
Part 1

Causal Adjustment Methods



Causal Adjustment Methods

We have seen that regression methods can recover causal
quantities of interest in observational studies, provided there
is correct specification of the regression model, even if there
is a confounding of the direct effect.

Z Y

X

Model-based estimation will be successful if

E
O
Y |X ,Z rY |X ,Z s

is correctly specified.
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Causal Adjustment Methods

Recall that, under the previous assumptions

µpzq “ E
E
Y |Z rY |Z “ zs “

ĳ

y f E
Y |X ,Z py|x, zqf

E
X pxq dy dx

”

ĳ

y fO
Y |X ,Z py|x, zqf

O
X pxq dy dx

”

ż

E
O
Y |X ,Z rY |X “ x,Z “ zsfO

X pxq dx

that is, the treatment data are ignored.

This is known as a G-computation formula; it yields estimates
of APO µpzq under correct specification of

E
O
Y |X ,Z rY |X “ x,Z “ zs
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Causal Adjustment Methods

If correct specification cannot be guaranteed, we must seek
other adjustment approaches.

The key complication that prevents use of the observational
data is that

Z {KKX

so that the treatment-indexed subgroups are incomparable
due to their different X characteristics.

How can we break the dependence ?
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Matching

Suppose first that the confounder X is degenerate at x “ x0,
that is

PrrX “ x0s “ 1.

Then (trivially)

fO
Z |X pz|xq ” fO

Z pzq @z, x “ x0

and

E
O
Y |Z rY |Z “ zs “

ż

y fO
Y |X ,Z py|x0, zq dy “ E

E
Y |Z rY |Z “ zs.

205



Matching

Now suppose X takes values on the finite set

X “ tx1, . . . , xJu

with

fO
X pxq “ f E

X pxq

determining the distribution of X .
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Matching

Define the ‘local’ APO at x “ xj , for j “ 0,1,2, . . ., by

E
E,j
Y |Z rY |Z “ zs “

ż

y fO
Y |X ,Z py|xj , zq dy “ µj pzq

say. We may estimate this quantity using sample-based esti-
mation using the estimator

pµj pzq “

n
ÿ

i“1

1txj u
pXi q1tzupZi qYi

n
ÿ

i“1

1txj u
pXi q1tzupZi q

This is the sample mean in the treatment group with Z “ z in
the population stratum Xj for which X “ xj .
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Matching

Within stratum Xj , for the binary treatment case, the local
ATE is estimated by

pδMATCH,j “ pµj p1q ´ pµj p0q

This is an unbiased estimator of the local ATE, that is, the ATE
in the stratum Xj .
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Matching

Finally, we can estimate the (global) ATE using a weighted
combination of the local estimators.

pδMATCH “

J
ÿ

j“1

pwj
pδMATCH,j

where

pwj “
1

n

n
ÿ

i“1

1txj u
pXi q

estimates the probability of observing X in stratum Xj .
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Matching

This is a matching estimator:

§ the local estimators are constructed by matching sepa-
rately on the xj ;

§ in the matched stratum, the only difference between in-
dividuals is their treatment status;

§ in a matched subsample, we can directly compare the
outcomes for the treatment-indexed subgroups.

§ we can combine the local estimators into a global estima-
tor.
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Matching

Note

The local estimators rely on having a large enough subsample
size in the stratum Xj , for all the targeted treatment values,
to allow the estimators to exhibit good behaviour.

The matching approach can also be applied if X is vector-
valued; however, again the subsample size can deplete as the
dimension of X increases.
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Matching

If X is continuous, then exact matching cannot be used. How-
ever, we can define similar strata

X1,X2, . . . ,XJ

that form a partition of X , and then assume that

fO
Z |X pz|xq “ fj pzq

for j “ 1,2, . . . , J , where fj pzq does not depend on x.

Then, the matching estimator pδMATCH can still be used.
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Matching

Note

‚ If X is scalar, we can define the strata by using quantiles
of the observed data.

‚ Defining the strata may not be straightforward when X is
vector-valued.

‚ The assumption that, within a stratum, fO
Z |X pz|xq does not

depend on x is quite a strong one.

213



Matching

Model-based matching estimators may also be constructed:
for example, could write

E
O,j
Y |Z rY |X “ x,Z “ zs “ µpx, z;βj , ψj q x P Xj

which then leads to an estimator

pµj pzq “

n
ÿ

i“1

1txj u
pXi q1tzupZi qµpXi , z; pβj , pψj q

n
ÿ

i“1

1txj u
pXi q1tzupZi q

after estimating βj and ψj using data within stratum Xj .
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Constructing Balance

Consider the basic confounding set up:

Z Y

X

We know that conditioning on X blocks the confounding path.
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Constructing Balance

Now suppose we could find a new variable B so that

Z Y

X

B

Conditioning on B also blocks the confounding path.
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Constructing Balance

We can define B as a deterministic function of X : B ” BpXq

Z Y

X

BpXq

For example, X is vector-valued, B is a scalar summary of X .
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Constructing Balance

Note that

§ if we can find such a B , then

Z KK X | B

§ there is no arrow from B to Y , and

Y KK B | Z ,X

as conditioning on X and Z blocks the open paths from B
to Y .
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Constructing Balance

If we can find such a B , then we can consider performing
‘local’ analyses for the causal effect within strata of B ;

§ within a given stratum Bj of B , Z and X are independent;

§ we can directly compare the Ys for different Z values
for the subjects falling within Bj , and be sure that the X
values for those subjects are suitably matched .

§ ideally, B can be a low-dimensional summary (a bit like a
sufficient statistic) even if X is high-dimensional .
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Constructing Balance

We need to find B such that Z KK X | B , that is, for all px, z,bq,

fZ |X ,B pz|x,bq “ fZ |B pz|bq

fX |Z ,B px|z,bq “ fX |B px|bq

provided the conditional densities are well-defined.

Note that if B “ BpXq deterministically, then

fZ |X ,B pz|x,bq ” fZ |X pz|xq
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Constructing Balance

Suppose that Z P t0,1u. Then we must have that

fZ |X pz|xq ” Bernoullipppxqq

where 0 ď ppxq ď 1 a probability that may depend on x.

That is,

PrrZ “ z|X “ xs “ tppxquzt1´ ppxqu1´z z “ 0,1
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Constructing Balance

Similarly, for any proposed B , we must also have

fZ |X ,B pz|x,bq ” Bernoullipqpx,bqq

where 0 ď qpx,bq ď 1 a probability that may depend on
px,bq. That is,

PrrZ “ z|X “ x,B “ b s “ qpx,bqzp1´ qpx,bqq1´z z “ 0,1

We must now ensure that

PrrZ “ z|X “ x,B “ b s “ PrrZ “ z|B “ b s @px, z,bq.
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Constructing Balance

We can do this by requiring

qpx,bq ” qpbq

for all px,bq. That is, we must ensure

PrrZ “ z|X “ x,B “ b s “ qpbqzp1´ qpbqq1´z z “ 0,1.
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Constructing Balance

Define the function

Bpxq “ PrrZ “ 1|X “ xs

with corresponding random variable BpXq “ PrrZ “ 1|X s, and
set

qpbq “ b

so that

PrrZ “ z|X “ x,B “ b s “ b zp1´ bq1´z “ PrrZ “ z|B “ b s
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Constructing Balance

Hence by construction

fZ |X ,B pz|x,bq “ fZ |B pz|bq “ b zp1´ bq1´z

that is, if we consider the ‘contour’

Xb “ tx : Bpxq “ bu

then

PrrZ “ 1|X “ xs “ b @x P Xb .

Thus

Z KK X |B .
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Constructing Balance

The function Bpxq contains all the relevant information ex-
tracted from X to determine the conditional distribution of Z
given X .

Note that BpXq is a scalar random variable, whatever the di-
mension of X ; if X “ pX1,X2,X3q say, we might have that

fZ |X p1|xq “ PrrZ “ 1|X “ xs “
exptx1 ` 2x2x2

3u

1` exptx1 ` 2x2x2
3u
” Bpxq.

Many triples px1, x2, x3q yield the same probability.

226



Constructing Balance

In the binary case, the random variable B “ BpXq is known as
the propensity score; this is denoted

epxq “ PrrZ “ 1|X “ xs

by Rosenbaum and Rubin (1983).
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Constructing Balance

We have for the joint pdf

fX ,Z ,B px, z,bq “ fX pxqfB |X pb |xqfZ |X ,B pz|x,bq

“

#

fX pxqb zp1´ bq1´z b “ Bpxq

0 otherwise

as

fB |X pb |xq “

#

1 b “ Bpxq

0 otherwise

and

fZ |X ,B pz|x,bq “ fZ |X pz|xq “ b zp1´ bq1´z .
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Constructing Balance

Thus if

Xb “ tx : Bpxq “ bu

then for all pz,bq

fZ ,B pz,bq “

ż

Xb

fX ,Z ,B px, z,bq dx

“

ż

Xb

b zp1´ bq1´z fX pxq dx

“ b zp1´ bq1´z
ż

Xb

fX pxq dx
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Constructing Balance

Therefore

fX |Z ,B px|z,bq “
fX ,Z ,B px, z,bq

fZ ,B pz,bq

“

$

’

’

&

’

’

%

fX pxq
ż

Xb

fX ptq dt
x P Xb

0 otherwise

as the b terms cancel. Thus

fX |Z ,B px|z,bq ” fX |B px|bq.
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Constructing Balance

Note

Note that for the binary case

epXq “ PrrZ “ 1|X s ” EZ |X rZ |X s.
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Constructing Balance

We also have that B˚ is another balancing score if and only if
B is a function of B˚

§ that is, if and only if B is ‘coarser’ than B˚,

B˚ “ b˚ ùñ B “ b .
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Constructing Balance

To see this, suppose first that B˚ “ b˚ implies B “ b . Then,
by iterated expectation

PrrZ “ 1|B˚ “ b˚s “ EZ |B˚rZ |B˚ “ b˚s

“ EB |B˚

„

EZ |B ,B˚rZ |B ,B˚ “ b˚s

ˇ

ˇ

ˇ

ˇ

B˚ “ b˚


“ EB |B˚

„

EZ |B rZ |B “ b s

ˇ

ˇ

ˇ

ˇ

B˚ “ b˚


“ EZ |B rZ |B “ b s

“ PrrZ “ 1|B “ b s

so therefore B˚ is a balancing score, as B is a balancing score.

233



Constructing Balance

Conversely, suppose B˚ is a balancing score, that is

PrrZ “ 1|X “ x,B˚pxq “ b˚s “ PrrZ “ 1|B˚pxq “ b˚s

Consider two values x1 and x2. We have that

PrrZ “ 1|B˚px1q “ b˚s “ PrrZ “ 1|B˚px2q “ b˚s

that is, if both x1 and x2 map to b˚ under B˚p.q, then the two
probabilities must be equal by the balancing assumption.
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Constructing Balance

As B˚ is a balancing score, we have also that

PrrZ “ 1|B˚px1q “ b˚s “ PrrZ “ 1|X “ x1,B
˚px1q “ b˚s

PrrZ “ 1|B˚px2q “ b˚s “ PrrZ “ 1|X “ x2,B
˚px2q “ b˚s

But as for all x

PrrZ “ 1|X “ x,B˚pxq “ b˚s ” PrrZ “ 1|X “ xs

this implies that

PrrZ “ 1|X “ x2s “ PrrZ “ 1|X “ x2s

and hence that Bpx1q “ Bpx2q, as required.
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Constructing Balance

The balancing construction extends beyond the case of binary
treatments: suppose Z is continuous, and that

fZ |X pz|xq

is some conditional density for Z given X in the same (obser-
vational) model.

Suppose that we have for some function B “ BpXq

fZ |X pz|xq ” fZ |B pz|Bpxqq @px, zq

Then directly

fZ |X ,B pz|x,bq ” fZ |B pz|bq @px, zq,b “ Bpxq.
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Constructing Balance

Example:

Suppose

Z | X1 “ x1,X2 “ x2 „ Normalpx1 ` x2, σ
2q.

Then define
Bpxq ” Bpx1, x2q “ x1 ` x2

so that

Z | X1 “ x1,X2 “ x2,B “ b „ Normalpb , σ2q.

which does not depend on px1, x2q.
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Constructing Balance

For the binary case

epXq “ PrrZ “ 1|X s ” EZ |X rZ |X s

which suggests another possible balancing score construction
involves inspection of

BpXq “ ErZ |X s.

This will not necessarily yield independence, but it may yield
(partial) uncorrelatedness, that is

CovrX ,Z |B s “ 0.
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Constructing Balance

Note

For the moment, we will assume that epXq or BpXq is known
precisely.

In practice, we will typically have to

‚ assume a parametric model and rely on correct specifi-
cation to ensure consistent estimation of the propensity
score parameters and values, or

‚ use advanced approaches (machine learning, flexible,
adaptive approaches) to obtain the propensity score func-
tion.
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Constructing Balance

Recall the assumption of strong ignorability:

X

tYp0q,Yp1qu

Z

Y

tYp0q,Yp1qu KK Z | X

240



Constructing Balance

This can be considered in the balancing score case:

X

tYp0q,Yp1qu

Z

Y

B

tYp0q,Yp1qu KK Z | B
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Adjustment via the Propensity Score

Adjustment methods based on balancing scores can be de-
veloped; the balancing score is used to block backdoor (con-
founding) paths.

We will focus mainly on the binary case, and the propensity
score

epXq “ PrrZ “ 1|X s.
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Adjustment via the Propensity Score

The basic set up we consider is the following:

Z Y

X2 X1 X3
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Adjustment via the Propensity Score

There are three types of covariate:

X1 confounders

X2 instruments (pure predictors of treatment)

X3 pure predictors of outcome

There are no paths connecting X1, X2 and X3, and there is no
unmeasured confounding.
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Adjustment via the Propensity Score

Including the propensity score retains the previous feature:

Z Y

X2 X1 X3

epX1q

245



Adjustment via the Propensity Score

Note

The propensity score does not need to be a function X2 or X3;
making it depend only on X1 is sufficient to block the back-
door path.

This is the case even though X2 is a cause of Z ; that is, even
though

fZ |X1,X2
pz|x1, x2q ” fZ |epX1q,X2

pz|epx1q, x2q

and
Z {KK X2 | epX1q

we can still base the propensity score only on X1 (the con-
founders).
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Stratification and Matching

The propensity score epXq is a scalar random variable irre-
spective of the dimension of X . We may construct an estima-
tor of the APO by noting

µpzq “ E
E
Y |Z rY |Z “ zs “ E

E
X rE

E
Y |X ,Z rY |X ,Z “ zss

“ E
E
X rE

E
Y |X ,Z rY |X , epXq,Z “ zss

“ E
O
X rE

O
Y |X ,Z rY |X , epXq,Z “ zss

and, after conditioning on epXq, X and Z are independent,
and so sample-based estimation can be utilized.
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Stratification and Matching

For fixed values of epXq, we may directly compare

E
O
Y |X ,Z rY |X , epXq “ e,Z “ zs

for different values of z.

For fixed value e1, let

Xe1 “ tx : epxq “ e1u

and define a ‘local’ APO estimator as

pµe1pzq “

n
ÿ

i“1

1Xe1
pXi q1tzupZi qYi

n
ÿ

i“1

1Xe1
pXi q1tzupZi q
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Stratification and Matching

We can construct a stratification estimator by considering
strata of the propensity score.

Consider a partition constructed using

Xj “ tx : epxq P Eju j “ 1, . . . , J

where E1, . . . ,EJ exhaustively cover the interval p0,1q.
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Stratification and Matching

We can define local estimator

pµXj pzq “

n
ÿ

i“1

1Xj pXi q1tzupZi qYi

n
ÿ

i“1

1Xj pXi q1tzupZi q

and global estimator

pµpzq “
J
ÿ

j“1

pµXj pzqPrrX P Xj s
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Stratification and Matching

Note

To construct such estimators of the ATE, say

pµp1q ´ pµp0q

we require that sufficient data for the different values of z
are available with the strata. That is, in any propensity score
stratum, we require that there are a large enough number of
subjects with both Z “ 0 and with Z “ 1.

This is termed an overlap condition.
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Stratification and Matching

We can also consider matching on the propensity score;

§ recall that we argued previously that two individuals that
had precisely the same X value but different Z values
could be directly compared as they were ‘matched’;

§ we can extend this argument to the propensity score –
two individuals with the same epXq value are also consid-
ered matched.
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Stratification and Matching

There are many ways to carry out matching in practice (where
matching on exact values) is not feasible:

§ caliper matching: two individuals i (with Zi “ 1) and j
(with Zj “ 0) are considered matched if

b

pepxi q ´ epxj qq
2 ă c

for some constant c.

§ 1:1 nearest case matching: for individual i with Zi “ 1
we find the individual j with Zj “ 0 such that

b

pepxi q ´ epxj qq
2

is minimized .
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Stratification and Matching

§ 1:M matching: for individual i with Zi “ 1 we find the M
individuals in the data set with Z “ 0 such that the dis-
tances between their propensity score values and epxi q

are the M smallest .

The statistical properties of matching estimators are not al-
ways straightforward to establish.
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Propensity Score Regression

Conditioning on epXq can be achieved using regression meth-
ods; we consider the model inspired by the DAG

Z Y

X2 X1 X3

epX1q
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Propensity Score Regression

We may consider the regression model

E
O
Y |X ,Z rY |X , epXq,Z s

which, as

X KK Z | epXq

has the advantage that it will be more robust to possible mis-
specification when a parametric model is proposed.
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Propensity Score Regression

Example:

Suppose that we have the following data generating model:

‚ Confounders: pX1,X2q
J „ Normal2pp1,1qJ,Σq with

Σ “

„

0.1 0.0
0.0 0.5

 „

1.0 0.8
0.8 1.0

 „

0.1 0.0
0.0 0.5



‚ Treatment: Z |X1,X2 „ BernoullipepX1,X2qq, where

epx1, x2q “
expt1` x1 ´ 2x2u

1` expt1` x1 ´ 2x2u

‚ Outcome: Y |X ,Z „ NormalpµpX ,Zq,1q, where

µpx, zq “ p2` 3x1 ` x2 ` x1x2q ` z
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Propensity Score Regression

Example:

We consider fitting the parametric model

mpx, z;β, ψq “ pβ0 ` β1x1q ` zψ0

which is mis-specified due to the ‘treatment-free’ model spec-
ification. The true values is ψ0 “ 1.
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Propensity Score Regression

#n=1000
#Correct specification
> round(coef(summary(lm(Y~X1+X2+X1:X2+Z))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7134 0.6222 4.3608 0.0000
X1 2.2156 0.6869 3.2254 0.0013
X2 0.2882 0.4807 0.5996 0.5489
Z 1.0150 0.0674 15.0572 0.0000
X1:X2 1.7421 0.4721 3.6905 0.0002

#Incorrect specification
> round(coef(summary(lm(Y~X1+Z))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.2613 0.4034 -10.5631 0
X1 11.4990 0.3888 29.5760 0
Z 0.6366 0.0762 8.3523 0
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Propensity Score Regression

Example:

In the correctly specified model, we have

pψ0 : 1.0150 p0.0674q

however in the incorrectly specified model we have

pψ0 : 0.6366 p0.0762q

This effect persists at even larger sample sizes.
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Propensity Score Regression

Example:

Now consider fitting the parametric model

mpx, z;β, ψ, φq “ pβ0 ` β1x1q ` zψ0 ` epx1, x2qφ0

which considers the additional final term that depends on the
propensity score.

Initially, we will set

epx1, x2q “
expt1` x1 ´ 2x2u

1` expt1` x1 ´ 2x2u

that is, using the true value.
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Propensity Score Regression

#Propensity score regression
> round(coef(summary(lm(Y~X1+Z+eX))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1718 0.5609 7.4377 0
X1 5.1662 0.4701 10.9907 0
Z 1.0172 0.0682 14.9069 0
eX -4.6374 0.2430 -19.0815 0
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Propensity Score Regression

Example:

We now have
pψ0 : 1.0172 p0.0682q

and so correct estimation of ψ0 has been recovered.
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Propensity Score Regression

Example:

Now suppose

µpx, zq “ p2` 3x1 ` x2 ` x1x2q ` zp1` x1 ` x2q

and we try the same strategy, using the propensity score re-
gression model

mpx, z;β, ψ, φq “ pβ0`β1x1q`zpψ0`ψ1x1`ψ2x2q`epx1, x2qφ0

264



Propensity Score Regression

#n=1000
#Correct specification
> round(coef(summary(lm(Y~X1+X2+X1:X2+Z+Z:X1+Z:X2))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5674 0.9486 3.7609 0.0002
X1 1.2812 1.0109 1.2675 0.2053
X2 0.1155 0.6004 0.1923 0.8475
Z -0.2023 0.9313 -0.2173 0.8281
X1:X2 1.9903 0.5672 3.5090 0.0005
X1:Z 2.3744 1.0558 2.2488 0.0247
X2:Z 0.8420 0.2091 4.0272 0.0001
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Propensity Score Regression

#Incorrect specification
> round(coef(summary(lm(Y~X1+Z+Z:X1+Z:X2))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.4874 0.5541 -8.0981 0
X1 11.7187 0.5363 21.8503 0
Z 6.4906 0.8778 7.3941 0
X1:Z -6.5766 0.9644 -6.8196 0
Z:X2 2.8785 0.1642 17.5344 0
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Propensity Score Regression

#Propensity score regression
> round(coef(summary(lm(Y~X1+Z+Z:X1+Z:X2+eX))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9848 0.7752 5.1403 0.0000
X1 5.4002 0.6565 8.2252 0.0000
Z 1.4774 0.8716 1.6951 0.0904
eX -4.7679 0.3313 -14.3913 0.0000
X1:Z 0.6533 1.0113 0.6460 0.5184
Z:X2 0.8889 0.2036 4.3664 0.0000
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Propensity Score Regression

Example:

Hard to conclude anything due to the inherent variability, but
it seems that including the propensity score does improve the
estimation of pψ0, ψ1, ψ2q.

Need to do a larger simulation study: we perform 5000 repli-
cations, and inspect the boxplots of the estimates for the three
parameters.
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Propensity Score Regression

Correct Incorrect PS Regression

−
2

0
2

4
6

8
10

ψ0
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Propensity Score Regression

Correct Incorrect PS Regression

−
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−
5

0
5

ψ1
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Propensity Score Regression

Correct Incorrect PS Regression

0.
0
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0
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ψ2
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Propensity Score Regression

Example:

This confirms that including the propensity score does im-
prove the estimation of pψ0, ψ1, ψ2q, even if the treatment-free
model component is incorrectly specified.

However, it seems that there is still a small amount of bias.
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Propensity Score Regression

Example:

Here is a version of the DAG for the data generating model

Z Y

X2

X1

273



Propensity Score Regression

Example:

However, a more accurate DAG includes the interactions.

Z Y

X2

X1

X1X2

X1Z

X2Z
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Propensity Score Regression

Example:

We need to block the open paths via the interactions. This can
be achieved by using the model

mpx, z;β, ψ, φq “ pβ0 ` β1x1q ` zpψ0 ` ψ1x1 ` ψ2x2q

` epx1, x2qpφ0 ` φ1x1 ` φ2x2q

Conditioning on epXq, epXqX1 and epXqX2 blocks the paths.
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Propensity Score Regression

Example:

Z Y

X2

X1

X1X2

X1Z

X2Z

e

eX1

eX2
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Propensity Score Regression

Correct Incorrect PS Regression PS 2

−
2

0
2

4
6

8
10

ψ0

277



Propensity Score Regression

Correct Incorrect PS Regression PS 2
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Propensity Score Regression

Correct Incorrect PS Regression PS 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ψ2

279



Propensity Score Regression

Example:

The augmented propensity score regression model (PS 2) im-
proves the performance.

Note, however, that the variances of the estimators from
propensity score regression model are slightly larger than
those arising from the correctly specified model.

‚ 10% to 20% larger in this simulation.
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Propensity Score Regression

Example:

In this analysis, we may estimate the ATE by taking the av-
erage difference of the two fitted values under the proposed
model, that is

pδ “
1

n

n
ÿ

i“1

p pψ0 ` pψ1xi1 ` pψ2xi2q.
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Propensity Score Regression

Example:

Note, however that we need to take care in estimating the
APO. In the data generating model, with

µpx, zq “ p2` 3x1 ` x2 ` x1x2q ` zp1` x1 ` x2q

we have that

µpzq “ 2` 3ErX1s ` ErX2s ` ErX1X2s ` zp1` ErX1s ` ErX2sq.

This cannot in general be estimated correctly using

pµpzq “
1

n

n
ÿ

i“1

mpxi , z; pβ, pψ, pφq.
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Propensity Score Regression

Note

This type of adjustment works for a linear outcome model;
however, for other types of model such as

‚ log-linear

‚ logistic

more care needs to be taken.
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Inverse Probability Weighting

We have from a previous result that

E
E
Y |Z rY |Z “ zs “

¡

1tzupzqy f E
Y |X ,Z py|x, zqf

E
Z pzqf

E
X pxqdy dx dz

¡

1tzupzqf
E
Y |X ,Z py|x, zqf

E
Z pzqf

E
X pxq dy dx dz

and also that

f E
X ,Y ,Z px, y, zq

fO
X ,Y ,Z px, y, zq

“
f E
X pxq

fO
X pxq

f E
Z pzq

fO
Z |X pz|xq

f E
Y |X ,Z py|x, zq

fO
Y |X ,Z py|x, zq

“
f E
Z pzq

fO
Z |X pz|xq

.
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Inverse Probability Weighting

Using the ‘importance sampling’ (or change of measure) re-
sult, we therefore have that

E
E
Y |Z rY |Z “ zs “

¡

1tzupzqy
f E
Z pzq

fO
Z |X pz|xq

fO
X ,Y ,Z px, y, zqdy dx dz

¡

1tzupzq
f E
Z pzq

fO
Z |X pz|xq

fO
X ,Y ,Z px, y, zq dy dx dz
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Inverse Probability Weighting

That is

µpzq “ E
E
Y |Z rY |Z “ zs “

E
O
X ,Y ,Z

«

1tzupZqY
f E
Z pZq

fO
Z |X pZ |Xq

ff

EO
X ,Y ,Z

«

1tzupZq
f E
Z pZq

fO
Z |X pZ |Xq

ff

or equivalently

µpzq “

E
O
X ,Y ,Z

«

1tzupZqY

fO
Z |X pZ |Xq

ff

EO
X ,Y ,Z

«

1tzupZq

fO
Z |X pZ |Xq

ff
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Inverse Probability Weighting

We therefore have the estimator

pµIPWpzq “

1

n

n
ÿ

i“1

1tzupZi qYi

fO
Z |X pZi |Xi q

1

n

n
ÿ

i“1

1tzupZi q

fO
Z |X pZi |Xi q

This is the Inverse Probability Weighting (IPW) estimator.
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Inverse Probability Weighting

We may also write

pµIPWpzq “
n
ÿ

i“1

Wi pzqYi

where

Wi pzq “

1tzupZi q

fO
Z |X pZi |Xi q

n
ÿ

j“1

1tzupZj q

fO
Z |X pZj |Xj q

is a weight, where

n
ÿ

i“1

Wi pzq “ 1 E
O
X ,Z rWi pzqs “

1

n
.
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Inverse Probability Weighting

In the binary case, we have

Wi p0q “

p1´ Zi q

p1´ epXi qq
n
ÿ

j“1

p1´ Zj q

p1´ epXj qq

Wi p1q “

Zi

epXi q
n
ÿ

j“1

Zj

epXj q

where

E
O
Xi ,Zi

„

Zi

epXi q



“ E
O
Xi

„

epXi q

epXi q



“ 1

by iterated expectation.
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Inverse Probability Weighting

Note that an alternative estimator that utilizes the fact that
for all i

E
O
Xi ,Zi

«

1tzupZi q

fO
Z |X pZi |Xi q

ff

“ 1

is

rµIPWpzq “
1

n

n
ÿ

i“1

1tzupZi qYi

fO
Z |X pZi |Xi q
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Inverse Probability Weighting

Note

The two estimators solve two slightly different estimating
equations:

‚ For rµIPWp1q:
n
ÿ

i“1

ˆ

Zi

epXi q
Yi ´ µp1q

˙

“ 0

i.e. reweights the datum Yi .

‚ For pµIPWp1q:
n
ÿ

i“1

Zi

epXi q
pYi ´ µp1qq “ 0

i.e. reweights the residual pYi ´ µp1qq.
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Inverse Probability Weighting

Note

These equations illustrate how IPW operates; it creates a re-
weighted data set, say for i “ 1, . . . ,n,

Y˚i “

ˆ

Zi

epXi q
`

1´ Zi

1´ epXi q

˙

Yi

and

X˚i “

ˆ

Zi

epXi q
`

1´ Zi

1´ epXi q

˙

Xi

which represent a sample from a pseudo-population in which

X˚ KK Z .

The new data set does not suffer from confounding.
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Inverse Probability Weighting

Note

‚
pµIPWpzq and rµIPWpzq are unbiased estimators of µpzq by con-
struction.

‚ In these estimators
fO
Z |X pZ |Xq

plays a critical role; this is the function that determines
the propensity score.

‚ There is an important requirement that

fO
Z |X pz|xq ą 0

for any px, zq. This is termed a positivity requirement.
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Inverse Probability Weighting

Note

‚ Positivity requires that for all z under consideration

fO
Z |X pz|xq ą 0

that is, in the binary case, we do not have that

PrrZ “ z|X “ xs “ 1

for any x. This is sometimes termed the experimental
treatment assignment (ETA) assumption; that is, no in-
dividual receives treatment (or no treatment) with cer-
tainty.
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Augmentation

The IPW estimators rely on knowledge (and correct specifica-
tion) of fO

Z |X pz|xq, but are otherwise model-free.

Suppose that we have knowledge of the conditional model

E
E
Y |X ,Z rY |X “ x,Z “ zs ” E

O
Y |X ,Z rY |X “ x,Z “ zs “ µpx, zq.

We could use this model for outcome regression.
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Augmentation

However, note that

µpzq “ E
E
Y |Z rY | Z “ zs “ E

E
X

”

E
E
Y |X ,Z rY | X ,Z “ zs

ı

“ E
E
X

”

E
E
Y |X ,Z rpY ´ µpX ,Zq ` µpX ,Zq | X ,Z “ zs

ı

“ E
E
X

”

E
E
Y |X ,Z rpY ´ µpX ,Zqq | X ,Z “ zs

ı

` EE
X

”

E
E
Y |X ,Z rµpX ,Zq | X ,Z “ zs

ı

“ E
E
X

”

E
E
Y |X ,Z rpY ´ µpX ,Zqq | X ,Z “ zs

ı

` EE
X rµpX , zqs

as the internal integrand of the second term does not depend
on Y .
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Augmentation

Now under the standard assumption, we can write

E
E
X rµpX , zqs ” E

O
X rµpX , zqs

as for outcome regression. Secondly, using the IPW idea, we
can re-write

E
E
X

”

E
E
Y |X ,Z rpY ´ µpX ,Zqq | X ,Z “ zs

ı

as

E
O
X ,Z

«

E
O
Y |X ,Z

«

1tzupZq

fO
Z |X pZ |Xq

pY ´ µpX ,Zqq | X ,Z “ z

ffff
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Augmentation

This suggests the alternative moment-based estimator

rµAIPWpzq “
1

n

n
ÿ

i“1

1tzupZi q

fO
Z |X pZi |Xi q

pYi ´ µpXi ,Zi qq `
1

n

n
ÿ

i“1

µpXi , zq

which is termed the augmented IPW (AIPW) estimator.

298



Augmentation

Analogous to the earlier forms, we also have a second AIPW
estimator

pµAIPWpzq “
n
ÿ

i“1

Wi pzqpYi ´ µpXi ,Zi qq `
1

n

n
ÿ

i“1

µpXi , zq

where as before

Wi pzq “

1tzupZi q

fO
Z |X pZi |Xi q

n
ÿ

j“1

1tzupZj q

fO
Z |X pZj |Xj q

.
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Augmentation

Note

Note that

E
O
X ,Z

«

E
O
Y |X ,Z

«

1tzupZq

fO
Z |X pZ |Xq

pY ´ µpX ,Zqq | X ,Z “ z

ffff

“ 0

as the internal conditional expectation is zero, so the first
term in both rµAIPWpzq and pµAIPWpzq has expectation zero .

Note also that
E

O
X rµpX , zqs “ µpzq

identical to the outcome regression estimator.
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Augmentation

Note

The advantage of the AIPW estimator is that it has variance
that is no greater than the IPW estimator, that is

VarrrµAIPWpzqs ď VarrrµIPWpzqs

and
VarrpµAIPWpzqs ď VarrpµIPWpzqs
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Augmentation

Note

However, note that

VarrpµORpzqs ď VarrrµAIPWpzqs ď VarrrµIPWpzqs

and
VarrpµORpzqs ď VarrpµAIPWpzqs ď VarrpµIPWpzqs

that is, using augmentation we can improve on the IPW esti-
mator, but we cannot improve on the OR estimator.

Importantly, these results follow provided the proposed func-
tion µpx, zq is correctly specified .

302



Augmentation

The real advantage of AIPW estimators is that can still give
consistent estimation even if µpx, zq is mis-specified .

With mean model mpx, zq we have the two estimators

rµAIPWpzq “
1

n

n
ÿ

i“1

1tzupZi q

fO
Z |X pZi |Xi q

pYi ´mpXi ,Zi qq `
1

n

n
ÿ

i“1

mpXi , zq

pµAIPWpzq “
n
ÿ

i“1

Wi pzqpYi ´mpXi ,Zi qq `
1

n

n
ÿ

i“1

mpXi , zq
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Augmentation

Write for the expectation of the second term

Mpzq “ E
O
X rmpX , zqs

and consider the first term of rµAIPWpzq. We have that

E
O
X ,Z

«

E
O
Y |X ,Z

«

1tzupZq

fO
Z |X pZ |Xq

pY ´mpX ,Zqq

ˇ

ˇ

ˇ

ˇ

X ,Z “ z

ffff

“ E
O
X ,Z

«

1tzupZq

fO
Z |X pZ |Xq

pµpX ,Zq ´mpX ,Zqq

ˇ

ˇ

ˇ

ˇ

X ,Z “ z

ff
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Augmentation

Provided the model fO
Z |X pz|xq is correctly specified , if we per-

form iterated expectation by conditioning on X , we have that
this expectation is equal to

E
O
X rpµpX , zq ´mpX , zqqs

and hence we have

ErrµAIPWpzqs “ E
O
X rpµpX , zq ´mpX , zqqs ` EO

X rmpX , zqs

“ E
O
X rµpX , zqs ´Mpzq `Mpzq

“ µpzq.

The same result holds for pµAIPWpzq.
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Augmentation

Note also that if fO
Z |X pz|xq is mis-specified , we still have that

E
O
Y |X ,Z

«

1tzupZq

fO
Z |X pZ |Xq

pY ´mpX ,Zqq | X ,Z “ z

ff

“ 0

provided mpx, zq “ µpx, zq.
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Augmentation

Hence we have that both AIPW estimators are unbiased pro-
vided either

mpx, zq

or

fO
Z |X pz|xq

is correctly specified. This phenomenon is known as double
robustness.

If both models are correctly specified, then we have the opti-
mal IPW estimator.
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Augmentation

Note

In Monte Carlo, the ‘augmentation’ trick is known as the use
of antithetic variables. Writing

E
E
Y |X ,Z rY | X ,Z “ zs

“ E
E
Y |X ,Z rpY ´ µpX ,Zqq | X ,Z “ zs ` µpX , zq

allows us to introduce estimators of the first and second terms
that are negatively correlated , thereby potentially reducing
the variance of the combined estimator overall.
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Augmentation

Consider rµpzq in the binary case. Write

Ri “
1tzupZi q

fO
Z |X pZi |Xi q

“
Zi

epXi q
z`

p1´ Zi q

1´ epXi q
p1´ zq

so that

rµpzq “
1

n

n
ÿ

i“1

tRi Yi ` p1´ Ri qµpXi , zqu

and that

Varrrµpzqs “
1

n
VarrRY ` p1´ RqµpX , zqs

where this calculation is carried out with respect to the ob-
servational distribution, O.
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Augmentation

Note that

VarrRY ` p1´ RqµpX , zqs

“ VarrRY s ` Varrp1´ RqµpX , zqs ` 2CovrRY , p1´ RqµpX , zqs.

Fr the second term

Varrp1´ RqµpX , zqs “ Erp1´ Rq2tµpX , zqu2s

as by iterated expectation

ER |X rp1´ Rq|X s “ 0 ùñ ER ,Z rp1´ RqµpX , zqs “ 0.
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Augmentation

Similarly by iterated expectation

CovrRY , p1´ RqµpX , zqs “ ErRp1´ RqtµpX , zqu2s

Therefore

VarrRY ` p1´ RqµpX , zqs

“ VarrRY s ` Erp1´ Rq2tµpX , zqu2s ` 2ErRp1´ RqtµpX , zqu2s

“ VarrRY s ` Erp1´ R2qtµpX , zqu2s
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Augmentation

However

ER |X rp1´ R2qtµpX , zqu2s “ tµpX , zqu2ER |X rp1´ R2q | X s

“ tµpX , zqu2EZ |X

»

–1´

˜

1tzupZq

fO
Z |X pZ |Xq

¸2 ˇ
ˇ

ˇ

ˇ

X

fi

fl

“ tµpX , zqu2EZ |X

»

—

–

1´
1tzupZq

´

fO
Z |X pZ |Xq

¯2

ˇ

ˇ

ˇ

ˇ

X

fi

ffi

fl

“ tµpX , zqu2
˜

1´
1

fO
Z |X pz|Xq

¸

ď 0 (w.p. 1.)
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Augmentation

Therefore

VarrRY ` p1´ RqµpX , zqs ď VarrRY s

and hence

VarrrµAIPWs ď VarrrµIPWs.

Similar result for pµpzq.
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Augmentation

Note

This variance result can hold if µpx, zq is mis-specified as the
same argument follows for any estimator

rµpzq “
1

n

n
ÿ

i“1

tRi Yi ` p1´ Ri qmpXi , zqu

We have that

VarrRY ` p1´ RqmpX , zqs “ VarrRY s ` Erp1´ Rq2tmpX , zqu2s

` 2ErRp1´ RqµpX , zqmpX , zqs
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Augmentation

Note

Thus we get variance reduction over the IPW estimator if

Erp1´ Rq2tmpX , zqu2s ě ´2ErRp1´ RqµpX , zqmpX , zqs

which will hold if mpX , zq and µpX , zq are sufficiently positively
correlated.
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Augmentation

Note

If neither of the models

µpx, zq epxq “ fO
Z |X p1|xq

is correctly specified, then the AIPW estimator is biased . If
we instead use

mpx, zq gpxq

for these two models, the expectation of rµp1q is

E
O
X

„

epXq

gpXq
pµpX ,1q ´mpX ,1qq



` EO
X rmpX ,1qs
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Augmentation

Note

The bias is therefore

E
O
X

„ˆ

epXq

gpXq
´ 1

˙

pµpX ,1q ´mpX ,1qq
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Augmentation

Note

In the inverse weighting estimators, it has been assumed that
the model

fO
Z |X pz|xq

is known precisely. This can be replaced by a parametric
model

fO
Z |X pz|x;αq

with α then estimated using maximum likelihood or other
methods. The IPW estimators then proceed using the fitted
values

fO
Z |X pz|x; pαq.
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AIPW via regression

Consider the binary treatment case, and the model

E
O
Y |X ,Z rY | X “ x,Z “ zs “ µpx, zq ` φ0

1´ z

1´ epxq
` φ1

z

epxq

for parameters φ0 and φ1. We consider estimating these pa-
rameters using ordinary least squares. Let

R0i “
1´ Zi

1´ epXi q
R1i “

Zi

epXi q

with corresponding observed values r0i and r1i .
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AIPW via regression

The OLS score equations are

B

Bφ0
: ´ 2

n
ÿ

i“1

r0i pyi ´ µpx, zq ´ φ0r0i ´ φ1r1i q “ 0

B

Bφ1
: ´ 2

n
ÿ

i“1

r1i pyi ´ µpxi , zi q ´ φ0r0i ´ φ1r1i q

and we may solve these directly to obtain

pφz “

n
ÿ

i“1

rzi pyi ´ µpxi , zi qqq

n
ÿ

i“1

r2
zi

z “ 0,1.
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AIPW via regression

Predictions from this fit for the z “ 0,1 cases are

µpxi ,0q ` pφ0
1

1´ epxi q
µpxi ,1q ` pφ1

1

epxi q

respectively.

To obtain an estimates of µp0q and µp1q, we consider

rµAORp0q “
1

n

n
ÿ

i“1

ˆ

µpxi ,0q ` pφ0
1

1´ epxi q

˙

.

and

rµAORp1q “
1

n

n
ÿ

i“1

ˆ

µpxi ,1q ` pφ1
1

epxi q

˙

.
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AIPW via regression

Plugging in the estimates of the φs, we obtain

rµAORp0q “
1

n

n
ÿ

i“1

µpxi ,0q `

n
ÿ

i“1

1

1´ epxi q

n
ÿ

i“1

r2
0i

1

n

n
ÿ

i“1

r0i pyi ´ µpxi ,0qq

and

rµAORp1q “
1

n

n
ÿ

i“1

µpxi ,1q `

n
ÿ

i“1

1

epxi q

n
ÿ

i“1

r2
1i

1

n

n
ÿ

i“1

r1i pyi ´ µpxi ,1qq.
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AIPW via regression

Now

n
ÿ

i“1

1

epXi q

n
ÿ

i“1

R2
1i

“

1

n

n
ÿ

i“1

1

epXi q

1

n

n
ÿ

i“1

R2
1i

p
ÝÑ

E
O
X

„

1

epXq



EO
X ,Z

„

Z2

tepXqu2

 “ 1.

as

E
O
X ,Z

„

Z2

tepXqu2



” E
O
X ,Z

„

Z

tepXqu2



“ E
O
X

„

1

epXq
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AIPW via regression

Therefore

rµAORp1q “
1

n

n
ÿ

i“1

µpXi ,1q `
1

n

n
ÿ

i“1

R1i pYi ´ µpXi ,1qq ` opp1q

“ rµAIPWp1q ` opp1q.

Similarly

rµAORp0q “ rµAIPWp0q ` opp1q

This approach to IPW estimation is known as augmented out-
come regression (AOR).
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AIPW via regression

To estimate the ATE

δ “ µp1q ´ µp0q

we can also use augmented outcome regression based on the
mean model

µpx, zq ` φ

ˆ

z

epxq
´

p1´ zq

p1´ epxqq

˙

and take the difference between the fitted values to obtain
the estimate, pδAOR.
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AIPW via regression

Note

The variance of the estimator rµp1q is given by

1

n
VarO

X ,Y ,Z

„

ZY

epXq



and under the correct specification of epxq, we have

VarO
X ,Y ,Z

„

ZY

epXq



“ E
O
X ,Y ,Z

„

Z2Y2

tepXqu2



´ tµp1qu2
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AIPW via regression

Note

Now

E
O
X ,Y ,Z

„

Z2Y2

tepXqu2



“ E
O
X ,Z

„

ZvpX ,Zq

tepXqu2



“ E
O
X

„

vpX ,1q

epXq



where
vpx, zq “ E

O
Y |X ,Z rY

2|X “ x,Z “ zs.
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AIPW via regression

Note

Thus the magnitude of the variance depends on

E
O
X

„

vpX ,1q

epXq



and if vpx, zq ” v, a constant, then this equals

vEO
X

„

1

epXq



.

In general, although we have assumed positivity (epxq ą 0
for all x) we have no guarantee that the expectation in this
expression is finite; even if it is finite, it may be large due to
the reciprocation of epXq.
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AIPW via regression

Note

This feature can affect all IPW estimators.

‚ it is sometimes assumed that epxqmust be bounded away
from zero;

‚ alternatively, it is common to truncate the propensity
score values such that either data for which, for some
ε ą 0

epxi q ă ε

are omitted, or to use

eεpxi q “ maxtepxi q, εu.
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AIPW via regression

Note

Note that

rδIPW ” rµIPWp1q ´ rµIPWp0q “
1

n

n
ÿ

i“1

Zi Yi

epXi q
´

1

n

n
ÿ

i“1

p1´ Zi qYi

1´ epXi q

“
1

n

n
ÿ

i“1

ˆ

Zi

epXi q
´
p1´ Zi q

1´ epXi q

˙

Yi

“
1

n

n
ÿ

i“1

ˆ

Zi ´ epXi q

epXi qp1´ epXi qq

˙

Yi .
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AIPW via regression

Note

Note also that

epXi qp1´ epXi qq ” VarZi |Xi
rZi |Xi s

so in fact

rµIPWp1q ´ rµIPWp0q “
1

n

n
ÿ

i“1

ˆ

Zi ´ epXi q

VarZi |Xi
rZi |Xi s

˙

Yi

which resembles the earlier formulae for the randomized ex-
perimental case.

331



AIPW via regression

Note

Finally, note the variance of rδ “ rµp1q ´ rµp0q is

1

n
VarO

X ,Y ,Z

„ˆ

Z

epXq
´
p1´ Zq

1´ epXq

˙

Y



.

Now, in this expression, the variance term can be written

E
O
X ,Y ,Z

«

ˆ

Z

epXq
´
p1´ Zq

1´ epXq

˙2

Y2

ff

´ δ2

as rδ is unbiased for δ.
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AIPW via regression

Note

Using the previous notation, we have that the first term is

E
O
X ,Z

«

ˆ

Z

epXq
´
p1´ Zq

1´ epXq

˙2

vpX ,Zq

ff

and if vpX ,Zq ” v, a constant, this reduces to

v EO
X ,Z

«

ˆ

Z

epXq
´
p1´ Zq

1´ epXq

˙2
ff

.
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AIPW via regression

Note

Finally, the expectation simplifies

E
O
X ,Z

«

ˆ

Z

epXq
´
p1´ Zq

1´ epXq

˙2
ff

“ E
O
X ,Z

«

ˆ

Z

epXq

˙2
ff

` EO
X ,Z

«

ˆ

p1´ Zq

1´ epXq

˙2
ff

´ 2EO
X ,Z

„

Zp1´ Zq

epXqp1´ epXqq



However, Zp1´ Zq “ 0 w.p. 1, so the third term is zero.
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AIPW via regression

Note

Hence as Z2 “ Z and p1´ Zq2 “ p1´ Zq w. p. 1,

E
O
X ,Z

«

ˆ

Z

epXq
´
p1´ Zq

1´ epXq

˙2
ff

“ E
O
X

„

1

epXq



` EO
X

„

1

1´ epXq



“ E
O
X

„

1

epXqp1´ epXq



“ E
O
X

«

1

VarO
Z |X rZ |X s

ff
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AIPW via regression

Note

Therefore, the variance of rδIPW is

v

n
E

O
X

«

1

VarO
Z |X rZ |X s

ff

´
δ2

n
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G-estimation

Earlier we saw the idea of propensity score regression, where
we construct a model of the form

E
O
Y |X ,Z rY |X , epXq,Z s

which is potentially useful as

X KK Z | epXq.
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G-estimation

In the binary treatment, linear model case, we saw that if the
data generating model is

E
O
Y |X ,Z rY |X “ x,Z “ zs “ x0βTRUE ` z x2ψ “ µpx, z;βTRUE, ψq

then the propensity score regression model

mpx, z;β, ψ, φq “ x1β ` zx2ψ ` epxqx2φ

will block the confounding paths and return a consistent es-
timator of ψ even if the treatment-free mean model x1β is
mis-specified.
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G-estimation

Consider the OLS estimation of pβ, ψ, φq: we solve

n
ÿ

i“1

¨

˚

˚

˝

xJi1

zixJi2

epxi qxJi2

˛

‹

‹

‚

pyi ´ xi1β ´ zi xi2ψ ´ epxi qxi2φq “ 0

analytically using the usual approaches.
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G-estimation

However, note that subtracting the third component from the
second, we obtain the equivalent system

n
ÿ

i“1

¨

˚

˚

˝

xJi1

pzi ´ epxi qqxJi2

epxi qxJi2

˛

‹

‹

‚

pyi ´ xi1β ´ zi xi2ψ ´ epxi qxi2φq “ 0

which has an identical solution.

The second component takes the form

n
ÿ

i“1

pzi ´ epxi qqx
J
i2pyi ´ xi1β ´ zi xi2ψ ´ epxi qxi2φq “ 0
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G-estimation

Notice first that if the mean model is correctly specified

mpx, z;β, ψ, φq “ x1β ` zx2ψ ` epxqx2φ

with φ “ 0, that is, the true model is nested inside the fitted
model, then β and ψ will be consistently estimated, and we
will observe

pφ
p
ÝÑ 0

as n ÝÑ 8; indeed, for finite n, the expected value of pφ is
zero.
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G-estimation

Now suppose the mean model is mis-specified , but that

(i) the propensity score model epxq is correctly specified;

(ii) the random quantity

εi “ pYi ´ Xi1β ´ Zi Xi2ψ ´ epXi qXi2φq

is functionally independent of Zi , that is, the dependence
of the mean model on Zi is correctly specified, and the
effect of Zi is captured via

Zi Xi2ψ.
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G-estimation

Then we have that

E
O
X ,Y ,Z rpZ ´ epXqqXJ2 pY ´ X1β ´ Z X2ψ ´ epXqX2φqs “ 0

as, using iterated expectation, we have first that

E
O
Y |X ,Z rpY ´ X1β ´ Z X2ψ ´ epXqX2φq|X ,Z s “ hpX;β, ψ, φq

where

hpx;β, ψ, φq “ px0βTRUE ` z x2ψq ´ px1β ` z x2ψ ` epxqx2φqq

“ x0βTRUE ´ px1β ` epxqx2φqq.
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G-estimation

That is, hpX;β, ψ, φq is functionally independent of Z . Then

E
O
Z |X rpZ ´ epXqqXJ2 hpX ;β, ψ, φq|X s

“ XJ2 hpX ;β, ψ, φqEO
Z |X rpZ ´ epXqq|X s

“ 0

by the correct specification of epXq, so the overall expectation
is zero.

Thus, this is an unbiased estimating equation and therefore
the solutions to the resulting equation are consistent for the
true values.
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G-estimation

This is another form of double robustness; inference for ψ is
correct if either

§ the mean model, or

§ the propensity score model

(or both) is correctly specified, provided the expectation

E
O
ε|X ,Z rε | X ,Z s

does not depend on Z .
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G-estimation

Note

Under correct specification of the propensity score, the G-
estimation procedure is robust to mis-specification of the
treatment-free mean model

x1β

so in fact we may re-write the G-estimating equation by com-
bining the two terms that do not depend on Z , and omitting
the nuisance parameter φ from the procedure.
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G-estimation

Note

That is, consider the reduced form

n
ÿ

i“1

¨

˝

xJi1

pzi ´ epxi qqxJi2

˛

‚pyi ´ xi1β ´ zi xi2ψq “ 0.

This form still leads to double robustness by identical argu-
ments.
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G-estimation

The most basic form of the G-estimating equation arises from
the model that omits the treatment-free component:

n
ÿ

i“1

pzi ´ epxi qqx
J
i2pyi ´ zi xi2ψq “ 0

and in the simplest case with ψ one-dimensional

n
ÿ

i“1

pzi ´ epxi qqpyi ´ ziψ0q “ 0

say.
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G-estimation

The estimating equation invokes the moment requirement

E
O
X ,Y ,Z rpZ ´ epXqqpY ´ Zψ0qs “ 0

which is a form of orthogonality statement, that is

pZ ´ epXqq is uncorrelated with pY ´ Zψ0q.
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G-estimation

In this case we can solve explicitly to obtain

pψ0 “

n
ÿ

i“1

pzi ´ epxi qqyi

n
ÿ

i“1

zi pzi ´ epxi qq

with corresponding estimator

n
ÿ

i“1

pZi ´ epXi qqYi

n
ÿ

i“1

Zi pZi ´ epXi qq

.
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G-estimation

Using standard arguments, we have that as n ÝÑ 8

n
ÿ

i“1

pZi ´ epXi qqYi

n
ÿ

i“1

Zi pZi ´ epXi qq

p
ÝÑ

E
O
X ,Y ,Z rpZ ´ epXqqY s

EO
X ,Z rZpZ ´ epXqqs

.

and note that in the denominator, by iterated expectation

E
O
X ,Z rZpZ ´ epXqqs “ E

O
X

”

E
O
Z |X rZpZ ´ epXqq|X s

ı

.

Then, as Z2 “ Z w.p. 1, we have

E
O
Z |X rZpZ ´ epXqq|X s “ E

O
Z |X rZ

2 ´ ZepXq|X s “ epXqp1´ epXqq
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G-estimation

Thus

E
O
X ,Z rZpZ ´ epXqs “ E

O
X repXqp1´ epXqqs

” E
O
X rVarO

Z |X rZ |X ss

where the second line follows as

Z |X „ BernoullipepXqq.
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G-estimation

In the numerator

E
O
X ,Y ,Z rpZ ´ epXqqY s “ E

O
X ,Z rpZ ´ epXqqµpX ,Zqs

“ E
O
X repXqp1´ epXqqµpX ,1q ´ p1´ epXqqepXqµpX ,0qs

“ E
O
X repXqp1´ epXqqpµpX ,1q ´ µpX ,0qqs

“ ψ0E
O
X repXqp1´ epXqqs

as, here

µpX ,1q ´ µpX ,0q “ ψ0

with probability 1.
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G-estimation

Therefore

n
ÿ

i“1

pZi ´ epXi qqYi

n
ÿ

i“1

Zi pZi ´ epXi qq

p
ÝÑ

ψ0E
O
X repXqp1´ epXqqs

EO
X repXqp1´ epXqqs

“ ψ0.

and we have consistent estimation.

354



G-estimation

For the variance, note first that by the previous result

pψ0 “
1

n

n
ÿ

i“1

pZi ´ epXi qq

EO
X repXqp1´ epXqqs

Yi ` opp1q

so we may compute the large sample variance by computing
the variance of the statistic on the right hand side; this vari-
ance is

1

ntEO
X repXqp1´ epXqqsu2

VarO
X ,Y ,Z rpZ ´ epXqqY s.
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G-estimation

We have that

VarO
X ,Y ,Z rpZ ´ epXqqY s

“ E
O
X ,Y ,Z rpZ ´ epXqq2Y2s ´ tEO

X ,Y ,Z rpZ ´ epXqqY su2

“ E
O
X ,Y ,Z rpZ ´ epXqq2Y2s ´ ψ2

0tE
O
X repXqp1´ epXqsu2

“ E
O
X ,Z rpZ ´ epXqq2vpX ,Zqs ´ ψ2

0tE
O
X repXqp1´ epXqsu2
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G-estimation

If vpx, zq “ v is a constant, then this becomes

vEO
X ,Z rpZ ´ epXqq2s ´ ψ2

0tE
O
X repXqp1´ epXqsu2

but by iterated expectation

E
O
X ,Z rpZ ´ epXqq2s “ E

O
X repXqp1´ epXqs.

Thus

VarO
X ,Y ,Z rpZ ´ epXqqY s

“ vEO
X repXqp1´ epXqs ´ ψ2

0tE
O
X repXqp1´ epXqsu2.
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G-estimation

Therefore, combining all the elements, we conclude that the
variance of pφ0, obtained by G-estimation, satisfies

nVarOr pψ0s ÝÑ v
1

EO
X repXqp1´ epXqs

´ ψ2
0.

Recall that in this model

ψ0 “ E
O
X rµpX ,1q ´ µpX ,0qs “ µp1q ´ µp0q

so ψ0 is the ATE.

358



G-estimation

We contrast this with the variance of the IPW estimator of the
ATE obtained earlier: we had that as δ “ ψ0,

nVarOrrδIPWs “ vEO
X

„

1

epXqp1´ epXqq



´ ψ2
0
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G-estimation

Now by Jensen’s inequality

E
O
X

„

1

epXqp1´ epXqq



ě
1

EO
X repXqp1´ epXqs

and so it is evident that for n large enough

VarOrrδIPWs ą VarOr pψ0s.

Recall, however, that the two methods make different assump-
tions: specifically, G-estimation requires the correct specifica-
tion of the treatment effect model.
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G-estimation

Note

These results extend to more complicated settings: for exam-
ple, the doubly robust G-estimator takes the form

n
ÿ

i“1

pZi ´ epXi qqpYi ´ Xi1
pβq

n
ÿ

i“1

Zi pZi ´ epXi qq

.

and we can achieve similar comparisons with AIPW estima-
tors.
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G-estimation

Note

Throughout, we have assumed epXq is known precisely. More
typically, we will propose a parametric model epxq ” epx;αq,
and then estimate α using a further estimation procedure.

For example, using logistic regression, we could solve

n
ÿ

i“1

xJi pzi ´ epxi ;αqq “ 0

where xi is a row vector of the same dimension as α.

Having obtained pα, we then proceed with epxi ; pαq in place of
epxi q in the earlier formulae, using a plug-in strategy.
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G-estimation

Note

The plug-in approach will work provided the estimator of α is
consistent; but

‚ Should we ‘pay a penalty’ for estimating α, that is, will
the variance of the ATE estimators increase ?

‚ Do we need to account for the estimation of α ?
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