Part 5

Semiparametric Inference




Semiparametric Inference

The semiparametric theory of estimation that can be used to
justify several of the previous causal inference methods.
We consider models that include

» parametric components (with a finite dimensional param-
eter of interest)

» nonparametric components (with an infinite dimensional
parameter that is usually a nuisance parameter)
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Semiparametric Inference

Example: Ordinary Least Squares

Ordinary least squares is a semiparametric approach:

= argmmz w(xi; 0))>
i=1

 parametric mean model yu(x;6), # € RY say

® nonparametric distributional assumption for the condi-
tional distribution of Y given X = x.
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Semiparametric Inference

Example: Ordinary Least Squares
If

ei =Y — pu(Xi;0)
we assume only that

Jfg|x(t|x) dt — 1 Jt £x(t}x) dt = 0

and
ftz £x(t]x) dt < oo

but make no other assumptions.
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Linear models: a recap

Suppose we have a linear model
Yi = X108 + Xi2¢) + &

where

» xj1isl xr

» Bisrx1

» xipisl xq

» Yisqgx1
Let 6 be the concatenation of 8 and v, so that 6 is p x 1 with
b=q+Tr.
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Linear models: a recap

In vector form, for a random sample of size n, we have
Y=X18+Xp¢+¢

We require linear independence of the columns of the com-
bined matrix
X1 X2].
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Linear models: a recap

Note that

» X1 is an arbitrary point in the linear subspace of R”
spanned by the columns of X; - denote this linear sub-
space A.

» X, is an arbitrary point in the linear subspace of R”
spanned by the columns of X,.
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Linear models: a recap

For OLS estimation we need to solve

X{
(XzT (y — X158 —X2¢) = 0p

We can write the left hand side

X|
9
X;

which is an element in a p-dimensional space.
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Linear models: a recap

Suppose that v is the parameter of interest. For any 1, we
may write the model

(Y-Xoy) =X18+e¢
and hence for nuisance parameter  deduce that
B = (X{X1) ' X] (y — Xo1)).
This follows from the usual OLS result; note that

B =B()

is a function of .
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Linear models: a recap

We then have that
X18 = X; (X{X1) " 'X] (v — Xov)) = Hy (y — Xo1)

say, with
H; = X;(X{X;)"'X] (nxn).

Note that H; is symmetric, and that

HH; — H H; = H;.
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Linear models: a recap

Note that
» the n x 1 vector xlﬁ is a specific point in the space A.
» for any 1), xlé is the closest point in A to (y — Xz1);
» the matrix H; projects (y — Xz1) onto A to compute X; 5

» the ‘residual’ vector after finding X; 5 is

(y —Xot)) — X153 = (y — Xo9) — Hi(y — Xo1))

= (Ip — Hy)(y — X2v)
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Linear models: a recap

» Note that for any values of 5 and v
{(Tn — H1)(y — Xo9)} {Xa 8} = (y — Xo) (I, — Hy) X4 8
=0
where X; (5 is an arbitrary point in A, as
(I, —H) Xy = (I, - H] )Xy
=X; - H1 Xy as H] = H;
=X; — {X;(X{X1)7IX] 1x4

=X; —X; =0.
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Linear models: a recap

Therefore the residual vector

(In — Hp)(y — X2v)

is orthogonal to A.
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Linear models: a recap

Returning to the estimation of i), we now have the reduced
form model
(Y-Xo¢)) =X18 +e

or equivalently
(Y = X2tp) = Hi (Y = Xo9)) + ¢

that is
(In —H1)Y = (I, — H)Xo¢) + €.

which is a linear form in ¥ that can be solved using OLS as
usual.
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Linear models: a recap

Note that the estimating equation is
X; (In — Hy)(y — Xz1) = 0

again implying a need for orthogonality between the columns
of X, and the residual quantity (I, — Hy)(y — X2v).

Note also that for any £

(In —Hy)(y — Xov) = (In — Hy ) (y — Xu 8 — Xp0)).

as
(I, —H)X; = (I, —H;) 'X; = 0.
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Hilbert spaces

Hilbert space: A (real) Hilbert space H is a vector space that

» has an associated inner product {.,.), such that for ele-
ments hy, hy, hy € H

<h1, h2> eR

can be computed and has certain properties.
> (hi,hy) = (hy, hy)
» (ahy + bhy, h3) = a(hy, h3) + b{hy, h3)
» (h,h) >0
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Hilbert spaces

» has a metric defined in terms of the inner product that
defines the concept of norm, distance and hence conver-
gence in the space.

> norm:

| = +/<h; h)

» distance:

d(hy, hp) = |hy — hy| = \/Chy — hy, by — hy)
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Hilbert spaces

We may deduce that for hi, hy, hy € H, for example
d(hy, h3) < d(hy, hy) + d(hy, h3)
[hy + ho|| < by + B
[Chy s )| < [y [l e |

» is complete: essentially, Cauchy sequences of elements of
‘H converge to a limit point that is also in H.
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Hilbert spaces

We are most used to dealing with Hilbert spaces when the
elements h are d-dimensional real vectors, with

d
(h1,h2) = hy hy = Z hyjhy;
j=1

for which the usual concepts of Euclidean distance etc apply.
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Hilbert spaces

Consider the Hilbert space H; of g-dimensional functions of
random variable Z, with

E[h(2)] =04  E[{h(Z)} h(Z)] <o
for h € Hq, with the covariance inner product
(hi,hy) = E[{h1(Z)} "hy(Z)]  h1,hy € Hy.
so that |h|? = (h, h). We say that h; and h; are orthogonal if
(hy, hy) = E[h{ hy] = 0.

In this formulation, all expectations are taken with respect to
the distribution of random variable Z.
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Subspaces and Projections

Consider arbitrary Hilbert space H. For k linearly indepen-
dent functions hy, ..., hxy € H consider the linear subspace, U

of H defined by

k
L{:{u:u=Zajhj,(al,...,ak)eRk}.
j=1

U is the subspace spanned by hi,..., hx. Points in the sub-
space are identified uniquely by the coefficients

(81,...,ak).
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Subspaces and Projections

For each h € H, there is a unique value ug € U such that
|h —uo| < |h—u|| VYueld,u # up.

that is, ug is the nearest point in I/ to h.

» U is the projection of h onto U, sometimes denoted
I(hU);

» the element h — ug € H is orthogonal to U, that is for all
ueld
E[(h — 1) u] = 0.

> Bl = fuol? + B — uo|®.
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Subspaces and Projections

Suppose that v = v(Z) is an r-dimensional function of Z with
E[v(2)] =0,  E[{v(Z)}'v(Z)] < .

Let
Uy = {Bv : B an arbitrary g x r real matrix}

define a g-dimensional linear subspace of H, derived from v.

That is, all elements of U/, can be expressed

Bv

for some (non-stochastic) matrix B.
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Subspaces and Projections

For h € Hq4, the projection of h onto U/, must take the form
Bov, with B satisfying

(h —Bov,Bv)=0  VBeR™"

that is,
E[(h — Bov)'Bv] =0

387



Subspaces and Projections

Now, this equation can be re-written elementwise as

q r
3N ByE[(h — Bov)ivi] = 0

i=1j=1
where subscripting identifies elements of the vector/matrix.

As this must hold for all B, it needs to hold for such matrices
that have 1 in position (i,j) and zero elsewhere, which implies

[E[(h — BoV)jVj] =0 V(l,_])

and hence that
E[(h —Bov)v'] = 0.
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Subspaces and Projections

Thus we may deduce that
By — E[hv" ] {E[w ]} (m)

so that
Bov = E[hv'] {[E[VVT]}_l V. (¢
» E[hv'] = Covz[h(Z),v(Z)]is q x 1;
» E[w'] = Varz[v(Z)]isr x ;

» it is assumed that E[vv '] is non-singular.
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Parametric Inference

Suppose Zi,...,Z, are i.i.d. with pdf fz(z;0) with 6 € RP, and

P gx1
9 =
I5} rxil
with true value 6y comprised of 1y and .
» 1) — parameter of interest;

» B - nuisance parameter.

The data generating model is thus fz(z;6y).
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Step 1: Asymptotically Linear Estimators

An estimator zzn of parameter 1y is asymptotically linear if
there exists a g-dimensional function, ¢(Z), with

E[¢(Z2)] =0, E[p(Z){p(Z)}"] < oo, nonsingular

such that

p(Zi) + 0p(1).
1

\/H(lzn _1/}0) = /n A

1 n
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Step 1: Asymptotically Linear Estimators

Then as
1 & d
75 2, #(Zi) - Normal (04, E[¢(2){(2)} "))
i=1
V/n (QZH — 1)) also has this asymptotic distribution.

If such a ¢(.) exists, it is unique; it is termed the influence
function for the estimator.
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Step 1: Asymptotically Linear Estimators

Example: Sample mean

If Z1,...,Z, are arandom sample from a population with finite
mean f and variance o2, then the estimator

yields the representation
Vn (0 — o) = Z — o)

so we can deduce the influence function
QD(Z) = @(2,90) =/ — 00.
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Step 1: Asymptotically Linear Estimators

Example: Sample mean

By the Central Limit Theorem, we have that as n — o
Vv (0n — 00) % Normal(0, o)

where
0% = E[(Z - 60)?] = E[{p(2)}?].
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Step 1: Asymptotically Linear Estimators

Recall that in likelihood estimation, we have the log-likelihood

n n
a(0) = Y log fz(zi;0) = > £(z;,0).

i=1 i=1
say. Under regularity conditions, by the mean-value theorem,

0n(0) = 0n(00) + £n(0")(6 — 6g)

, and where

where [|60/ — 0| < [0 — b9

S ol (0) L 32,(0)
(n6) = 2 in(6) = S50

are (p x 1) and (p x p) respectively.
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Step 1: Asymptotically Linear Estimators

Evaluating at 6 = 5,1, and noting that én(én) = 0p, we have on
rearrangement and multiplying through by 1/4/n that

1

\/Hén (00)

{~ 37 @)} V(B — 00) -

where
[60" — 6ol < [0 — o
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Step 1: Asymptotically Linear Estimators

As n — o0, we have for the random variable version

{;Zn(e’)} NS [W HJ —E [E(z,eo)]

say, as

~

0, 2 0,.
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Step 1: Asymptotically Linear Estimators

Therefore
~ . -1 1 .
V(0 — 00) = {—[E [z(z,eo)]} Zlal00) +0p(1)
which yields the influence function
. 1.
#(2) = ¢(2,00) = {~E|i(z.00)|} (2, 00)

= 7 1(60)4(Z. 60)

say.
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Step 1: Asymptotically Linear Estimators

To obtain the asymptotic variance, we compute
Var[p(Z)] = J " (60)Var[£(Z, 60)]1T (o)

where, under standard likelihood theory,

T(00) = Var[i(Z,00)] = E|£(Z,00){(2.00)}" | = ~E|i{(Z,0)
that is (o) = J(6o) so that

var[p(2)] = {E [i(z.00)ti(z. 00|} =27 (00)
which is the asymptotic variance of 0,,.
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Step 2: Regular Estimators

Consider the local data generating process (LDGP)
Ziny ..y Znn ~ £7(z;0n) ii.d.

with
vn (6, — 6*) —> constant
asn — o0.

Estimator 1Zn of ¢, is regular if its limiting distribution does
not depend on 6,,.
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Step 2: Regular Estimators

That is, in the Normal case, 1211 is regular if
V(b — %) %> Normal (0, £%)
under fz(z;6*) implies that
V(b — ) %> Normal (0, £%)

under fz(z;60p).
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Step 3: Score Functions

The score function Sy(z, 6p) is defined by

51/,(2,90)] q X 1

0
59(2,00) — % {logfz(Z;e)}6=90 - 185(2790)

rxl1

with the subscript denoting the variable with respect to which
the derivative is being taken.

402



Step 4: Key Theorem for RAL Estimators

Consider a g-dimensional parameter of interest ¥(6), and let

re) = Q;IIQ(TG) q xp.

Suppose that \Tln is regular and asymptotically linear (RAL)
with influence function ¢(.) such that E[{x(Z)}T¢(Z)] < co.

Then
E[¢(Z) {Se(Z.00)} '] = T'(6o).
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Step 4: Key Theorem for RAL Estimators

Special case: If

(o) =1
then
Igxg Ogxr
I'(0) = [ axq Yq ]
0r><q 0rxr
and so
M) E[p(2) {Sy(Z,00)}'] = Tgxqs
(i) E[(2) {S5(Z,00)}"] = Ogxr-
That is, p(Z) is orthogonal to Sz(Z, o).

404



Step 5: m-estimation

In m-estimation, we replace the score equation for 6

n n
Z ZU 0 = Z ZI ) 6
i=1 i=1
by the more general form
n
> m(z;,0)

i=1

for function m(.,.)
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Step 5: m-estimation

We must have
(i) E[m(Z,0)] = 0p
(i) E[{m(Z,0)} m(Z,0)] < x
(iii) E[m(Z,60){m(Z,)}"] nonsingular

for all possible data generating 6.
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Step 5: m-estimation

Using the same logic as in the likelihood case, we have
VI (6, — o) = Z‘Pm ) + 0p(1)

for the influence function associated with m

pm(Z) = {—E[1(Z,00)]} "' m(Z, o).
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Step 5: m-estimation

We have by the CLT and elementary results for the Normal
distribution that

V(0 — 60) — Normal (0,,7 'ZJ ")

where
T =7T(6o) = E[m(Z,00){m(Z,00)}"]

and

J

J(0o) = —E[m(Z,00)].
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Step 5: m-estimation

These p x p matrices are typically estimated by

Z Z1a00

i=1

~)

'.3\'—\

1 n
HZ m(Z;,00){m(Z;,00)} "

with g replaced by estimator én.
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Step 6: The Geometry of Influence Functions

Consider probability model fz(z; ), 67 = (7, 87).

» Hq: Hilbert space of g-dimensional zero-mean functions
with finite variance, with the covariance inner product.

» 7 linear subspace of H, - the tangent space
T ={BSy(z,0) : B a q x p matrix}

that is, the space spanned by the score Sy.

» A: linear subspace of H4 - the nuisance tangent space
A = {BSp(z,0) : B a g x r matrix}
that is, the space spanned by the nuisance score Sg.
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Step 6: The Geometry of Influence Functions

By the previous theorem, if @ZH is an RAL estimator of ¢ with
influence function ¢(Z) € H4, then we must have

E|¢(2){S5(Z.00)}" | = Ogsr

that is, ¢(Z) is orthogonal to the nuisance tangent space.

We write
©(Z) e At

where
At = “space orthogonal to A.”
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Step 6: The Geometry of Influence Functions

We have that
He =A@ AT

that is, any h € H4 can be written
h=s+s)

for s; € A, s, € A+, with s; orthogonal to s,.
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Step 6: The Geometry of Influence Functions

For any h € H, write sy for the projection of h onto A
II(h|A) = so

that is, sg is the unique point in A that is at the “foot” of the
perpendicular dropped from h onto A.

Then as h = sy + (h — sp), we can deduce that
II(h|AY) = h — sg

by the projection theorem.
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Step 6: The Geometry of Influence Functions

By the results on page 389, we know how to compute sy ex-
plicitly; we have that for any h € H,

-1
II(h|A) = E[hS4 ] {E[SsS;]} ~ Ss
so therefore all elements in the space A can be written

h —TI(h|A) = h — E[hS] ] {E[SsS] 1} Ss.
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Step 6: The Geometry of Influence Functions

Finally, as
BS,; =B [Sw]
Ss

we can further decompose
T=T,®A

where
Ty = {B1Sy(Z,0p) : By a g x q matrix}.
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Step 7: Constructing an Estimating Function

Let influence function ¢(Z) satisfy the Theorem on page 403.
Set
m(Z,v,53) = ¢(Z) — Elp(Z)]

where the expectation is taken with respect to fz(.; ¢, 3). The
function m(Z, ¢, §) has mean zero and finite variance

Then @ZD satisfying
Z m(Z;, Y, Bn(thn)) =

is RAL with influence function ¢(Z).
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Step 8: Efficient Influence Function

The efficient influence function, ¢°%(Z), is the influence func-
tion with the smallest variance.

For an arbitrary influence function ¢(Z), using the projection
theorem, it is evident that

¢N(Z) = ¢(2) —(p(2Z)|T) = W((Z)|T).
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Step 8: Efficient Influence Function

If we denote
T(60) = E[S0(Z. 00) {Su(Z,60)} |
we have explicitly that to estimate ¥ (6y)
¢*(Z) = T(00) {Z(00)} " Se(Z, b0)

where, recall,
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Step 8: Efficient Influence Function

The efficient score function for 1 is obtained by projecting the
score Sy (Z,0y) onto the nuisance tangent space A, and taking
the residual.

By the result on page 389
-1
I(Sy|A) = E[SySy1{E[SsS51}  Sa(Z.00)
so therefore the efficient score function for v is

SS7(Z.60) = Sy(Z,00) — E[S,ST1{E[SsSJ1} " Ss(Z. o)
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Step 8: Efficient Influence Function

The efficient influence function for ) is

(p?;f( ) = { [S&;}ff{ssz} ]}_ eff(Z )

which has variance

sy}

This result is the generalization of the earlier results.
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Step 9: Semiparametric modelling

Consider the class of semiparametric models
P ={fz(z;9,B(.)) : ¥ is g x 1, (.) is infinite dimensional }

with true model fy(z) = fz(z; 1o, Bo(.)).

B(.) represents an unknown density function, say

421



Step 9: Semiparametric modelling

Consider the parametric submodel

Py = {fz(z;9,7) :Yisqx 1,yisr x 1}

where
(i) :PTZ’N (e fP,'
(11) fo(Z) € iP’l/%'Y’. that is

fo(z) = fz(z; %0, 70)-

The parametric submodel is identical to the true model
for one setting of the parameters (v, 7).
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Step 9: Semiparametric modelling

The parametric submodel is simply a way to allow us to com-
pute score functions explicitly.

Note that the parametric submodel is in general specified in
terms of the true model.
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Step 9: Semiparametric modelling

Example: Restricted Moment Model

The restricted moment model
Yi = p(Xi;9) +&i

where [(.) specifies the density of ¢; admits the parametric
submodel where
e; ~ Normal(0, o2)

that is, v = o
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Step 9: Semiparametric modelling

Example: Proportional Hazards Model

In the proportional hazards model with hazard function

A(t|X; 4, B) = B(t) exp{xi}

with 5(.) nonparametrically specified, with true values of the
parameters ¢y and So(.).
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Step 9: Semiparametric modelling

Example: Proportional Hazards Model

A parametric submodel takes the form

A(t|X;8,7) = Bo(t) exp{mg1(t) + - + 7rgr(t)} exp{xe}

for specified functions g (t),. .., gr(t).

This parametric model is specified in terms of the true model
Bo(t) which is not known. However, if we specify ¢ = 19, and

N=- = =0

we recover the true model.
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Step 10: Semiparametric inference

Consider the Hilbert space H4, and the parametric submodel.

(i) nuisance tangent space
Ay, = {BS,(Z,%0,7) : B a g x r matrix}

where
S’Y(Z) 1/)05 ’YO)

is the score function component corresponding to v from
the parametric submodel.
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Step 10: Semiparametric inference

(ii) efficient influence function

0o (Z) = {Z(¥0,70)} ' SIT(Z, 10, 70)

where

Z(v0,70) = E [Seff (Z,%0,7) {Si"%(Z 1/10770)}T]
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Step 10: Semiparametric inference

(iii) efficient score function for 1 is

Si(Z,40,%) = Sy(Z,%0,7) — T(Sy(Z,10,70)|A)-

As ever, the RHS is defined in terms of (¢, 70), which is
identical to (o, Bo(.)) by assumption.
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Step 10: Semiparametric inference

(iv) smallest asymptotic variance amongst RAL estimators for
1 is
1) -1
{[E [ (Z,10,70) {S(Z, 10, 70) } ]}

All expectations are taken with respect to the true model

f2(z;v0,70) = fz(2; %0, Bo)-
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Step 10: Semiparametric inference

» An estimator for 1 is RAL for the semiparametric model
if it is RAL for every parametric submodel;

» Any influence function of an RAL estimator in the semi-
parametric model must be an influence function of an
RAL estimator within a parametric submodel;

» Any influence function of an RAL estimator in the semi-
parametric submodel must be orthogonal to all paramet-
ric submodel nuisance tangent spaces;

» The variance of any RAL semiparametric influence func-
tion must be no smaller than the variance on page 430.
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Step 11: The Restricted Mean Model

Suppose scalar response Y follows the model
Y =pu(X;h) +e

with ¢ a g x 1 vector. Suppose P = {fz(z;¢,3()),z = (y,x)}
with
fyx(y,x) = £ x(y — p(x; ), x)

with the requirement E[e | X] = 0.
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Step 11: The Restricted Mean Model

Write
f: x (&, %) = Bi(e, x)B2(x)

where

» Conditional model:
b1 (57 X) = €|X(€|X)

» Marginal model;

B2(x) = fx(x).

Suppose the true (data generating) functions are

510(€,X) 520(X)-
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Step 11: The Restricted Mean Model

We require for all x
Jﬁl(s,x) de =1 fsﬁl(e,x) de =0

and that 5, (x) is non-negative and satisfies

fﬁz(x) dx = 1.

With no further restrictions, we have a semiparametric speci-
fication with these infinite dimensional nuisance parameters.
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Step 11: The Restricted Mean Model

A parametric submodel is

Py ={tz(z3,7) = Lix (¥ — u(x59)[x571) fx (x5 92) }

where v isrp x 1 and vy ismp x 1, with r = + .

Denote the true model

fo(z) = fx (¥ — p(x;9)x;710) fx (X5 720)-
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Step 12: Efficient Inference

We have in the parametric submodel
log fz(z;¢),7) = log £ x (e]x;71) + log fx (x5 72).
Therefore

0
Sy (g,%50,70) = 8771 {10g1"€|X(€|X;71)}71=710

0
Sy, (e, x;%0,7%) = o7 {log £x (x5 72) }., =y

We will suppress the dependence on (¢, Y0)-
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Step 12: Efficient Inference

A typical element in the parametric submodel nuisance tan-
gent space is given by

BS’Y(57X) =B1S, (e, X) + B:S,, (X)

where
*» Biisq x r,
*» Byisqg x .
We define the spaces A,, A, and A, by

BS,(,X)e A, BiS,(s,X)eA, ByS,(X)eA,.
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Step 12: Efficient Inference

That is, in terms of the corresponding spaces
Ay =7y @A,
with A,, and A,, orthogonal as
[E[S% (EaX){SWZ(X)}T] =0 xr,

by iterated expectation.
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Step 12: Efficient Inference

Let

» A be the mean-square closure of all parametric submodel
nuisance tangent spaces

A = {mean-square closure of all A, ® A, };

» A1 = {mean-square closure of all A, };

» Ays = {mean-square closure of all A, }

For A, the mean-square closure is the set of functions that can
be represented as the limit of sequences of score functions
arising from the parametric submodels.
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Step 12: Efficient Inference

» Ays is a subspace of H4 arising from the unknown fx(x)
(which is essentially unrestricted)

» comprising elements that are eligible score functions;

» where every bounded element a(x) € Ay is the score for
some parametric submodel, for example

fx(x;72) = fo(x)(1 + ’Y;OZ(X))

for v, small enough.

See Tsiatis, pp 78-79.
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Step 12: Efficient Inference

» Ais is a subspace of H, comprising functions a(e, X)

> which satisfy
() E[a(e, X)|X] = 0g;
This says that a(e, x) must be a score function.
(i) E[a(e,X)e|X] = 04
This says that a(e, x) must be a uncorrelated with ¢ for all
x, and enforces the requirement

E[e/lX]=0  wp.1.

» which arise from some parametric submodel, for example

fx(elxim) = fo(elx) (1 + ale, x))

See Tsiatis, pp 80-81.
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Step 12: Efficient Inference

Let
a(X)eAys and  a(e,X) € Ags.

Then
Exc[a(X) a(e,X)] = Ex [a(X)"E.x[a(e,X) | X]] = 0
by iterated expectation, as
E.xla(e, X) | X] = 0q4.

Therefore A5 and Ays are orthogonal, and we have precisely
characterized the nuisance tangent space as

A= Als @AZS-
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Step 12: Efficient Inference

The space Aj;s is a space of g-dimensional random functions,
a(e, X), say, defined by two conditions:

E[a(e, X)|X] = 04 (C1)

E[a(e, X)e|X] = 04 (C2)
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Step 12: Efficient Inference

Suppose a(X) € Ays. Then, for any a(e, X) satisfying (C1), we
have that
Ex.[a(X) (. X)] = 0

by iterated expectation. That is, a(X) is orthogonal to a(e, X).

Similarly, as
E.x[a(X)e[X] = 0q

a(X) also satisfies (C2).
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Step 12: Efficient Inference

It follows that the nuisance tangent space A comprises pre-
cisely those functions that satisfy (C2),

That is, A comprises functions h = h(e, X) € Hq such that

E[h(e,X)e|X] = 0g4.

See Tsiatis, pp 82-83.

445



Step 12: Efficient Inference

For the efficient score for » we need to project the ordinary
score onto A, and take the ‘residual’

Si'(e,X) = Sy(e,X) — II(Sy(e, X)|A).
By this construction, we see that
Sfjff(s,X) e At
as
Su(e,X) = T(Sy(e. X)|A) + {Sy (e, X) — TI(Sy(e, X)|A)}

= TI(Sy(e, X)|A) + S5(e, X).
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Step 12: Efficient Inference

In the restricted mean model, the space orthogonal to the
nuisance tangent space is seen to be

At = {A(X)e : where A is q x 1}
To see this, note that for all a(e, X) satisfying condition (C2)
E[{a(e,X)}"A(X)e] = 0

using iterated expectation.
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Step 12: Efficient Inference

The projection of an arbitrary h onto A* is
h — E[he|X] {E[*[X]} e
We can then characterize elements of A as taking the form
h(e,X) —II(h(g,X)|A) = g(X)e
for arbitrary h € ‘H and for g(X) the g-dimensional vector

g(X) = E[he|X] {E[*|X]}

Taking h(e,X) = Sy (e, X), we obtain the efficient score for 1.
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Step 12: Efficient Inference

The efficient score is then

Si'(e,X) = Sy (e, X) — TI(Sy(e, X)[A)

= E[Sy (e, X)e|X] {E[2X]} e

D(X) " {V(X)}'e
say, where

ou(X; 1)
oyt =10

D(X) = D(X; o) =
isa 1 x g vector.
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Step 12: Efficient Inference

Hence we must (in principle) solve the estimating equation
n
D DX ) T {VX )} (Vi — u(Xi; ) = 0g.
i=1

This requires knowledge of the true model fy(.), as the for-
mula depends on

V(X) = V(X;¢0, Bo) = E[e?|X]

In practice we cannot implement the estimation procedure
without further modelling.
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Step 12: Efficient Inference

However, we can implement estimation based on

Z )(Yi — p(Xi39)) = 0g.

where A(.) is some pre-specified g x 1 function of X.

If
A(X) = D(X;10) {V(X)}

we obtain optimal inference.

451



G-estimation

Consider the simple structural (causal) specification given by
E[Y(z) — Y(0)|X] = E[Y(2) — Y(0)] = z¢o.

This states that

» compared to the ‘baseline’ case of z = 0, exposure at
level z = z leads to a change zi in the expected (poten-
tial) outcome, and

» that this quantity does not depend on confounders X.

We proceed assuming Z is binary.
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G-estimation

The model can be considered as one that specifies that
Y(z) = po(X) +z¢po + ¢

where po(X) = E[Y(0)|X] is a nuisance component.

Suppose a proposed parametric submodel is

po(X) = po(X; Bo)-
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G-estimation

We consider the probability model based on the semiparamet-
ric regression formulation

fxyz(x,y,z) = s|X,Z(Y — po(x; B) — z|x, z)fx z(x, Z)

and for simplicity focus on the parametric submodel for the
first component

£ 1x,z (€|x, x) = £.(¢; 09) = Normal(0, 03).
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G-estimation

Then the score function for this submodel is

Sy z

say.

<56> _ iz <“05(X;50)) (Y — p10(X; o) — Zho)
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G-estimation

The nuisance tangent space corresponds to the Sz compo-
nent, and can be seen to take the form

{A(X)e : A(X) arbitrary}

where A(X) has the same dimension as f3.

We then need to project S, onto this tangent space: the pro-
jection is the quantity Ap(X)e, where we must have

E[(Ze — Ao(X)e)TA(X)e] =0 VA(X)
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G-estimation

By iterated expectation, if
e(X) =E[Z|X]
we therefore must have
E[(e(X)e — Ag(X)e) TA(X)e] = 0

implying that

VA(X)
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G-estimation

Therefore the projection of the score S, onto the nuisance
tangent space yields the efficient score function

Sit = Sy —II(Sy|A) = (Z — e(X))e.
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G-estimation

Therefore efficient estimation is achieved by solving

Z <M05 XI(’X )> (vi — po(xi; 8) — ziyp) = 0

which corresponds to G-estimation.
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Inverse Probability Weighting

Weighting estimators can be justified using semiparametric
theory by adopting a missing (or coarsened) data strategy.

Recall that for the ATE in the binary case, using the potential
outcome notation
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Inverse Probability Weighting

If such data were available, we would use the estimator
1 n
“nne

based on the complete data estimating equation

N (Yi(2) - n(2)) = 0.
i=1

However, we do not observe the counterfactual outcomes.
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Inverse Probability Weighting

We need to utilize the observed data estimating equation:

i <fl{|x} Zmy @) =0

(1)) ~ 0.

With z = 1, this becomes
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Inverse Probability Weighting

To construct the efficient (observed data) score and influence
function, it can be shown first that all observed data influence
functions can be written

h(X,Y,Z) + L(X,Y,Z)
where h(X,Y, Z) satisfies
E[h(X,Y,Z)[Y(0), Y(1),X] = Y(1) — u(1)
and L(X, Y, Z) satisfies
E[L(X,Y,Z)|Y(0),Y(1),X] = 0.

The function L is termed the augmentation function.
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Inverse Probability Weighting

From above, one suitable h is

h(x.v.2) = 25— ul)
as
zy _[zv()
E [G(X)‘Y(O),Y(l),X} - [E[ o0 Y(O),Y(l),X]
_ Y(1)E [e(ZX)‘Y(O),Y(l),X]
_ y(1)
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Inverse Probability Weighting

For L(X,Y,Z) we can always write in the binary case
L(X,Y,Z)=(1—-Z)Lo(X,Y) + ZL1(X, Y)
Therefore, taking expectations
E[L(X,Y,Z)[Y(0),Y(1),X] = (1 — e(X))Lo(X, Y(0))

+e(X)L1(X, Y(1))
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Inverse Probability Weighting

Equating this to zero implies that

e(X)

Lo(X, Y(0)) = TA—eX)

Li(X,Y(1)).

provided 0 < e(X) < 1.

Further, as the left hand side is a function of Y(0) and the
right hand side is a function of Y(1), this equation can only
hold in general if Ly and L; do not depend on Y at all.
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Inverse Probability Weighting

Thus we can simplify

Lo(X) = e i(f()X))Ll(X)
so that
L(X,Y,Z) = L(X,Z) = <—(1 -2 i(f()x)) + z) L1 (X)
Z —e(X)
- (e e
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Inverse Probability Weighting

Combining terms in X, we see that the space of augmentation
functions takes the form

A={(Z—-e(X))g(X): g(X) arbitrary}.

We find the optimal influence function by projecting

A
e(X)

h(X,Y,Z) = _:U’(l)

onto A; this identifies a specific element of A
(Z — e(X))go(X)

say that obeys the usual orthogonality results.
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Inverse Probability Weighting

That is, for arbitrary g, we need to solve for gy the condition

E| (25 - ) - (2 - o)) ) (Z - e(x))g(x)| - 0.

The expectation can be rewritten

Exz | (25— 1) - (Z - e(X)a0(X) ) (2 - e(x)g(x)|
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Inverse Probability Weighting

Using iterated expectation, we have conditional on X that the
interior expectation of Z is

(1 —e(X))(—u(1) + e(X)go(X))(—e(X))g(X)

#o00) (M) 1) = (1 - o)) ) (1 - e(X))g(X).

To make this identically zero in expectation for any g(X), we
must have

(1 - ) ("S5 - o)) -
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Inverse Probability Weighting

We find that
a0(x) = M) = S EIIX Z = 1]
so that
h(X.Y.Z)+L(X,Z) = 22 _Z=eX)pryix 7 11— (1),
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Inverse Probability Weighting

Therefore, the efficient influence function for p(1) is

e, v.2) = o= E e - i)

or equivalently

Z(Y — p(X,1))
e(X)

@Eff(X7 sz> = +:U'(X71)_M(1>

which is the basis of AIPW estimation.
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Inverse Probability Weighting

The corresponding estimating equation is therefore

Z (1_6 (Zj;(;j()}{j))ﬂ(xj,l)—M(1)> o

Similarly for ;(0) we have

o (L=Z)Y (2 e(%) _
1§< e(Xi) * :“(Xivo)—u(o))_().

1-— G(Xj)

as
(1-2)— (1 —e(Xi) = —(Zi — e(Xi)).
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