), we
have that

EX ,εrαpXq
Japε,Xqs “ 0

by iterated expectation. That is, αpXq is orthogonal to apε,Xq.

Similarly, as

Eε|X rαpXqε|X s “ 0q

αpXq also satisfies (C2).
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Step 12: Efficient Inference

It follows that the nuisance tangent space Λ comprises pre-
cisely those functions that satisfy (C2),

That is, Λ comprises functions h ” hpε,Xq P Hq such that

Erhpε,Xqε|X s “ 0q .

See Tsiatis, pp 82–83.
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Step 12: Efficient Inference

For the efficient score for ψ we need to project the ordinary
score onto Λ, and take the ‘residual ’

S eff
ψ pε,Xq “ Sψpε,Xq ´ΠpSψpε,Xq|Λq.

By this construction, we see that

S eff
ψ pε,Xq P ΛK

as

Sψpε,Xq “ ΠpSψpε,Xq|Λq ` tSψpε,Xq ´ΠpSψpε,Xq|Λqu

“ ΠpSψpε,Xq|Λq ` S eff
ψ pε,Xq.
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Step 12: Efficient Inference

In the restricted mean model, the space orthogonal to the
nuisance tangent space is seen to be

ΛK “ tApXqε : where A is q ˆ 1u

To see this, note that for all apε,Xq satisfying condition (C2)

Ertapε,XquJApXqεs “ 0

using iterated expectation.
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Step 12: Efficient Inference

The projection of an arbitrary h onto ΛK is

h ´ Erhε|X s
 

Erε2|X s
(´1

ε.

We can then characterize elements of ΛK as taking the form

hpε,Xq ´Πphpε,Xq|Λq “ gpXqε

for arbitrary h P H and for gpXq the q-dimensional vector

gpXq “ Erhε|X s
 

Erε2|X s
(´1

Taking hpε,Xq ” Sψpε,Xq, we obtain the efficient score for ψ.

448



Step 12: Efficient Inference

The efficient score is then

S eff
ψ pε,Xq “ Sψpε,Xq ´ΠpSψpε,Xq|Λq

” ErSψpε,Xqε|X s
 

Erε2|X s
(´1

ε

“ DpXqJ tVpXqu´1 ε

say, where

DpXq ” DpX ;ψ0q “
BµpX ;ψq

BψJ

ˇ

ˇ

ˇ

ˇ

ψ“ψ0

is a 1ˆ q vector.
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Step 12: Efficient Inference

Hence we must (in principle) solve the estimating equation

n
ÿ

i“1

DpXi ;ψq
J tVpXi qu

´1
pYi ´ µpXi ;ψqq “ 0q .

This requires knowledge of the true model f0p.q, as the for-
mula depends on

VpXq ” VpX ;ψ0, β0q “ Erε2|X s

In practice we cannot implement the estimation procedure
without further modelling.
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Step 12: Efficient Inference

However, we can implement estimation based on

n
ÿ

i“1

ApXi qpYi ´ µpXi ;ψqq “ 0q .

where Ap.q is some pre-specified q ˆ 1 function of X .

If

ApXq “ DpX ;ψ0q
J tVpXqu´1

we obtain optimal inference.
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G-estimation

Consider the simple structural (causal) specification given by

ErYpzq ´ Yp0q|X s ” ErYpzq ´ Yp0qs “ zψ0.

This states that

§ compared to the ‘baseline’ case of z “ 0, exposure at
level z “ z leads to a change zψ0 in the expected (poten-
tial) outcome, and

§ that this quantity does not depend on confounders X .

We proceed assuming Z is binary.
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G-estimation

The model can be considered as one that specifies that

Ypzq “ µ0pXq ` zψ0 ` ε

where µ0pXq “ ErYp0q|X s is a nuisance component.

Suppose a proposed parametric submodel is

µ0pXq “ µ0pX ;β0q.
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G-estimation

We consider the probability model based on the semiparamet-
ric regression formulation

fX ,Y ,Z px, y, zq “ fε|X ,Z py ´ µ0px;βq ´ zψ|x, zqfX ,Z px, zq

and for simplicity focus on the parametric submodel for the
first component

fε|X ,Z pε|x, xq ” fεpε;σ0q ” Normalp0, σ2
0q.
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G-estimation

Then the score function for this submodel is

ˆ

Sβ
Sψ

˙

“
1

σ2
0

ˆ

µ0βpX ;β0q

Z

˙

pY ´ µ0pX ;β0q ´ Zψ0q

“
1

σ2
0

ˆ

µ0βpX ;β0q

Z

˙

ε

say.
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G-estimation

The nuisance tangent space corresponds to the Sβ compo-
nent, and can be seen to take the form

tApXqε : ApXq arbitraryu

where ApXq has the same dimension as β.

We then need to project Sψ onto this tangent space: the pro-
jection is the quantity A0pXqε, where we must have

ErpZε´ A0pXqεq
JApXqεs “ 0 @ApXq
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G-estimation

By iterated expectation, if

epXq ” ErZ |X s

we therefore must have

ErpepXqε´ A0pXqεq
JApXqεs “ 0 @ApXq

implying that

A0pXq ” epXq.
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G-estimation

Therefore the projection of the score Sψ onto the nuisance
tangent space yields the efficient score function

S eff
ψ “ Sψ ´ΠpSψ|Λq “ pZ ´ epXqqε.
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G-estimation

Therefore efficient estimation is achieved by solving

n
ÿ

i“1

˜

9µ0βpxi ;βq

zi ´ epxi q

¸

pyi ´ µ0pxi ;βq ´ ziψq “ 0

which corresponds to G-estimation.
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Inverse Probability Weighting

Weighting estimators can be justified using semiparametric
theory by adopting a missing (or coarsened ) data strategy.

Recall that for the ATE in the binary case, using the potential
outcome notation

δ “ µp1q ´ µp0q “ ErYp1q ´ Yp0qs

460



Inverse Probability Weighting

If such data were available, we would use the estimator

µpzq “
1

n

n
ÿ

i“1

Yi pzq.

based on the complete data estimating equation

n
ÿ

i“1

pYi pzq ´ µpzqq “ 0.

However, we do not observe the counterfactual outcomes.
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Inverse Probability Weighting

We need to utilize the observed data estimating equation:

n
ÿ

i“1

ˆ

1tzupZi qYi

fZ |X pZi |Xi q
´ µpzq

˙

“ 0.

With z “ 1, this becomes

n
ÿ

i“1

ˆ

Zi Yi

epXi q
´ µp1q

˙

“ 0.
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Inverse Probability Weighting

To construct the efficient (observed data) score and influence
function, it can be shown first that all observed data influence
functions can be written

hpX ,Y ,Zq ` LpX ,Y ,Zq

where hpX ,Y ,Zq satisfies

ErhpX ,Y ,Zq|Yp0q,Yp1q,X s “ Yp1q ´ µp1q

and LpX ,Y ,Zq satisfies

ErLpX ,Y ,Zq|Yp0q,Yp1q,X s “ 0.

The function L is termed the augmentation function.
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Inverse Probability Weighting

From above, one suitable h is

hpX ,Y ,Zq “
ZY

epXq
´ µp1q

as

E

„

ZY

epXq

ˇ

ˇ

ˇ

ˇ

Yp0q,Yp1q,X



“ E

„

ZYp1q

epXq

ˇ

ˇ

ˇ

ˇ

Yp0q,Yp1q,X



“ Yp1qE

„

Z

epXq

ˇ

ˇ

ˇ

ˇ

Yp0q,Yp1q,X



“ Yp1q.
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Inverse Probability Weighting

For LpX ,Y ,Zq we can always write in the binary case

LpX ,Y ,Zq “ p1´ ZqL0pX ,Yq ` ZL1pX ,Yq

Therefore, taking expectations

ErLpX ,Y ,Zq|Yp0q,Yp1q,X s “ p1´ epXqqL0pX ,Yp0qq

` epXqL1pX ,Yp1qq
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Inverse Probability Weighting

Equating this to zero implies that

L0pX ,Yp0qq “ ´
epXq

p1´ epXqq
L1pX ,Yp1qq.

provided 0 ă epXq ă 1.

Further, as the left hand side is a function of Yp0q and the
right hand side is a function of Yp1q, this equation can only
hold in general if L0 and L1 do not depend on Y at all.
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Inverse Probability Weighting

Thus we can simplify

L0pXq “ ´
epXq

p1´ epXqq
L1pXq.

so that

LpX ,Y ,Zq ” LpX ,Zq “

ˆ

´p1´ Zq
epXq

p1´ epXqq
` Z

˙

L1pXq

“

ˆ

Z ´ epXq

1´ epXq

˙

L1pXq.
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Inverse Probability Weighting

Combining terms in X , we see that the space of augmentation
functions takes the form

Λ “ tpZ ´ epXqqgpXq : gpXq arbitraryu.

We find the optimal influence function by projecting

hpX ,Y ,Zq “
ZY

epXq
´ µp1q

onto Λ; this identifies a specific element of Λ

pZ ´ epXqqg0pXq

say that obeys the usual orthogonality results.
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Inverse Probability Weighting

That is, for arbitrary g, we need to solve for g0 the condition

E

„ˆ

ZY

epXq
´ µp1q ´ pZ ´ epXqqg0pXq

˙

pZ ´ epXqqgpXq



“ 0.

The expectation can be rewritten

EX ,Z

„ˆ

ZµpX ,Zq

epXq
´ µp1q ´ pZ ´ epXqqg0pXq

˙

pZ ´ epXqqgpXq
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Inverse Probability Weighting

Using iterated expectation, we have conditional on X that the
interior expectation of Z is

p1´ epXqqp´µp1q ` epXqg0pXqqp´epXqqgpXq

` epXq

ˆ

µpX ,1q

epXq
´ µp1q ´ p1´ epXqqg0pXq

˙

p1´ epXqqgpXq.

To make this identically zero in expectation for any gpXq, we
must have

epXqp1´ epXqq

ˆ

µpX ,1q

epXq
´ g0pXq

˙

“ 0.
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Inverse Probability Weighting

We find that

g0pXq “
µpX ,1q

epXq
“

1

epXq
ErY |X ,Z “ 1s

so that

hpX ,Y ,Zq`LpX ,Zq “
ZY

epXq
´
pZ ´ epXqq

epXq
ErY |X ,Z “ 1s´µp1q.
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Inverse Probability Weighting

Therefore, the efficient influence function for µp1q is

ϕeffpX ,Y ,Zq “
ZY

epXq
´
pZ ´ epXqq

epXq
µpX ,1q ´ µp1q

or equivalently

ϕeffpX ,Y ,Zq “
ZpY ´ µpX ,1qq

epXq
` µpX ,1q ´ µp1q

which is the basis of AIPW estimation.
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Inverse Probability Weighting

The corresponding estimating equation is therefore

n
ÿ

i“1

ˆ

Zi Yi

1´ epXi q
´
pZi ´ epXi qq

epXi q
µpXi ,1q ´ µp1q

˙

“ 0.

Similarly for µp0q we have

n
ÿ

i“1

ˆ

p1´ Zi qYi

epXi q
`
pZi ´ epXi qq

1´ epXi q
µpXi ,0q ´ µp0q

˙

“ 0.

as

p1´ Zi q ´ p1´ epXi qq “ ´pZi ´ epXi qq.
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