Part 1

Causal Adjustment Methods




Causal Adjustment Methods

We have seen that regression methods can recover causal
quantities of interest in observational studies, provided there
is correct specification of the regression model, even if there
is a confounding of the direct effect.

O

Model-based estimation will be successful if
[E(13|X,Z[Y|X7 Z]

is correctly specified.
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Causal Adjustment Methods

Recall that, under the previous assumptions

i(z) = ES ,[Y1Z = 7] = ﬂ&&mwmzm<www

= (|7 S atrix. D0 dy
= [ 1¥IX = x.Z = 2)f(x) dx

that is, the treatment data are ignored.

This is known as a G-computation formula; it yields estimates
of APO p(z) under correct specification of

Sy 2[YIX = x,Z = 7]
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Causal Adjustment Methods

If correct specification cannot be guaranteed, we must seek
other adjustment approaches.

The key complication that prevents use of the observational
data is that
ZUX

so that the treatment-indexed subgroups are incomparable
due to their different X characteristics.

How can we break the dependence ?
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Matching

Suppose first that the confounder X is degenerate at x = xg,
that is

Then (trivially)
f7x(z|x) = 7 (z) Vz, x = xo

and

yiz[Y1Z =z] = Jy xz(vIx0,2) dy = B} 5[Y]|Z = z].
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Matching

Now suppose X takes values on the finite set
X ={x1,...,x7}

with
X (x) = fx(x)

determining the distribution of X.
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Matching

Define the ‘local” APO at x = xj, forj = 0,1,2,..., by

ESLYIZ = 2] = [ 7 i, (0132 dy = (2

say. We may estimate this quantity using sample-based esti-
mation using the estimator

Zlm i)123(Z1)Y;

Zl{xj 1)1zy(Zi)

11i(2)

This is the sample mean in the treatment group with Z = z in
the population stratum A&} for which X = x;.
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Matching

Within stratum A&j, for the binary treatment case, the local
ATE is estimated by

~

5MATCHJ = ﬂj(l) - ﬁ_](o)

This is an unbiased estimator of the local ATE, that is, the ATE
in the stratum A&;.
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Matching

Finally, we can estimate the (global) ATE using a weighted
combination of the local estimators.

~ J ~
5MATCH = Z VV_] 5MATCHJ
Jj=1

where
1 n

wj = D Ly (%)

i=1

estimates the probability of observing X in stratum A;.

209



Matching

This is a matching estimator:

» the local estimators are constructed by matching sepa-
rately on the x;;

» in the matched stratum, the only difference between in-
dividuals is their treatment status;

» in a matched subsample, we can directly compare the
outcomes for the treatment-indexed subgroups.

» we can combine the local estimators into a global estima-
tor.
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Matching

The local estimators rely on having a large enough subsample
size in the stratum A}, for all the targeted treatment values,
to allow the estimators to exhibit good behaviour.

The matching approach can also be applied if X is vector-
valued; however, again the subsample size can deplete as the
dimension of X increases.
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Matching

If X is continuous, then exact matching cannot be used. How-
ever, we can define similar strata

X, X, A
that form a partition of X', and then assume that
f7x(z]x) = fi(2)

forj =1,2,...,], where fj(z) does not depend on x.

Then, the matching estimator ngH can still be used.
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Matching

e If X is scalar, we can define the strata by using quantiles
of the observed data.

¢ Defining the strata may not be straightforward when X is
vector-valued.

e The assumption that, within a stratum, f§| x(z|x) does not
depend on x is quite a strong one.
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Matching

Model-based matching estimators may also be constructed:

for example, could write
Y‘Z[Y|X—X Z = z| = p(x, z; Bj, ;) X € &]

which then leads to an estimator

Zl{xj )1y (Z (Z)u(Xi, 23 By, )

1j(z) =
Zl{xj i)12y(Zi)

after estimating 3; and ¢; using data within stratum Aj.
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Constructing Balance

Consider the basic confounding set up:

We know that conditioning on X blocks the confounding path.
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Constructing Balance

Now suppose we could find a new variable B so that

Conditioning on B also blocks the confounding path.
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Constructing Balance

We can define B as a deterministic function of X: B = B(X)

For example, X is vector-valued, B is a scalar summary of X.
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Constructing Balance

Note that

» if we can find such a B, then
Z1X|B
» there is no arrow from B to Y, and
YIB|ZX

as conditioning on X and Z blocks the open paths from B
toY.
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Constructing Balance

If we can find such a B, then we can consider performing
‘local’ analyses for the causal effect within strata of B;

» within a given stratum B; of B, Z and X are independent;

» we can directly compare the Ys for different Z values
for the subjects falling within B;, and be sure that the X
values for those subjects are suitably matched.

» ideally, B can be a low-dimensional summary (a bit like a
sufficient statistic) even if X is high-dimensional.
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Constructing Balance

We need to find B such that Z Il X | B, that is, for all (x, z, b),

f7x,8(2|x,b) = fz)p(z|b)
fx|z,B (x|z,b) = fX|B(X|b)

provided the conditional densities are well-defined.

Note that if B = B(X) deterministically, then

f7x,8(2|x, b) = fz)x(2|x)
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Constructing Balance

Suppose that Z € {0, 1}. Then we must have that

f7)x(z|x) = Bernoulli(p(x))

where 0 < p(x) < 1 a probability that may depend on x.

That is,

Pr(Z = z|X = x] = {p(x)}*{1 - p(x)}'* 2z=0,1
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Constructing Balance

Similarly, for any proposed B, we must also have
f7)x,8(2|x, b) = Bernoulli(q(x, b))

where 0 < g(x,b) < 1 a probability that may depend on
(x,b). That is,

Pr(Z = z|X = x,B = b] = q(x,b)*(1 — q(x,b))}™* z=0,1
We must now ensure that

Pr[Z=zX=x,B=Db|=Pr[Z=2zB=b>b] V(x,z,b).
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Constructing Balance

We can do this by requiring

q(x,b) = q(b)
for all (x,b). That is, we must ensure

Pr[Z = z|X = x,B =b] = q(b)*(1 — q(b))}"% z=0,1.

223



Constructing Balance

Define the function
B(x) =Pr[Z =1|X = x]

with corresponding random variable B(X) = Pr[Z = 1|X], and
set
q(b) = b

so that

Pr[Z = z|X = x,B = b] = b*(1 — b)'"? = Pr[Z = z|B = b]
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Constructing Balance

Hence by construction
fZ|X,B(Z‘X7b) = fz\B(z‘b) =b*(1 - b)l_z
that is, if we consider the ‘contour’
Xp = {x:B(x) =b}

then
PrlZ=1X=x]=b VxedXp.

Thus
Z 1 X|B.
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Constructing Balance

The function B(x) contains all the relevant information ex-
tracted from X to determine the conditional distribution of Z
given X.

Note that B(X) is a scalar random variable, whatever the di-
mension of X; if X = (X1, X2, X3) say, we might have that

2 2
fox(1]x) = Pr[Z = 1|X = x] = expix1 + 20X} _ gy

1+ exp{x1 + 2X2X§

Many triples (x1, x2, x3) yield the same probability.
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Constructing Balance

In the binary case, the random variable B = B(X) is known as
the propensity score; this is denoted

e(x) =Pr[Z =1|X = x|

by Rosenbaum and Rubin (1983).
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Constructing Balance

We have for the joint pdf
fx z B(X,2z,b) = fx(x)fgx(b|x)fz)x B(2|X, b)

fx(x)b?(1 —b)'"? b = B(x)
B 0 otherwise
as

1 b =B(x
fpix(b|x) = { )

0 otherwise

and
f71x,8(2|x, b) = fzx(z|x) = b*(1 — b)' .
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Constructing Balance

Thus if
Xp = {x:B(x) = b}

then for all (z, b)

fz.5(z,b) fx 7z B(x,2,b) dx

-,
f N2 fx(x) dx
= b%(1 — b)lzf fx(x) dx

Xp
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Constructing Balance

Therefore

£ b
fxjz,8(x|z,b) = fyz,(x,z,b)

fZ,B (Z, b)
£
ﬂ b= Xb
_ f fe(t) dt
Xp
0 otherwise

as the b terms cancel. Thus

fX|Z,B(X|va) = fx\B(X|b)-
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Constructing Balance

Note that for the binary case

e(X) = Pr[Z = 1|X] = Ezx[Z|X].
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Constructing Balance

We also have that B* is another balancing score if and only if
B is a function of B*

» that is, if and only if B is ‘coarser’ than B*,

B*=b* — B =0.
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Constructing Balance

To see this, suppose first that B* = b* implies B = b. Then,
by iterated expectation

Pr(Z = 1|B* = b*] = Ezp«[Z|B* = b*]

= Ep|p= [[EZB,B*[Z|B7B* =b"]

B~ ']

= Ez[Z|B = b]
— Pr[Z = 1|B = b]

so therefore B* is a balancing score, as B is a balancing score.
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Constructing Balance

Conversely, suppose B* is a balancing score, that is
Pr[Z = 1|X = x,B*(x) = b*] = Pr[Z = 1|B*(x) = b¥]
Consider two values x; and x,. We have that
Pr[Z = 1|B*(x1) = b*] = Pr[Z = 1|B*(x3) = b¥]

that is, if both x; and x, map to b* under B*(.), then the two
probabilities must be equal by the balancing assumption.
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Constructing Balance

As B* is a balancing score, we have also that
Pr[Z = 1|B*(x;) = b*] = Pr[Z = 1|X = x1, B*(x1) = b*]
Pr[Z = 1|B*(x2) = b*] = Pr[Z = 1|X = x3, B*(x2) = b*]
But as for all x
Pr(Z = 1|X = x,B*(x) = b*] =Pr[Z = 1|X = x]
this implies that
Pr[Z =1|X = x3] = Pr[Z = 1|X = x|

and hence that B(x;) = B(xy), as required.
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Constructing Balance

The balancing construction extends beyond the case of binary
treatments: suppose Z is continuous, and that

f7x(z]x)

is some conditional density for Z given X in the same (obser-
vational) model.

Suppose that we have for some function B = B(X)
fz)x(z|x) = fzjp(z|B(x))  V(x,2)
Then directly

fZ\X,B(Z|Xab) EfZ|B(Z|b) V(sz)vb :B(X)'
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Constructing Balance

Example:

Suppose
Z | X1 = x1,Xp = x2 ~ Normal (x; +X2,02)-

Then define
B(x) = B(x1,xX2) = X1 + X

so that
Z | X; = x1,X = X2, B = b ~ Normal (b, c?).

which does not depend on (x1, x2).
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Constructing Balance

For the binary case
e(X) =Pr[Z =1|X] = [EZ‘X[Z]X]

which suggests another possible balancing score construction
involves inspection of

B(X) = E[Z|X].

This will not necessarily yield independence, but it may yield
(partial) uncorrelatedness, that is

Cov[X,Z|B] = 0.
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Constructing Balance

For the moment, we will assume that e(X) or B(X) is known
precisely.

In practice, we will typically have to

® assume a parametric model and rely on correct specifi-
cation to ensure consistent estimation of the propensity
score parameters and values, or

® use advanced approaches (machine learning, flexible,
adaptive approaches) to obtain the propensity score func-
tion.

239



Constructing Balance

Recall the assumption of strong ignorability:

{Y(0),y()p L z| X
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Constructing Balance

This can be considered in the balancing score case:
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Adjustment via the Propensity Score

Adjustment methods based on balancing scores can be de-
veloped; the balancing score is used to block backdoor (con-
founding) paths.

We will focus mainly on the binary case, and the propensity
score

e(X) =Pr[Z = 1|X].
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Adjustment via the Propensity Score

The basic set up we consider is the following:
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Adjustment via the Propensity Score

There are three types of covariate:

X1 confounders
X, instruments (pure predictors of treatment)

X3 pure predictors of outcome

There are no paths connecting X;, X2 and X3, and there is no
unmeasured confounding.
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Adjustment via the Propensity Score

Including the propensity score retains the previous feature:
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Adjustment via the Propensity Score

The propensity score does not need to be a function X; or Xj;
making it depend only on Xj is sufficient to block the back-
door path.

This is the case even though X, is a cause of Z; that is, even
though

fz\Xl,Xz(Z’XhXZ) = f7)e(x1),%, (zle(x1), x2)
and
Z Xy | e(Xy)

we can still base the propensity score only on X; (the con-
founders).
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Stratification and Matching

The propensity score e(X) is a scalar random variable irre-
spective of the dimension of X. We may construct an estima-
tor of the APO by noting

w(z) = Y|Z[Y‘Z =z]=E [[E§/|X,z[Y|X)Z = 2]]

and, after conditioning on e(X), X and Z are independent,
and so sample-based estimation can be utilized.
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Stratification and Matching

For fixed values of e(X), we may directly compare
[E‘{’,|X’Z[Y]X, e(X)=-e,Z =7|

for different values of z.

For fixed value e, let
Xe, ={x:e(x)=-e1}

and define a ‘local’ APO estimator as

leel 1)1z (Z1)Y;

ZlXe1 1)1(z3(Z1)

He, (2) =
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Stratification and Matching

We can construct a stratification estimator by considering
strata of the propensity score.

Consider a partition constructed using
Xyj={x:e(x)e&} j=1,...,]

where &1, ..., &5 exhaustively cover the interval (0, 1).
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Stratification and Matching

We can define local estimator
Z 1y (Xi)1y(Zi)Yi

le i)1(Zi)

fix; (z) =

and global estimator

J
fi(z) = ) fix (2)Pr[X € &]
j=1
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Stratification and Matching

To construct such estimators of the ATE, say
u(1) — 1(0)

we require that sufficient data for the different values of z
are available with the strata. That is, in any propensity score
stratum, we require that there are a large enough number of
subjects with both Z = 0 and with Z = 1.

This is termed an overlap condition.
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Stratification and Matching

We can also consider matching on the propensity score;

» recall that we argued previously that two individuals that
had precisely the same X value but different Z values
could be directly compared as they were ‘matched’;

» we can extend this argument to the propensity score —
two individuals with the same e(X) value are also consid-
ered matched.
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Stratification and Matching

There are many ways to carry out matching in practice (where
matching on exact values) is not feasible:
» caliper matching: two individuals i (with Z; = 1) and j
(with Z; = 0) are considered matched if

\(e(x) — e(x))? < o
for some constant c.

» 1:1 nearest case matching: for individual i with Z; = 1
we find the individual j with Z; = 0 such that

V(e(x) - e(x)?
is minimized.
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Stratification and Matching

» 1:M matching: for individual i with Z; = 1 we find the M
individuals in the data set with Z = 0 such that the dis-
tances between their propensity score values and e(x;)
are the M smallest.

The statistical properties of matching estimators are not al-
ways straightforward to establish.
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Propensity Score Regression

Conditioning on e(X) can be achieved using regression meth-
ods; we consider the model inspired by the DAG
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Propensity Score Regression

We may consider the regression model
E?|X,Z[Y|X7 e(X)v Z]

which, as
XU Z|e(X)

has the advantage that it will be more robust to possible mis-
specification when a parametric model is proposed.
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Propensity Score Regression

Example:

Suppose that we have the following data generating model:
 Confounders: (X;,X;)" ~ Normal,((1,1)",¥) with

s _ [01 00][t0 08][0.1 0.0
~ 0.0 0.5]|[0.8 1.0/|0.0 0.5
® Treatment: Z|X;, X, ~ Bernoulli(e(X1,Xz)), where

e(x1,%2) = exp{l + x1 — 2xp}
DT exp{l + x1 — 2x0}

® Outcome: Y|X,Z ~ Normal(u(X,Z),1), where

wx,z) =(2+3x1 + % +x1%2) + 2
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Propensity Score Regression

Example:

We consider fitting the parametric model

m(x, z; 8,) = (Bo + f1x1) + z3bo

which is mis-specified due to the ‘treatment-free’ model spec-
ification. The true values is ¢y = 1.
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Propensity Score Regression

#n=1000
#Correct specification

> round(coef (summary (Im(Y~X1+X2+X1:X2+Z))) ,4)
t value Pr(>|t])

Estimate Std

(Intercept) 2.7134
X1 2.2156
X2 0.2882
z 1.0150
X1:X2 1.7421

. Error

0.6222
0.6869
0.4807
0.0674
0.4721

4.3608
3.2254
0.5996
15.0572
3.6905

0.0000
0.0013
0.5489
0.0000
0.0002

#Incorrect specification

> round(coef(summary(lm(Y~X1+Z))),4)
t value Pr(>|t])

Estimate Std.

(Intercept) -4.2613
X1 11.4990
VA 0.6366

Error
0.4034
0.3888
0.0762

-10.5631
29.5760
8.3523

0
0
0
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Propensity Score Regression

Example:

In the correctly specified model, we have
o : 1.0150 (0.0674)

however in the incorrectly specified model we have
%o : 0.6366 (0.0762)

This effect persists at even larger sample sizes.

260



Propensity Score Regression

Example:

Now consider fitting the parametric model

m(x,z;5,%,¢) = (Bo + B1x1) + zbo + e(x1,X2)Po

which considers the additional final term that depends on the
propensity score.

Initially, we will set

e(x1,%2) = exp{l + x; — 2x2}
DT exp{l + x1 — 2x3}

that is, using the true value.
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Propensity Score Regression

#Propensity score regression
> round(coef (summary (lm(Y~X1+Z+eX))),4)

Estimate Std. Error t value Pr(>|t])

(Intercept) 4.1718 0.5609 7.4377
X1 5.1662 0.4701 10.9907
z 1.0172 0.0682 14.9069
eX -4.6374 0.2430 -19.0815

0

0
0
0
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Propensity Score Regression

Example:

We now have
1o : 1.0172 (0.0682)

and so correct estimation of )9 has been recovered.
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Propensity Score Regression

Example:

Now suppose
p(x,z) = (2+3x1 +x2 + x1%2) + z(1 + x1 + X2)

and we try the same strategy, using the propensity score re-
gression model

m(x, z; 8,9, ¢) = (Bo+ B1x1) + (o +1X1 +1P2X2) + €(x1, X2) o
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Propensity Score Regression

#n=1000

#Correct specification

> round(coef (summary (lm(Y~X1+X2+X1:X2+Z+Z:X1+Z:X2))) ,4)
Estimate Std. Error t value Pr(>|t])

(Intercept) 3.5674 0.9486 3.7609 0.0002
X1 1.2812 1.0169 1.2675 0.2053
X2 0.1155 0.6004 0.1923 0.8475
z -0.2023 0.9313 -0.2173 0.8281
X1:X2 1.9903 0.5672 3.5090 0.0005
X1:Z 2.3744 1.0558 2.2488 0.0247
X2:Z 0.8420 0.2091 4.0272 0.0001
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Propensity Score Regression

#Incorrect specification
> round(coef(summary (lm(Y~X1+Z+Z:X1+Z:X2))),4)

Estimate Std. Error t value Pr(>|t])

(Intercept) -4.4874

X1 11.7187
VA 6.4906
X1:Z -6.5766
Z:X2 2.8785

0.5541
0.5363
0.8778
0.9644
0.1642

-8.0981
21.8503

7.3941
-6.8196
17.5344

ool oo Nol
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Propensity Score Regression

#Propensity score regression

> round(coef (summary (lm(Y~X1+Z+Z:X1+Z:X2+eX))) ,4)

Estimate Std. Error

(Intercept) 3.9848 0.7752
X1 5.4002 0.6565
z 1.4774 0.8716
eX -4.7679 0.3313
X1:Z 0.6533 1.0113
Z:X2 0.8889 0.2036

t value Pr(>|t])
5.1403 0.0000

8.2252 0.0000
1.6951 0.0904
-14.3913 0.0000
0.6460 0.5184
4.3664 0.0000
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Propensity Score Regression

Example:

Hard to conclude anything due to the inherent variability, but
it seems that including the propensity score does improve the
estimation of (g, 11, 12).

Need to do a larger simulation study: we perform 5000 repli-
cations, and inspect the boxplots of the estimates for the three
parameters.
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Propensity Score Regression
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Propensity Score Regression
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Propensity Score Regression
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Propensity Score Regression

Example:

This confirms that including the propensity score does im-
prove the estimation of (o, 11,17), even if the treatment-free
model component is incorrectly specified.

However, it seems that there is still a small amount of bias.
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Propensity Score Regression

Example:

Here is a version of the DAG for the data generating model
S
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Propensity Score Regression

However, a more accurate DAG includes the interactions.
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Propensity Score Regression

Example:

We need to block the open paths via the interactions. This can
be achieved by using the model

m(x,z;8,¢,¢) = (Bo+ B1x1) + z(Yo + Y1x1 + Y2x2)
+ e(x1,%2)(go + P1%1 + P2X2)

Conditioning on e(X), e(X)X; and e(X)X; blocks the paths.

275



Propensity Score Regression
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Propensity Score Regression
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Propensity Score Regression
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Propensity Score Regression
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Propensity Score Regression

Example:

The augmented propensity score regression model (PS 2) im-
proves the performance.

Note, however, that the variances of the estimators from
propensity score regression model are slightly larger than
those arising from the correctly specified model.

® 10% to 20% larger in this simulation.
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Propensity Score Regression

Example

In this analysis, we may estimate the ATE by taking the av-
erage difference of the two fitted values under the proposed
model, that is

1 = ~ ~
= Z o + Y1xi1 + Vaxiz).

‘:‘a
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Propensity Score Regression

Example:

Note, however that we need to take care in estimating the
APO. In the data generating model, with

pu(x,z) = (24 3x1 + x2 + x1%2) + (1 + x1 + X2)
we have that
wu(z) =2 + 3E[X;] + E[X2] + E[X1 X2] + z(1 + E[X1] + E[X2]).

This cannot in general be estimated correctly using
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Propensity Score Regression

This type of adjustment works for a linear outcome model;
however, for other types of model such as

® log-linear
® logistic

more care needs to be taken.
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Inverse Probability Weighting

We have from a previous result that

Uf 1 (2)y fyx 2 (vIx, 2)f7(2)fx (x)dy dx dz

ZYIZ = 2] =
Fhz [[[10@ 8 x x5 @8 ) dy dx az

and also that

N—
V1S

fyz(xy.2) fix) £z HxVx72)
f}?Y,Z(Xv.Y7 Z) f}?(x) fng(Z|X) fﬁXVZ(Y|sz)

_f7(2)

BEENED)
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Inverse Probability Weighting

Using the ‘importance sampling’ (or change of measure) re-
sult, we therefore have that

f5(z
Hj 1ipy(z i Z)X) v.z(%,y,z)dy dx dz

ij 1iy(z Zf (Z)X) Kyz(X,y,2) dy dx dz

x(z

EY2[Y|Z =
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Inverse Probability Weighting

That is
[E)(?,Y,Z 1{2}( )Y ofi
5 (ZIX)
1(z) =By Y|Z =2] = 2)
ER vz ll{z}( )zx(Z|X)]
or equivalently
o 1(2)
|:EX,Y,Z [ ZX(Z’X)]
wz) = ~ 1,(2)
X,Y.Z Z\X(Z’X>
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Inverse Probability Weighting

We therefore have the estimator

This is the Inverse Probability Weighting (IPW) estimator.
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Inverse Probability Weighting

We may also write

n
I’ZIPW(Z) = Z VVI(Z)YvI
i=1

where
11(Zi)
17 x (Zi|Xi)
< 1{z}( )
(Z;]X;)

Wi(z) =
j=1 ZIX
is a weight, where

1
o

N Wi =1 Eg,[Wi(2)] =

i=1
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Inverse Probability Weighting

In the binary case, we have

(1-2;) Z;

VVI(O) _ H(l_e(X )) VV1(1> _ e(Xl')

n Z
> asean 1 e 21 5%

J=1 Jj=1

5.2 | a0e3) = % |26 =

by iterated expectation.

where
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Inverse Probability Weighting

Note that an alternative estimator that utilizes the fact that

for all i
12(Zi)
ES 7 | | =1
X4 [ Z|X(Z |1X;)

is

/jIPW(Z) = li l{z}( ) |

n &1 (Zi]X)
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Inverse Probability Weighting

The two estimators solve two slightly different estimating
equations:

® FOr [i,,(1):

i (e(Z;Q)YI —M(l)) =0

i=1
i.e. reweights the datum Y;.

® For [i,,(1):

n Z

i.e. reweights the residual (Y; — u(1)).
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Inverse Probability Weighting

These equations illustrate how IPW operates; it creates a re-
weighted data set, say fori =1,...,n,

. Z . 1-2Z v
! e(X;) 1-e(X;))

xt— (A 1=Z )y
! e(Xj) 1—e(X1~)

which represent a sample from a pseudo-population in which

and

xX* 1 Z.
The new data set does not suffer from confounding.
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Inverse Probability Weighting

® [i.(z) and fi,,(z) are unbiased estimators of x(z) by con-
struction.

® In these estimators
Z7x(Z|X)

plays a critical role; this is the function that determines
the propensity score.

® There is an important requirement that
fg\x(z‘x) >0

for any (x, z). This is termed a positivity requirement.
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Inverse Probability Weighting

¢ Positivity requires that for all z under consideration

f§|X(Z’X> >0
that is, in the binary case, we do not have that
PrlZ=zX=x|=1

for any x. This is sometimes termed the experimental
treatment assignment (ETA) assumption; that is, no in-
dividual receives treatment (or no treatment) with cer-
tainty.
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Augmentation

The IPW estimators rely on knowledge (and correct specifica-
tion) of f§|X(z|X), but are otherwise model-free.

Suppose that we have knowledge of the conditional model
§/|X,Z[Y|X =x,Z=2z|= (13|X,Z[Y|X =x,Z = z] = pu(x, z).

We could use this model for outcome regression.
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Augmentation

However, note that
#(z2) = EgplY | Z = 2] = B |E§x £[Y | X,Z = 2]
— B [ES 2 [(Y = (X, 2) + (X, 2) | X,Z = 7]
= B [E§x £[(Y - (X, 2)) | X,Z = 7]
+ By |ES 2[0(X. 2) | X, 2 = 7]

— B [ESp 2 [(Y — (X, 2)) | X, Z = 21| + Ex[n(X, 2)]

as the internal integrand of the second term does not depend
onY.
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Augmentation

Now under the standard assumption, we can write

Ex[n(X,2)] = Ex[u(X,2)]

as for outcome regression. Secondly, using the IPW idea, we
can re-write

ES |ESw2[(Y - (X, 2)) | X, Z = 7]
as

ES, |ES M(Y— (X,2)) | X,Z =z
X,Z Y|X,Z f§|X(Z\X) A, y L =
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Augmentation

This suggests the alternative moment-based estimator

Fam (2) 1 i 1 (Zi) (Y; — (X, Z1) 1 i (X1,72)
ILI’AIPW = - O > I~ 1 19 _ 19
n &1 (Z1X) rye

which is termed the augmented IPW (AIPW) estimator.
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Augmentation

Analogous to the earlier forms, we also have a second AIPW
estimator

ani(2) = DI W, (X, Zi)) li (Xi,2)
i=1 n1=1

where as before

14(Zi)

12 (Zi]X0)

< 1{2}( ) .
Z 71x (%1 X5)

Wi(z) =
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Augmentation

Note that

EQ, |ES 1{2}()Y X, ZN|X,Z=2||=0
X,z | Fy|x,z m( —u(X,2)) [ X,Z=z||=

as the internal conditional expectation is zero, so the first
term in both /i,,,(z) and fi,..(z) has expectation zero .

Note also that
ER[u(X,2)] = u(z)

identical to the outcome regression estimator.
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Augmentation

The advantage of the AIPW estimator is that it has variance
that is no greater than the IPW estimator, that is

Var[ﬁAIPW(Z)] < Var[ﬁlPW(Z)]

and
Var(fium(2)] < Var(fim(z)]
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Augmentation

However, note that
Var(fio(2)] < Var{fiym(2)] < Var[fi,(2)]

and
Var{fi(2)] < Var([fiu(2)] < Var[fi,,(2)]

that is, using augmentation we can improve on the IPW esti-
mator, but we cannot improve on the OR estimator.

Importantly, these results follow provided the proposed func-
tion u(x, z) is correctly specified.
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Augmentation

The real advantage of AIPW estimators is that can still give
consistent estimation even if y(x, z) is mis-specified.

With mean model m(x, z) we have the two estimators
: {Z}*m—mxf,zingm(Xi,z)

ﬁAIPW(Z) -
nia Z\X Zi|Xi) i=1

e :21 )Y — m(X;, Z;)) + igm(xj,z)

i=
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Augmentation

Write for the expectation of the second term
M(z) = Ex[m(X,2)]

and consider the first term of fi,,,(z). We have that

EQ., |EC 1{L()Y X.Z)|x, 7=
X,z Y|X,Z Z|X(Z‘X)( —IH( ) ))‘ L =12

—ES, ll{z(}(zp)c)(“(x’ Z) - m(X,Z)) ‘ X,Z = z]
f71x
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Augmentation

Provided the model f§|X(z|X) is correctly specified, if we per-
form iterated expectation by conditioning on X, we have that
this expectation is equal to

Ex[(u(X,2) — m(X,2))]
and hence we have
E[fiue(2)] = EX[(1(X,2) — m(X,2))] + ER[m(X,2)]
= Ex[u(X,2)] — M(2) + M(2)
= p(z).

The same result holds for ji,,,(z).
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Augmentation

Note also that if fg‘ X

(z|x) is mis-specified, we still have that
1{2} (Z)

[E(;X Z
x7 | 15 (Z]X)

(Y-m(X,2)|X,Z=2z|=0

provided m(x, z) = u(x, z).
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Augmentation

Hence we have that both AIPW estimators are unbiased pro-
vided either

m(x,2z)

or

fg‘x(z|x)

is correctly specified. This phenomenon is known as double
robustness.

If both models are correctly specified, then we have the opti-
mal TPW estimator.
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Augmentation

In Monte Carlo, the ‘augmentation’ trick is known as the use
of antithetic variables. Writing

ESix z[Y | X,Z = 2]
= Eyix 2[(Y — p(X,2)) | X, Z = 2] + (X, 2)

allows us to introduce estimators of the first and second terms
that are negatively correlated, thereby potentially reducing
the variance of the combined estimator overall.
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Augmentation

Consider i(z) in the binary case. Write

 1(Z) Z; (1-2)
R @) o) T1oerxy Y
so that
Z{RYJr 1— Ri)u(X;,2)}
and that

Var[ji(2)] = % Var[RY + (1 — R)u(X, 2)]

where this calculation is carried out with respect to the ob-
servational distribution, O.
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Augmentation

Note that

Var[RY + (1 — R)u(X,2)]

= Var[RY] + Var[(1 — R)u(X,z)] + 2Cov[RY, (1 — R)u(X, 2)].

Fr the second term
Var[(1 — R)u(X,2)] = E[(1 — R)*{u(X, 2)}*]
as by iterated expectation

Erx[(1-R)X] =0 — Erz[(1-R)u(X,2)] = 0.
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Augmentation

Similarly by iterated expectation
Cov[RY, (1 — R)u(X,2)] = E[R(1 ~ R){u(X,2)}*]
Therefore
Var[RY + (1 — R)u(X, 2)]
= Var[RY] + E[(1 — R)*{(X,2)}?] + 2E[R(1 — R){(X,2)}’]

( _
= Var[RY] + E[(1 — R?){u(X,2)}?]
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Augmentation

However

Erix[(1 = R*){u(X,2)}*] = {u(X,2)}*Egx[(1 — R?) | X]

= {u(X, Z)}Z[EZ|X

= {u(X, Z)}Z[EZ|X

[ 132 ’
' (fg,x<2|x>> X]

1— 1{2}(2) . ‘X
(fgIX(Z|X))

— 2 _ 1

<0 (w.p. 1.)
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Augmentation

Therefore
Var[RY + (1 — R)u(X,z)] < Var[RY]

and hence
Var[ﬂAle] < Var[ﬂlf’w]‘

Similar result for ji(z).
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Augmentation

This variance result can hold if u(x, z) is mis-specified as the
same argument follows for any estimator

i(2) = © 3 {RYi + (1~ R)m (X, 2))
i=1

We have that

Var[RY + (1 — R)m(X,z)] = Var[RY] + E[(1 — R)*{m(X,2)}?]
+2E[R(1 — R)u(X,z)m(X,z)]
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Augmentation

Thus we get variance reduction over the IPW estimator if

E[(1 — R)*{m(X,2)}?] > —2E[R(1 — R)u(X,z)m(X, 2)]

which will hold if m(X, z) and (X, z) are sufficiently positively
correlated.
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Augmentation

If neither of the models

nx,z)  e(x) = x(1x)

is correctly specified, then the AIPW estimator is biased. If
we instead use

m(x,z)  g(x)

for these two models, the expectation of /i(1) is

Eg | S0 (X, 1)~ m(X, 1) | + E§ [m(x. 1)
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Augmentation

The bias is therefore

65| (250 - 1) (ux, 1) — m(x, 1)
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Augmentation

In the inverse weighting estimators, it has been assumed that
the model

fg‘x(z\x)

is known precisely. This can be replaced by a parametric
model
fg\x(z |x; )

with « then estimated using maximum likelihood or other
methods. The IPW estimators then proceed using the fitted

values
7 x(z|x; Q).
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AIPW via regression

Consider the binary treatment case, and the model

1—-2z
1—e(x)

B 2[Y | X = x,Z = 2] = u(x.2) + do o

for parameters ¢g and ¢;. We consider estimating these pa-
rameters using ordinary least squares. Let
1—2Z; Z;

R J— —
T e(x;) U7 e(xy)

with corresponding observed values ry; and ry;.
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AIPW via regression

The OLS score equations are

a n

= —2 ) roi(yi —pu(x,2z) — ¢oroi — ¢111i) =0
300 § 0i(yi — p(x,2) — doro; — ¢1111)
., —221‘ p(xi, zi) — poloi — P1I1i)
0¢1. 1i 15 41 010i 1411

and we may solve these directly to obtain
2 1 (yi — u(xi, 21)))
sz = o
2
Z Iy

i=1
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AIPW via regression

Predictions from this fit for the z = 0, 1 cases are

n(xi,0) + o p(xi, 1) + b1

1—e(x) e(xi)

respectively.

To obtain an estimates of 1(0) and u(1), we consider

[ *lzn] (xi,0) + & L
:uAOR n “ 17 Ol—e(XI)

and

.’:s\»—\

ﬁAOR Z( xj, 1 +¢1 (1}{1))

i=1
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AIPW via regression

Plugging in the estimates of the ¢s, we obtain

~ 1 -
,LI‘AOR(O) = H Z /"L(Xj7 0) + =1

and

[~

ﬁAOR(l) =
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AIPW via regression

Now
1—21 eXi) n 1_21 e(Xi) » Fx [e(X)] _1
n 1 n o B ZZ :
SR AN & ghop)
as )
. A o z | _ o[ 1
EX’Z[{ <X>}2} ‘EX’Z[{em}z EX[e(X)]
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AIPW via regression

Therefore
1 n
ﬁAOR HZ X171 ZlR].I Y M(Xlal))+0p(1)
= 1
= ID:AIPW(]-) + OP(].).
Similarly

[is0x(0) = Fans(0) + 0p (1)
This approach to IPW estimation is known as augmented out-

come regression (AOR).
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AIPW via regression

To estimate the ATE

6 = p(1) — u(0)

we can also use augmented outcome regression based on the

mean model
z (1-2)
w2+ (G~ e

and take the difference between the fitted values to obtain

~

the estimate, §,.,.
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AIPW via regression

The variance of the estimator ji(1) is given by

200

and under the correct specification of e(x), we have

1 O
—Vary
n Y,z

ZY]_ o {ZZYZ

Varf vz | 20| = Bz | romge | — (00)Y
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AIPW via regression

Now

where
v(x,2z) = Ey ,[Y2|X = x,Z = 2].
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AIPW via regression

Thus the magnitude of the variance depends on
e(X)

and if v(x, z) = v, a constant, then this equals

1
EQ | —|.
T [e(X)]
In general, although we have assumed positivity (e(x) > 0
for all x) we have no guarantee that the expectation in this

expression is finite; even if it is finite, it may be large due to
the reciprocation of e(X).
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AIPW via regression

This feature can affect all IPW estimators.

* it is sometimes assumed that e(x) must be bounded away
from zero;

¢ alternatively, it is common to truncate the propensity
score values such that either data for which, for some
e>0

e(xj) <e

are omitted, or to use

e.(x;) = max{e(x;), €}.
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AIPW via regression

Note that

~

N N 1oz 1 (1-2Z)Y
Oy = Mlpw(l) - :LLIPW(O) = H Z — = H Z Y
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AIPW via regression

Note also that

e(Xi)(1 — e(X;)) = Varg,x,[Zi|Xi]
so in fact

~ ~ 1 - < Zj = 3 (XI) )
PW 1) — PW 0 = - N e G Y;
w ( ) 2 ( ) n 1_21 Vaij\Xl- [Zj’Xj] 1

which resembles the earlier formulae for the randomized ex-
perimental case.
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AIPW via regression

Finally, note the variance of § = ji(1) — fi(0) is

parks K(Zm - 1(1—_e<zx)>> Y] |

Now, in this expression, the variance term can be written

o z (1-2)\?
Sz [<e<x> ~1ew) Yz] -

as ¢ is unbiased for 6.
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AIPW via regression

Using the previous notation, we have that the first term is

o Z (1_2) ?
Bz [(e(X) ~1-200) "(X’Z)]

and if v(X, Z) = v, a constant, this reduces to

o z (1-2)\?
VEX:Z[(e(X) ger) ]
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AIPW via regression

Finally, the expectation simplifies

ER 2 [(eé) - 1(1__6(ZX))>2] ~ Exz [(eé)>2]
+EXz [(1(1__6(2;())>2]

However, Z(1 — Z) = 0 w.p. 1, so the third term is zero.

334



AIPW via regression

Henceas Z? =Zand (1 - Z)>=(1—-Z)w. p. 1,

Exz [(eé{) B 1(1—_e(ZX)))2] =P e(lX)] E [1 —i(X)}

- [ 1
=B @ —e<X>]

_Eo|— 1
Varz x[Z|X]
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AIPW via regression

Therefore, the variance of ¢, is

vV _o 1 52
“Ex | ol — o
n VarZ‘X[Z|X] n

336



G-estimation

Earlier we saw the idea of propensity score regression, where
we construct a model of the form

EYix.z[YIX, e(X), Z]
which is potentially useful as

X1 Z|eX).
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G-estimation

In the binary treatment, linear model case, we saw that if the
data generating model is

[E$'|X7Z[Y|X = X? Z = Z] = XOBTRUE + ZX2¢ = /“L(Xv Z; TRUE,w)
then the propensity score regression model
m(x,z; 3,4, ¢) =x18 + zx21) + e(X)x2¢

will block the confounding paths and return a consistent es-
timator of ¢ even if the treatment-free mean model x13 is
mis-specified.
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G-estimation

Consider the OLS estimation of (53,1, ¢): we solve

-
N X1
Z zixl, |(vi —xi18 — zi xi2t) — e(xi)Xi20) = O
i=1
e(x)x},

analytically using the usual approaches.
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G-estimation

However, note that subtracting the third component from the
second, we obtain the equivalent system

-
n Xi1
Z (zi — e(x:))x}y | (vi — %018 — 2 Xi29) — e(xi)Xi2) = O
i-1

e(xi)x,

which has an identical solution.

The second component takes the form

(zi — e(x1))x5(yi — Xi18 — 2 Xi2¥) — e(x;)X20) = O
1

n
i=
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G-estimation

Notice first that if the mean model is correctly specified

m(X7Z;/Ba ¢7 d)) = Xl/B + ZXZ’ZZJ + e(X)Xz(Z)

with ¢ = 0, that is, the true model is nested inside the fitted
model, then g and ¢ will be consistently estimated, and we
will observe

¢ >0
as n — oo; indeed, for finite n, the expected value of g’b\ is
Zero.
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G-estimation

Now suppose the mean model is mis-specified, but that
(i) the propensity score model e(x) is correctly specified;

(ii) the random quantity
ei = (Y; — X B — Zi Xiztp — e(X;)Xi29)

is functionally independent of Z;, that is, the dependence
of the mean model on Z; is correctly specified, and the
effect of Z; is captured via

Z; Xiz.
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G-estimation

Then we have that
ESyvz[(Z — e(X)X; (Y — X18 — Z Xp1) — e(X)X29)] = 0
as, using iterated expectation, we have first that
ESx 2[(Y — X1 — Z Xo) — e(X)X20)[X, Z] = h(X; 5,4, ¢)
where

h(x;8,9,¢) = (X0Buu: + Z2X2¢) — (X158 + ZX27) + €(X)X20))
= X0Sme — (X158 + €(X)X20)).
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G-estimation

That is, h(X; 3,4, ¢) is functionally independent of Z. Then
ES[(Z — e(X)XT h(X; 8., §)|X]
=X h(X; 8.9, 0)EGx[(Z — e(X))|X]
=0

by the correct specification of e(X), so the overall expectation
is zero.

Thus, this is an unbiased estimating equation and therefore
the solutions to the resulting equation are consistent for the
true values.
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G-estimation

This is another form of double robustness; inference for ) is
correct if either

» the mean model, or

» the propensity score model

(or both) is correctly specified, provided the expectation
[E?\X,Z[g ’ X? Z]

does not depend on Z.
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G-estimation

Under correct specification of the propensity score, the G-
estimation procedure is robust to mis-specification of the
treatment-free mean model

x1 3

so in fact we may re-write the G-estimating equation by com-
bining the two terms that do not depend on Z, and omitting
the nuisance parameter ¢ from the procedure.
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G-estimation

That is, consider the reduced form

x|

< il
1‘:21 (Zi - e<X1))X1TZ (‘YI - Xil/B — Zj Xj2¢) = 0.

This form still leads to double robustness by identical argu-
ments.
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G-estimation

The most basic form of the G-estimating equation arises from
the model that omits the treatment-free component:

Z 12<y Zj X12¢)

and in the simplest case with ¢ one-dimensional

Dz — e(x:))(yi — zitho) = 0

i=1

say.
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G-estimation

The estimating equation invokes the moment requirement

EX v z[(Z — e(X))(Y = Zto)] =0
which is a form of orthogonality statement, that is

(Z — e(X)) is uncorrelated with (Y — Zy).
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G-estimation

In this case we can solve explicitly to obtain

~

3
wo—;
&7

with corresponding estimator
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G-estimation

Using standard arguments, we have that as n — ©

Zi —e(Xi))Y;
AT Bz - et

ESz[Z(Z —e(X))]

-

1

Zi(Zi — e(Xi))

-

Il
-

1

and note that in the denominator, by iterated expectation
ES £[Z(Z - e(X))] = ES | EZx1Z(Z — e(x))IX]| .
Then, as Z2 = Z w.p. 1, we have
EZ7x[Z(Z — e(X))IX] = EZx[Z® — Ze(X)|X] = e(X)(1 - e(X))
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G-estimation

Thus
EX z[Z(Z — e(X)] = Ex[e(X)(1 — e(X))]
= Ex[Vargz x[Z|X]]
where the second line follows as

Z|X ~ Bernoulli(e(X)).
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G-estimation

In the numerator

EXyz[(Z —e(X))Y] = ER z[(Z — e(X))u(X, Z)]
= Ex[e(X)(1 — e(X))u(X,1) — (1 — e(X))e(X)u(X, 0)]
= Ex[e(X)(1 — e(X))(u(X,1) — u(X,0))]
= YoEx[e(X)(1 — e(X))]

as, here
M(X> 1) - M(Xa O) = 100

with probability 1.
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G-estimation

Therefore
(Zi — e(X))Yi
SEEN L sl e,
P — ESle()(1 —e(x))] "
i=1

and we have consistent estimation.
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G-estimation

For the variance, note first that by the previous result

e(X;
wO = Z [EO 1 — e)()X))]YI + OP<1)

so we may compute the large sample variance by computing
the variance of the statistic on the right hand side; this vari-
ance is

1
n{Eg[e(X)(1 — e(X))]}?

Varg y £[(Z - e(X))Y].
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G-estimation

We have that
Var)(?,Y,Z[(Z —e(X))Y]
= ERvz[(Z — e(X))*Y?] — {ER v z[(Z — e(X))Y]}?
= ESy 2[(Z — e(X)*Y?] — ¢ {EZ[e(X)(1 — e(X)]}?

= EX 2[(Z — e(X))*v(X, Z)] — w5 {ER[e(X)(1 — e(X)]}?
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G-estimation

If v(x,z) = v is a constant, then this becomes
VER 2[(Z — e(X))?] - ¢5{ER[e(X)(1 — e(X)]}?
but by iterated expectation
EX [(Z — e(X))*] = ER[e(X)(1 — e(X)].
Thus
Var}(?,Y,z[(Z —e(X))Y]

— VEZ[e(X)(1 — e(X)] — vA{EZ[e(X)(1 — e(X)]}.
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G-estimation

Therefore, combining all the elements, we conclude that the
variance of ¢g, obtained by G-estimation, satisfies

1 2

avar®o] — Veermi ey~ U0

Recall that in this model

Yo = ER[u(X, 1) — u(X,0)] = pu(1) — pu(0)

so g is the ATE.
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G-estimation

We contrast this with the variance of the IPW estimator of the
ATE obtained earlier: we had that as § = vy,

ory o 1
) = VR ey ey | 8
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G-estimation

Now by Jensen’s inequality

1 1
X >
X [e(X)(l —e(X))] Ex[e(X)(1 —e(X)]
and so it is evident that for n large enough
Var®[0,,] > Var®|[tq].

Recall, however, that the two methods make different assump-
tions: specifically, G-estimation requires the correct specifica-
tion of the treatment effect model.
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G-estimation

These results extend to more complicated settings: for exam-
ple, the doubly robust G-estimator takes the form

>z )(Yi — Xi13)
i=1

> Zi(Zi — e(X:))

i=1

and we can achieve similar comparisons with AIPW estima-
tors.
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G-estimation

Throughout, we have assumed e(X) is known precisely. More
typically, we will propose a parametric model e(x) = e(x; «),
and then estimate «a using a further estimation procedure.

For example, using logistic regression, we could solve
n
Z x| (z; — e(x;;0)) = 0
i=1

where x; is a row vector of the same dimension as «.

Having obtained @, we then proceed with e(x;; &) in place of
e(x;) in the earlier formulae, using a plug-in strategy.
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G-estimation

The plug-in approach will work provided the estimator of « is
consistent; but

e Should we ‘pay a penalty’ for estimating «, that is, will
the variance of the ATE estimators increase ?

® Do we need to account for the estimation of « ?
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