
Part 5

Semiparametric Inference



Semiparametric Inference

The semiparametric theory of estimation that can be used to
justify several of the previous causal inference methods.

We consider models that include

§ parametric components (with a finite dimensional param-
eter of interest)

§ nonparametric components (with an infinite dimensional
parameter that is usually a nuisance parameter)
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Semiparametric Inference

Example: Ordinary Least Squares

Ordinary least squares is a semiparametric approach:

pθ “ arg min
θ

n
ÿ

i“1

pyi ´ µpxi ; θqq
2

‚ parametric mean model µpx; θq, θ P Rd say

‚ nonparametric distributional assumption for the condi-
tional distribution of Y given X “ x.
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Semiparametric Inference

Example: Ordinary Least Squares

If
εi “ Yi ´ µpXi ; θq

we assume only that
ż

fε|X pt |xq dt “ 1

ż

t fε|X pt |xq dt “ 0

and
ż

t2 fε|X pt |xq dt ă 8

but make no other assumptions.
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Linear models: a recap

Suppose we have a linear model

Yi “ xi1β ` xi2ψ ` εi

where

§ xi1 is 1ˆ r

§ β is r ˆ 1

§ xi2 is 1ˆ q

§ ψ is q ˆ 1

Let θ be the concatenation of β and ψ, so that θ is p ˆ 1 with
p “ q ` r.
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Linear models: a recap

In vector form, for a random sample of size n, we have

Y “ X1β ` X2ψ ` ε

We require linear independence of the columns of the com-
bined matrix

rX1 X2s .
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Linear models: a recap

Note that

§ X1β is an arbitrary point in the linear subspace of Rn

spanned by the columns of X1 – denote this linear sub-
space Λ.

§ X2ψ is an arbitrary point in the linear subspace of Rn

spanned by the columns of X2.
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Linear models: a recap

For OLS estimation we need to solve
˜

XJ1

XJ2

¸

py´ X1β ´ X2ψq “ 0p

We can write the left hand side
˜

XJ1

XJ2

¸

ε

which is an element in a p-dimensional space.
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Linear models: a recap

Suppose that ψ is the parameter of interest . For any ψ, we
may write the model

pY´ X2ψq “ X1β ` ε

and hence for nuisance parameter β deduce that

rβ “ pXJ1 X1q
´1XJ1 py´ X2ψq.

This follows from the usual OLS result; note that

rβ ” rβpψq

is a function of ψ.
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Linear models: a recap

We then have that

X1
rβ “ X1pX

J
1 X1q

´1XJ1 py´ X2ψq “ H1py´ X2ψq

say, with

H1 “ X1pX
J
1 X1q

´1XJ1 pn ˆ nq.

Note that H1 is symmetric, and that

H1H1 “ HJ1 H1 “ H1.
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Linear models: a recap

Note that

§ the n ˆ 1 vector X1
rβ is a specific point in the space Λ.

§ for any ψ, X1
rβ is the closest point in Λ to py´ X2ψq;

§ the matrix H1 projects py´ X2ψq onto Λ to compute X1
rβ.

§ the ‘residual ’ vector after finding X1
rβ is

py´ X2ψq ´ X1
rβ “ py´ X2ψq ´H1py´ X2ψq

“ pIn ´H1qpy´ X2ψq
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Linear models: a recap

§ Note that for any values of β and ψ

tpIn ´H1qpy´ X2ψqu
JtX1βu “ py´ X2ψq

JpIn ´H1q
JX1β

“ 0

where X1β is an arbitrary point in Λ, as

pIn ´H1q
JX1 “ pIn ´HJ1 qX1

“ X1 ´H1X1 as HJ1 “ H1

“ X1 ´ tX1pX
J
1 X1q

´1XJ1 uX1

“ X1 ´ X1 “ 0.
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Linear models: a recap

Therefore the residual vector

pIn ´H1qpy´ X2ψq

is orthogonal to Λ.
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Linear models: a recap

Returning to the estimation of ψ, we now have the reduced
form model

pY´ X2ψq “ X1
rβ ` ε

or equivalently

pY´ X2ψq “ H1pY´ X2ψq ` ε

that is

pIn ´H1qY “ pIn ´H1qX2ψ ` ε.

which is a linear form in ψ that can be solved using OLS as
usual.
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Linear models: a recap

Note that the estimating equation is

XJ2 pIn ´H1qpy´ X2ψq “ 0

again implying a need for orthogonality between the columns
of X2 and the residual quantity pIn ´H1qpy´ X2ψq.

Note also that for any β

pIn ´H1qpy´ X2ψq “ pIn ´H1qpy´ X1β ´ X2ψq.

as

pIn ´H1qX1 “ pIn ´H1q
JX1 “ 0.
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Hilbert spaces

Hilbert space: A (real) Hilbert space H is a vector space that

§ has an associated inner product x., .y, such that for ele-
ments h1,h2,h3 P H

xh1,h2y P R

can be computed and has certain properties.
§ xh1,h2y “ xh2,h1y

§ xah1 ` bh2,h3y “ axh1,h3y ` bxh2,h3y

§ xh ,hy ě 0
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Hilbert spaces

§ has a metric defined in terms of the inner product that
defines the concept of norm, distance and hence conver-
gence in the space.

§ norm:

}h} “
a

xh ,hy

§ distance:

dph1,h2q “ }h1 ´ h2} “
a

xh1 ´ h2,h1 ´ h2y
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Hilbert spaces

We may deduce that for h1,h2,h3 P H, for example

dph1,h3q ď dph1,h2q ` dph2,h3q

}h1 ` h2} ď }h1} ` }h2}

|xh1,h2y| ď }h1}}h2}

§ is complete: essentially, Cauchy sequences of elements of
H converge to a limit point that is also in H.
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Hilbert spaces

We are most used to dealing with Hilbert spaces when the
elements h are d -dimensional real vectors, with

xh1,h2y “ hJ1 h2 “

d
ÿ

j“1

h1j h2j

for which the usual concepts of Euclidean distance etc apply.
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Hilbert spaces

Consider the Hilbert space Hq of q-dimensional functions of
random variable Z , with

ErhpZqs “ 0q ErthpZquJhpZqs ă 8

for h P Hq , with the covariance inner product

xh1,h2y “ Erth1pZqu
Jh2pZqs h1,h2 P Hq .

so that }h}2 “ xh ,hy. We say that h1 and h2 are orthogonal if

xh1,h2y ” ErhJ1 h2s “ 0.

In this formulation, all expectations are taken with respect to
the distribution of random variable Z .
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Subspaces and Projections

Consider arbitrary Hilbert space H. For k linearly indepen-
dent functions h1, . . . ,hk P H consider the linear subspace, U
of H defined by

U ”

#

u : u “
k
ÿ

j“1

aj hj , pa1, . . . , ak q P Rk

+

.

U is the subspace spanned by h1, . . . ,hk . Points in the sub-
space are identified uniquely by the coefficients

pa1, . . . , ak q.
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Subspaces and Projections

For each h P H, there is a unique value u0 P U such that

}h ´ u0} ă }h ´ u} @u P U ,u ‰ u0.

that is, u0 is the nearest point in U to h .

§ u0 is the projection of h onto U , sometimes denoted

Πph |Uq;

§ the element h ´ u0 P H is orthogonal to U , that is for all
u P U

Erph ´ u0q
Jus “ 0.

§ }h}2 “ }u0}
2 ` }h ´ u0}

2.
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Subspaces and Projections

Suppose that v ” vpZq is an r-dimensional function of Z with

ErvpZqs “ 0r ErtvpZquJvpZqs ă 8.

Let

Uv ” tBv : B an arbitrary q ˆ r real matrixu

define a q-dimensional linear subspace of Hq derived from v.

That is, all elements of Uv can be expressed

Bv

for some (non-stochastic) matrix B.
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Subspaces and Projections

For h P Hq , the projection of h onto Uv must take the form
B0v, with B0 satisfying

xh ´B0v,Bvy “ 0 @B P Rqˆr

that is,

Erph ´B0vqJBvs “ 0
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Subspaces and Projections

Now, this equation can be re-written elementwise as

q
ÿ

i“1

r
ÿ

j“1

BijErph ´B0vqi vj s “ 0

where subscripting identifies elements of the vector/matrix.

As this must hold for all B, it needs to hold for such matrices
that have 1 in position pi , jq and zero elsewhere, which implies

Erph ´B0vqi vj s “ 0 @pi , jq

and hence that

Erph ´B0vqvJs “ 0.
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Subspaces and Projections

Thus we may deduce that

B0 “ ErhvJs
 

ErvvJs
(´1

(�)

so that

B0v “ ErhvJs
 

ErvvJs
(´1

v. (�)

§ ErhvJs ” CovZ rhpZq, vpZqs is q ˆ r;

§ ErvvJs ” VarZ rvpZqs is r ˆ r;

§ it is assumed that ErvvJs is non-singular.
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Parametric Inference

Suppose Z1, . . . ,Zn are i.i.d. with pdf fZ pz; θq with θ P Rp , and

θ “

«

ψ

β

ff

q ˆ 1

r ˆ 1

with true value θ0 comprised of ψ0 and β0.

§ ψ – parameter of interest;

§ β – nuisance parameter.

The data generating model is thus fZ pz; θ0q.
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Step 1: Asymptotically Linear Estimators

An estimator pψn of parameter ψ0 is asymptotically linear if
there exists a q-dimensional function, ϕpZq, with

ErϕpZqs “ 0q ErϕpZqtϕpZquJs ă 8, nonsingular

such that

?
np pψn ´ ψ0q “

1
?

n

n
ÿ

i“1

ϕpZi q ` opp1q.
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Step 1: Asymptotically Linear Estimators

Then as

1
?

n

n
ÿ

i“1

ϕpZi q
d
ÝÑ Normal

`

0q ,ErϕpZqtϕpZqu
Js
˘

?
np pψn ´ ψ0q also has this asymptotic distribution.

If such a ϕp.q exists, it is unique; it is termed the influence
function for the estimator.
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Step 1: Asymptotically Linear Estimators

Example: Sample mean

If Z1, . . . ,Zn are a random sample from a population with finite
mean θ and variance σ2, then the estimator

pθn “
1

n

n
ÿ

i“1

Zi

yields the representation

?
nppθn ´ θ0q “

1
?

n

n
ÿ

i“1

pZi ´ θ0q

so we can deduce the influence function

ϕpZq ” ϕpZ , θ0q “ Z ´ θ0.
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Step 1: Asymptotically Linear Estimators

Example: Sample mean

By the Central Limit Theorem, we have that as n ÝÑ 8

?
nppθn ´ θ0q

d
ÝÑ Normalp0, σ2q

where
σ2 ” ErpZ ´ θ0q

2s ” E
“

tϕpZqu2
‰

.
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Step 1: Asymptotically Linear Estimators

Recall that in likelihood estimation, we have the log-likelihood

`npθq “
n
ÿ

i“1

log fZ pzi ; θq “
n
ÿ

i“1

`pzi , θq.

say. Under regularity conditions, by the mean-value theorem,

9̀
npθq “ 9̀

npθ0q ` :̀
npθ

1qpθ ´ θ0q

where }θ1 ´ θ0} ă }θ ´ θ0}, and where

9̀
npθq “

B`npθq

Bθ
:̀
npθq “

B2`npθq

BθBθJ
.

are pp ˆ 1q and pp ˆ pq respectively.
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Step 1: Asymptotically Linear Estimators

Evaluating at θ “ pθn , and noting that 9̀
nppθnq “ 0p , we have on

rearrangement and multiplying through by 1{
?

n that

"

´
1

n
:̀
npθ

1q

*

?
nppθn ´ θ0q “

1
?

n
9̀
npθ0q

where

}θ1 ´ θ0} ă }pθn ´ θ0}
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Step 1: Asymptotically Linear Estimators

As n ÝÑ 8, we have for the random variable version

"

1

n
:̀
npθ

1q

*

p
ÝÑ E

«

B2 log fZ pZ ; θq

BθBθJ

ˇ

ˇ

ˇ

ˇ

θ“θ0

ff

“ E

”

:̀pZ , θ0q

ı

say, as
pθn

p
ÝÑ θ0.
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Step 1: Asymptotically Linear Estimators

Therefore

?
nppθn ´ θ0q “

!

´E

”

:̀pZ , θ0q

ı)´1 1
?

n
9̀
npθ0q ` opp1q

which yields the influence function

ϕpZq ” ϕpZ , θ0q “

!

´E

”

:̀pZ , θ0q

ı)´1
9̀pZ , θ0q

“ J ´1pθ0q 9̀pZ , θ0q

say.
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Step 1: Asymptotically Linear Estimators

To obtain the asymptotic variance, we compute

VarrϕpZqs “ J ´1pθ0qVarr 9̀pZ , θ0qsJ ´1pθ0q

where, under standard likelihood theory,

Ipθ0q “ Varr 9̀pZ , θ0qs “ E

”

9̀pZ , θ0qt 9̀pZ , θ0qu
J
ı

” ´E

”

:̀pZ , θ0q

ı

that is Ipθ0q “ J pθ0q so that

VarrϕpZqs “
!

E

”

9̀pZ , θ0qt 9̀pZ , θ0qu
J
ı)´1

“ I´1pθ0q

which is the asymptotic variance of pθn .
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Step 2: Regular Estimators

Consider the local data generating process (LDGP)

Z1n , . . . ,Znn „ fZ pz; θnq i.i.d.

with
?

npθn ´ θ
˚q ÝÑ constant

as n ÝÑ 8.

Estimator pψn of ψn is regular if its limiting distribution does
not depend on θn .
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Step 2: Regular Estimators

That is, in the Normal case, pψn is regular if

?
np pψn ´ ψ

˚q
d
ÝÑ Normalp0,Σ˚q

under fZ pz; θ˚q implies that

?
np pψn ´ ψnq

d
ÝÑ Normalp0,Σ˚q

under fZ pz; θnq.
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Step 3: Score Functions

The score function Sθpz, θ0q is defined by

Sθpz, θ0q “
B

Bθ
tlog fZ pz; θquθ“θ0

“

«

Sψpz, θ0q

Sβpz, θ0q

ff

q ˆ 1

r ˆ 1

with the subscript denoting the variable with respect to which
the derivative is being taken.
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Step 4: Key Theorem for RAL Estimators

Consider a q-dimensional parameter of interest Ψpθq, and let

Γpθq “
BΨpθq

BθJ
q ˆ p.

Suppose that pΨn is regular and asymptotically linear (RAL)
with influence function ϕp.q such that ErtϕpZquJϕpZqs ă 8.

Then

ErϕpZq tSθpZ , θ0qu
J
s “ Γpθ0q.
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Step 4: Key Theorem for RAL Estimators

Special case: If

Ψpθq ” ψ

then

Γpθ0q “

«

Iqˆq 0qˆr

0rˆq 0rˆr

ff

and so

(i) ErϕpZq tSψpZ , θ0qu
J
s “ Iqˆq ;

(ii) ErϕpZq tSβpZ , θ0qu
J
s “ 0qˆr .

That is, ϕpZq is orthogonal to SβpZ , θ0q.
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Step 5: m-estimation

In m-estimation, we replace the score equation for θ

n
ÿ

i“1

SθpZi , θq ”
n
ÿ

i“1

9̀pZi , θq “ 0p

by the more general form

n
ÿ

i“1

mpZi , θq “ 0p

for function mp., .q
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Step 5: m-estimation

We must have

(i) ErmpZ , θqs “ 0p

(ii) ErtmpZ , θquJmpZ , θqs ă 8

(iii) ErmpZ , θqtmpZ , θquJs nonsingular

for all possible data generating θ.
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Step 5: m-estimation

Using the same logic as in the likelihood case, we have

?
nppθn ´ θ0q “

1
?

n

n
ÿ

i“1

ϕmpZi q ` opp1q

for the influence function associated with m

ϕmpZq “ t´E r 9mpZ , θ0qsu
´1 mpZ , θ0q.
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Step 5: m-estimation

We have by the CLT and elementary results for the Normal
distribution that

?
nppθn ´ θ0q ÝÑ Normalp0p ,J ´1IJ ´Jq

where

I ” Ipθ0q “ ErmpZ , θ0qtmpZ , θ0qu
Js

and

J ” J pθ0q “ ´Er 9mpZ , θ0qs.
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Step 5: m-estimation

These p ˆ p matrices are typically estimated by

pIn “
1

n

n
ÿ

i“1

mpZi , θ0qtmpZi , θ0qu
J

pJn “ ´
1

n

n
ÿ

i“1

9mpZi , θ0q

with θ0 replaced by estimator pθn .

409



Step 6: The Geometry of Influence Functions

Consider probability model fZ pz; θq, θJ “ pψJ, βJq.

§ Hq : Hilbert space of q-dimensional zero-mean functions
with finite variance, with the covariance inner product.

§ T : linear subspace of Hq – the tangent space

T ” tBSθpz, θq : B a q ˆ p matrixu

that is, the space spanned by the score Sθ.

§ Λ: linear subspace of Hq – the nuisance tangent space

Λ ” tBSβpz, θq : B a q ˆ r matrixu

that is, the space spanned by the nuisance score Sβ.
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Step 6: The Geometry of Influence Functions

By the previous theorem, if pψn is an RAL estimator of ψ with
influence function ϕpZq P Hq , then we must have

E

”

ϕpZq tSβpZ , θ0qu
J
ı

“ 0qˆr

that is, ϕpZq is orthogonal to the nuisance tangent space.

We write

ϕpZq P ΛK.

where

ΛK ” “space orthogonal to Λ.”
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Step 6: The Geometry of Influence Functions

We have that

Hq “ Λ‘ ΛK

that is, any h P Hq can be written

h “ s1 ` s2

for s1 P Λ, s2 P ΛK, with s1 orthogonal to s2.
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Step 6: The Geometry of Influence Functions

For any h P H, write s0 for the projection of h onto Λ

Πph |Λq “ s0

that is, s0 is the unique point in Λ that is at the “foot” of the
perpendicular dropped from h onto Λ.

Then as h “ s0 ` ph ´ s0q, we can deduce that

Πph |ΛKq “ h ´ s0

by the projection theorem.
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Step 6: The Geometry of Influence Functions

By the results on page 389, we know how to compute s0 ex-
plicitly; we have that for any h P Hq

Πph |Λq “ ErhSJβ s
 

ErSβSJβ s
(´1

Sβ

so therefore all elements in the space ΛK can be written

h ´Πph |Λq “ h ´ ErhSJβ s
 

ErSβSJβ s
(´1

Sβ.
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Step 6: The Geometry of Influence Functions

Finally, as

BSθ “ B

„

Sψ
Sβ



we can further decompose

T “ Tψ ‘ Λ

where

Tψ ” tB1SψpZ , θ0q : B1 a q ˆ q matrixu .
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Step 7: Constructing an Estimating Function

Let influence function ϕpZq satisfy the Theorem on page 403.
Set

mpZ , ψ, βq “ ϕpZq ´ ErϕpZqs

where the expectation is taken with respect to fZ p.;ψ, βq. The
function mpZ , ψ, βq has mean zero and finite variance

Then pψn satisfying

n
ÿ

i“1

mpZi , pψn , pβnp pψnqq “ 0p

is RAL with influence function ϕpZq.
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Step 8: Efficient Influence Function

The efficient influence function, ϕeffpZq, is the influence func-
tion with the smallest variance.

For an arbitrary influence function ϕpZq, using the projection
theorem, it is evident that

ϕeffpZq “ ϕpZq ´ΠpϕpZq|T Kq ” ΠpϕpZq|T q.
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Step 8: Efficient Influence Function

If we denote

Ipθ0q “ E

”

SθpZ , θ0q tSθpZ , θ0qu
J
ı

we have explicitly that to estimate Ψpθ0q

ϕeffpZq “ Γpθ0q tIpθ0qu
´1 SθpZ , θ0q

where, recall,

Γpθq “
BΨpθq

BθJ
q ˆ p.
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Step 8: Efficient Influence Function

The efficient score function for ψ is obtained by projecting the
score SψpZ , θ0q onto the nuisance tangent space Λ, and taking
the residual.

By the result on page 389

ΠpSψ|Λq “ ErSψSJβ s
 

ErSβSJβ s
(´1

SβpZ , θ0q

so therefore the efficient score function for ψ is

S eff
ψ pZ , θ0q “ SψpZ , θ0q ´ ErSψSJβ s

 

ErSβSJβ s
(´1

SβpZ , θ0q
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Step 8: Efficient Influence Function

The efficient influence function for ψ is

ϕeff
ψ pZq “

!

E

”

S eff
ψ

 

S eff
ψ

(J
ı)´1

S eff
ψ pZ , θ0q

which has variance

!

E

”

S eff
ψ

 

S eff
ψ

(J
ı)´1

This result is the generalization of the earlier results.
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Step 9: Semiparametric modelling

Consider the class of semiparametric models

P ” tfZ pz;ψ, βp.qq : ψ is q ˆ 1, βp.q is infinite dimensionalu

with true model f0pzq “ fZ pz;ψ0, β0p.qq.

βp.q represents an unknown density function, say

421



Step 9: Semiparametric modelling

Consider the parametric submodel

Pψ,γ ” tfZ pz;ψ, γq : ψ is q ˆ 1, γ is r ˆ 1u

where

(i) Pψ,γ Ă P;

(ii) f0pzq P Pψ,γ; that is

f0pzq ” fZ pz;ψ0, γ0q.

The parametric submodel is identical to the true model
for one setting of the parameters pψ, γq.

422



Step 9: Semiparametric modelling

Note

The parametric submodel is simply a way to allow us to com-
pute score functions explicitly.

Note that the parametric submodel is in general specified in
terms of the true model.
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Step 9: Semiparametric modelling

Example: Restricted Moment Model

The restricted moment model

Yi “ µpXi ;ψq ` εi

where βp.q specifies the density of εi admits the parametric
submodel where

εi „ Normalp0, σ2q

that is, γ ” σ2.
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Step 9: Semiparametric modelling

Example: Proportional Hazards Model

In the proportional hazards model with hazard function

λpt |X ;ψ, βq “ βptq exptxψu

with βp.q nonparametrically specified, with true values of the
parameters ψ0 and β0p.q.
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Step 9: Semiparametric modelling

Example: Proportional Hazards Model

A parametric submodel takes the form

λpt |X ;β, γq “ β0ptq exptγ1g1ptq ` ¨ ¨ ¨ ` γrgrptqu exptxψu

for specified functions g1ptq, . . . ,grptq.

This parametric model is specified in terms of the true model
β0ptq which is not known. However, if we specify ψ “ ψ0, and

γ1 “ ¨ ¨ ¨ “ γr “ 0

we recover the true model.
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Step 10: Semiparametric inference

Consider the Hilbert space Hq , and the parametric submodel.

(i) nuisance tangent space

Λγ ” tBSγpZ , ψ0, γ0q : B a q ˆ r matrixu

where

SγpZ , ψ0, γ0q

is the score function component corresponding to γ from
the parametric submodel.
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Step 10: Semiparametric inference

(ii) efficient influence function

ϕeff
ψ,γpZq “ tIpψ0, γ0qu

´1 S eff
ψ,γpZ , ψ0, γ0q

where

Ipψ0, γ0q “ E

”

S eff
ψ,γpZ , ψ0, γ0q

 

S eff
ψ,γpZ , ψ0, γ0q

(J
ı
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Step 10: Semiparametric inference

(iii) efficient score function for ψ is

S eff
ψ pZ , ψ0, γ0q “ SψpZ , ψ0, γ0q ´ΠpSψpZ , ψ0, γ0q|Λγq.

As ever, the RHS is defined in terms of pψ0, γ0q, which is
identical to pψ0, β0p.qq by assumption.
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Step 10: Semiparametric inference

(iv) smallest asymptotic variance amongst RAL estimators for
ψ is

!

E

”

S eff
ψ pZ , ψ0, γ0q

 

S eff
ψ pZ , ψ0, γ0q

(J
ı)´1

All expectations are taken with respect to the true model

fZ pz;ψ0, γ0q ” fZ pz;ψ0, β0q.
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Step 10: Semiparametric inference

§ An estimator for ψ is RAL for the semiparametric model
if it is RAL for every parametric submodel;

§ Any influence function of an RAL estimator in the semi-
parametric model must be an influence function of an
RAL estimator within a parametric submodel;

§ Any influence function of an RAL estimator in the semi-
parametric submodel must be orthogonal to all paramet-
ric submodel nuisance tangent spaces;

§ The variance of any RAL semiparametric influence func-
tion must be no smaller than the variance on page 430.
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Step 11: The Restricted Mean Model

Suppose scalar response Y follows the model

Y “ µpX ;ψq ` ε

with ψ a q ˆ 1 vector. Suppose P ” tfZ pz;ψ, βpqq, z “ py, xqu
with

fY ,X py, xq ” fε,X py ´ µpx;ψq, xq

with the requirement Erε | X s “ 0.
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Step 11: The Restricted Mean Model

Write

fε,X pε, xq “ β1pε, xqβ2pxq

where

§ Conditional model:

β1pε, xq ” fε|X pε|xq

§ Marginal model;

β2pxq ” fX pxq.

Suppose the true (data generating) functions are

β10pε, xq β20pxq.
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Step 11: The Restricted Mean Model

We require for all x

ż

β1pε, xq dε “ 1

ż

ε β1pε, xq dε “ 0

and that β2pxq is non-negative and satisfies

ż

β2pxq dx “ 1.

With no further restrictions, we have a semiparametric speci-
fication with these infinite dimensional nuisance parameters.
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Step 11: The Restricted Mean Model

A parametric submodel is

Pψ,γ ” tfZ pz;ψ, γq “ fε|X py ´ µpx;ψq|x; γ1qfX px; γ2qu

where γ1 is r1 ˆ 1 and γ2 is r2 ˆ 1, with r “ r1 ` r2.

Denote the true model

f0pzq “ fε|X py ´ µpx;ψq|x; γ10qfX px; γ20q.

435



Step 12: Efficient Inference

We have in the parametric submodel

log fZ pz;ψ, γq ” log fε|X pε|x; γ1q ` log fX px; γ2q.

Therefore

Sγ1pε, x;ψ0, γ0q “
B

Bγ1

 

log fε|X pε|x; γ1q
(

γ1“γ10

Sγ2pε, x;ψ0, γ0q “
B

Bγ2
tlog fX px; γ2quγ2“γ20

We will suppress the dependence on pψ0, γ0q.
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Step 12: Efficient Inference

A typical element in the parametric submodel nuisance tan-
gent space is given by

BSγpε,Xq “ B1Sγ1pε,Xq `B2Sγ2pXq

where

§ B1 is q ˆ r1,

§ B2 is q ˆ r2.

We define the spaces Λγ , Λγ1 and Λγ2 by

BSγpε,Xq P Λγ B1Sγ1pε,Xq P Λγ1 B2Sγ2pXq P Λγ2 .
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Step 12: Efficient Inference

That is, in terms of the corresponding spaces

Λγ “ Λγ1 ‘ Λγ2

with Λγ1 and Λγ2 orthogonal as

ErSγ1pε,XqtSγ2pXqu
Js “ 0r1ˆr2

by iterated expectation.

438



Step 12: Efficient Inference

Let

§ Λ be the mean-square closure of all parametric submodel
nuisance tangent spaces

Λ ” tmean-square closure of all Λγ1 ‘ Λγ2u;

§ Λ1s “ tmean-square closure of all Λγ1u;

§ Λ2s “ tmean-square closure of all Λγ2u

For Λ, the mean-square closure is the set of functions that can
be represented as the limit of sequences of score functions
arising from the parametric submodels.
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Step 12: Efficient Inference

§ Λ2s is a subspace of Hq arising from the unknown fX pxq
(which is essentially unrestricted )

§ comprising elements that are eligible score functions;

§ where every bounded element αpxq P Λ2s is the score for
some parametric submodel, for example

fX px; γ2q “ f0pxqp1` γ
J
2 αpxqq

for γ2 small enough.

See Tsiatis, pp 78–79.
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Step 12: Efficient Inference

§ Λ1s is a subspace of Hq comprising functions apε,Xq

§ which satisfy

(i) Erapε,Xq|X s “ 0q ;
This says that apε, xq must be a score function.

(ii) Erapε,Xqε|X s “ 0q

This says that apε, xq must be a uncorrelated with ε for all
x, and enforces the requirement

Erε|X s “ 0 w.p. 1.

§ which arise from some parametric submodel, for example

fε|X pε|x; γ1q “ f0pε|xqp1` γ
J
1 apε, xqq

See Tsiatis, pp 80–81.

441



Step 12: Efficient Inference

Let

αpXq P Λ2s and apε,Xq P Λ1s .

Then

EX ,εrαpXq
Japε,Xqs “ EX

“

αpXqJEε|X rapε,Xq | X s
‰

“ 0

by iterated expectation, as

Eε|X rapε,Xq | X s “ 0q .

Therefore Λ1s and Λ2s are orthogonal , and we have precisely
characterized the nuisance tangent space as

Λ “ Λ1s ‘ Λ2s .
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Step 12: Efficient Inference

The space Λ1s is a space of q-dimensional random functions,
apε,Xq, say, defined by two conditions:

Erapε,Xq|X s “ 0q (C1)

Erapε,Xqε|X s “ 0q (C2)
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Step 12: Efficient Inference

Suppose αpXq P Λ2s . Then, for any apε,Xq satisfying (C1), we
have that

EX ,εrαpXq
Japε,Xqs “ 0

by iterated expectation. That is, αpXq is orthogonal to apε,Xq.

Similarly, as

Eε|X rαpXqε|X s “ 0q

αpXq also satisfies (C2).
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Step 12: Efficient Inference

It follows that the nuisance tangent space Λ comprises pre-
cisely those functions that satisfy (C2),

That is, Λ comprises functions h ” hpε,Xq P Hq such that

Erhpε,Xqε|X s “ 0q .

See Tsiatis, pp 82–83.
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Step 12: Efficient Inference

For the efficient score for ψ we need to project the ordinary
score onto Λ, and take the ‘residual ’

S eff
ψ pε,Xq “ Sψpε,Xq ´ΠpSψpε,Xq|Λq.

By this construction, we see that

S eff
ψ pε,Xq P ΛK

as

Sψpε,Xq “ ΠpSψpε,Xq|Λq ` tSψpε,Xq ´ΠpSψpε,Xq|Λqu

“ ΠpSψpε,Xq|Λq ` S eff
ψ pε,Xq.
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Step 12: Efficient Inference

In the restricted mean model, the space orthogonal to the
nuisance tangent space is seen to be

ΛK “ tApXqε : where A is q ˆ 1u

To see this, note that for all apε,Xq satisfying condition (C2)

Ertapε,XquJApXqεs “ 0

using iterated expectation.
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Step 12: Efficient Inference

The projection of an arbitrary h onto ΛK is

h ´ Erhε|X s
 

Erε2|X s
(´1

ε.

We can then characterize elements of ΛK as taking the form

hpε,Xq ´Πphpε,Xq|Λq “ gpXqε

for arbitrary h P H and for gpXq the q-dimensional vector

gpXq “ Erhε|X s
 

Erε2|X s
(´1

Taking hpε,Xq ” Sψpε,Xq, we obtain the efficient score for ψ.
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Step 12: Efficient Inference

The efficient score is then

S eff
ψ pε,Xq “ Sψpε,Xq ´ΠpSψpε,Xq|Λq

” ErSψpε,Xqε|X s
 

Erε2|X s
(´1

ε

“ DpXqJ tVpXqu´1 ε

say, where

DpXq ” DpX ;ψ0q “
BµpX ;ψq

BψJ

ˇ

ˇ

ˇ

ˇ

ψ“ψ0

is a 1ˆ q vector.
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Step 12: Efficient Inference

Hence we must (in principle) solve the estimating equation

n
ÿ

i“1

DpXi ;ψq
J tVpXi qu

´1
pYi ´ µpXi ;ψqq “ 0q .

This requires knowledge of the true model f0p.q, as the for-
mula depends on

VpXq ” VpX ;ψ0, β0q “ Erε2|X s

In practice we cannot implement the estimation procedure
without further modelling.
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Step 12: Efficient Inference

However, we can implement estimation based on

n
ÿ

i“1

ApXi qpYi ´ µpXi ;ψqq “ 0q .

where Ap.q is some pre-specified q ˆ 1 function of X .

If

ApXq “ DpX ;ψ0q
J tVpXqu´1

we obtain optimal inference.
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G-estimation

Consider the simple structural (causal) specification given by

ErYpzq ´ Yp0q|X s ” ErYpzq ´ Yp0qs “ zψ0.

This states that

§ compared to the ‘baseline’ case of z “ 0, exposure at
level z “ z leads to a change zψ0 in the expected (poten-
tial) outcome, and

§ that this quantity does not depend on confounders X .

We proceed assuming Z is binary.
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G-estimation

The model can be considered as one that specifies that

Ypzq “ µ0pXq ` zψ0 ` ε

where µ0pXq “ ErYp0q|X s is a nuisance component.

Suppose a proposed parametric submodel is

µ0pXq “ µ0pX ;β0q.
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G-estimation

We consider the probability model based on the semiparamet-
ric regression formulation

fX ,Y ,Z px, y, zq “ fε|X ,Z py ´ µ0px;βq ´ zψ|x, zqfX ,Z px, zq

and for simplicity focus on the parametric submodel for the
first component

fε|X ,Z pε|x, xq ” fεpε;σ0q ” Normalp0, σ2
0q.
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G-estimation

Then the score function for this submodel is

ˆ

Sβ
Sψ

˙

“
1

σ2
0

ˆ

µ0βpX ;β0q

Z

˙

pY ´ µ0pX ;β0q ´ Zψ0q

“
1

σ2
0

ˆ

µ0βpX ;β0q

Z

˙

ε

say.
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G-estimation

The nuisance tangent space corresponds to the Sβ compo-
nent, and can be seen to take the form

tApXqε : ApXq arbitraryu

where ApXq has the same dimension as β.

We then need to project Sψ onto this tangent space: the pro-
jection is the quantity A0pXqε, where we must have

ErpZε´ A0pXqεq
JApXqεs “ 0 @ApXq
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G-estimation

By iterated expectation, if

epXq ” ErZ |X s

we therefore must have

ErpepXqε´ A0pXqεq
JApXqεs “ 0 @ApXq

implying that

A0pXq ” epXq.
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G-estimation

Therefore the projection of the score Sψ onto the nuisance
tangent space yields the efficient score function

S eff
ψ “ Sψ ´ΠpSψ|Λq “ pZ ´ epXqqε.
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G-estimation

Therefore efficient estimation is achieved by solving

n
ÿ

i“1

˜

9µ0βpxi ;βq

zi ´ epxi q

¸

pyi ´ µ0pxi ;βq ´ ziψq “ 0

which corresponds to G-estimation.
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Inverse Probability Weighting

Weighting estimators can be justified using semiparametric
theory by adopting a missing (or coarsened ) data strategy.

Recall that for the ATE in the binary case, using the potential
outcome notation

δ “ µp1q ´ µp0q “ ErYp1q ´ Yp0qs
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Inverse Probability Weighting

If such data were available, we would use the estimator

µpzq “
1

n

n
ÿ

i“1

Yi pzq.

based on the complete data estimating equation

n
ÿ

i“1

pYi pzq ´ µpzqq “ 0.

However, we do not observe the counterfactual outcomes.
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Inverse Probability Weighting

We need to utilize the observed data estimating equation:

n
ÿ

i“1

ˆ

1tzupZi qYi

fZ |X pZi |Xi q
´ µpzq

˙

“ 0.

With z “ 1, this becomes

n
ÿ

i“1

ˆ

Zi Yi

epXi q
´ µp1q

˙

“ 0.

462



Inverse Probability Weighting

To construct the efficient (observed data) score and influence
function, it can be shown first that all observed data influence
functions can be written

hpX ,Y ,Zq ` LpX ,Y ,Zq

where hpX ,Y ,Zq satisfies

ErhpX ,Y ,Zq|Yp0q,Yp1q,X s “ Yp1q ´ µp1q

and LpX ,Y ,Zq satisfies

ErLpX ,Y ,Zq|Yp0q,Yp1q,X s “ 0.

The function L is termed the augmentation function.
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Inverse Probability Weighting

From above, one suitable h is

hpX ,Y ,Zq “
ZY

epXq
´ µp1q

as

E

„

ZY

epXq

ˇ

ˇ

ˇ

ˇ

Yp0q,Yp1q,X



“ E

„

ZYp1q

epXq

ˇ

ˇ

ˇ

ˇ

Yp0q,Yp1q,X



“ Yp1qE

„

Z

epXq

ˇ

ˇ

ˇ

ˇ

Yp0q,Yp1q,X



“ Yp1q.
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Inverse Probability Weighting

For LpX ,Y ,Zq we can always write in the binary case

LpX ,Y ,Zq “ p1´ ZqL0pX ,Yq ` ZL1pX ,Yq

Therefore, taking expectations

ErLpX ,Y ,Zq|Yp0q,Yp1q,X s “ p1´ epXqqL0pX ,Yp0qq

` epXqL1pX ,Yp1qq
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Inverse Probability Weighting

Equating this to zero implies that

L0pX ,Yp0qq “ ´
epXq

p1´ epXqq
L1pX ,Yp1qq.

provided 0 ă epXq ă 1.

Further, as the left hand side is a function of Yp0q and the
right hand side is a function of Yp1q, this equation can only
hold in general if L0 and L1 do not depend on Y at all.
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Inverse Probability Weighting

Thus we can simplify

L0pXq “ ´
epXq

p1´ epXqq
L1pXq.

so that

LpX ,Y ,Zq ” LpX ,Zq “

ˆ

´p1´ Zq
epXq

p1´ epXqq
` Z

˙

L1pXq

“

ˆ

Z ´ epXq

1´ epXq

˙

L1pXq.
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Inverse Probability Weighting

Combining terms in X , we see that the space of augmentation
functions takes the form

Λ “ tpZ ´ epXqqgpXq : gpXq arbitraryu.

We find the optimal influence function by projecting

hpX ,Y ,Zq “
ZY

epXq
´ µp1q

onto Λ; this identifies a specific element of Λ

pZ ´ epXqqg0pXq

say that obeys the usual orthogonality results.
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Inverse Probability Weighting

That is, for arbitrary g, we need to solve for g0 the condition

E

„ˆ

ZY

epXq
´ µp1q ´ pZ ´ epXqqg0pXq

˙

pZ ´ epXqqgpXq



“ 0.

The expectation can be rewritten

EX ,Z

„ˆ

ZµpX ,Zq

epXq
´ µp1q ´ pZ ´ epXqqg0pXq

˙

pZ ´ epXqqgpXq


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Inverse Probability Weighting

Using iterated expectation, we have conditional on X that the
interior expectation of Z is

p1´ epXqqp´µp1q ` epXqg0pXqqp´epXqqgpXq

` epXq

ˆ

µpX ,1q

epXq
´ µp1q ´ p1´ epXqqg0pXq

˙

p1´ epXqqgpXq.

To make this identically zero in expectation for any gpXq, we
must have

epXqp1´ epXqq

ˆ

µpX ,1q

epXq
´ g0pXq

˙

“ 0.
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Inverse Probability Weighting

We find that

g0pXq “
µpX ,1q

epXq
“

1

epXq
ErY |X ,Z “ 1s

so that

hpX ,Y ,Zq`LpX ,Zq “
ZY

epXq
´
pZ ´ epXqq

epXq
ErY |X ,Z “ 1s´µp1q.
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Inverse Probability Weighting

Therefore, the efficient influence function for µp1q is

ϕeffpX ,Y ,Zq “
ZY

epXq
´
pZ ´ epXqq

epXq
µpX ,1q ´ µp1q

or equivalently

ϕeffpX ,Y ,Zq “
ZpY ´ µpX ,1qq

epXq
` µpX ,1q ´ µp1q

which is the basis of AIPW estimation.
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Inverse Probability Weighting

The corresponding estimating equation is therefore

n
ÿ

i“1

ˆ

Zi Yi

1´ epXi q
´
pZi ´ epXi qq

epXi q
µpXi ,1q ´ µp1q

˙

“ 0.

Similarly for µp0q we have

n
ÿ

i“1

ˆ

p1´ Zi qYi

epXi q
`
pZi ´ epXi qq

1´ epXi q
µpXi ,0q ´ µp0q

˙

“ 0.

as

p1´ Zi q ´ p1´ epXi qq “ ´pZi ´ epXi qq.
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