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Part 1

Introduction



Objective

The objective of causal inference is to quantify the effect of
an intervention:

� in a multi-variable system, suppose we are able to manip-
ulate (i.e. alter the value of) one of the variables sepa-
rately from all other variables;

� we wish to report the impact of that manipulation on one
or more of the other variables.

In many scientific enterprises, this is a primary objective.
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Some basic probability calculus

Consider three random variables: X , Y and Z . Ultimately we
will collect data

tpxi , yi , zi q, i � 1, . . . ,nu

which are observed values of the variables.

A probabilistic model for the data comprises a joint density

fX ,Y ,Z px, y, zq

or for discrete variables a joint mass function, which repre-
sents how the data are generated.
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Some basic probability calculus

This joint model automatically specifies

� the marginal distributions, fX pxq, fY pyq and fZ pzq;
� the conditional distributions

fX |Y px|yq fX |Z px|zq fY |X py|xq � � �

and

fY |X ,Z py|x, zq fY ,Z |X py, z|xq
etc.
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Some basic probability calculus

We have the chain rule factorization

fX ,Y ,Z px, y, zq � fX pxqfZ |X pz|xqfY |X ,Z py|x, zq

but also

fX ,Y ,Z px, y, zq � fZ pzqfY |Z py|zqfX |Y ,Z px|y, zq

and so on, for any ordering of the variables.
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Some basic probability calculus

Marginalization:

fY pyq �
¼

fX ,Y ,Z px, y, zq dx dz

�
¼

fY |X ,Z py|x, zqfZ |X pz|xqfX pxq dz dx

�
¼

fY |X ,Z py|x, zqfX |Z px|zqfZ pzq dx dz
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Some basic probability calculus

Conditioning: provided fX ,Z px, zq ¡ 0,

fY |X ,Z py|x, zq �
fX ,Y ,Z px, y, zq

fX ,Z px, zq

� fX ,Y ,Z px, y, zq»
fX ,Y ,Z px, t , zq dt
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Some basic probability calculus

Note


 for discrete variables, integrals replaced by sums,

fZ |X pz|xq �
fX ,Z px, zq

fX pxq � PrrX � x,Z � zs
PrrX � xs

� PrrX � x,Z � zs°
t

PrrX � x,Z � ts .


 Can have mixed cases: Z discrete, X continuous.
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Some basic probability calculus

Expectations: we can compute the summary

EY rY s �
»

y fY pyq dy

�
»

y

"¼
fX ,Y ,Z px, y, zq dx dz

*
dy

�
»

y

"¼
fY |X ,Z py|x, zqfZ |X pz|xqfX pxq dx dz

*
dy

�
¼ "»

y fY |X ,Z py|x, zq dy

*
fZ |X pz|xqfX pxq dx dz
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Some basic probability calculus

We may denote»
y fY |X ,Z py|x, zq dy � EY |X ,Z rY |X � x,Z � zs

that is, as a conditional expectation. Thus

EY rY s �
¼

EY |X ,Z rY |X � x,Z � zsfZ |X pz|xqfX pxq dx dz

which we may also re-write

EY rY s � EX ,Z

�
EY |X ,Z rY |X ,Z s

�
which is known as iterated expectation.
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Some basic probability calculus

Note

The quantity
EY |X ,Z rY |X � x,Z � zs

is a function of the two values px, zq and therefore is non-
random, whereas

EY |X ,Z rY |X ,Z s
is a function of pX ,Zq and is therefore a random variable.
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Some basic probability calculus

Consider the conditional expectation EY |Z rY |Z � zs for some
fixed value z. We have

EY |Z rY |Z � zs �
»

y fY |X ,Z py|zq dy

�
¼

y fY |X ,Z py|x, zqfX |Z px|zq dy dx

�
½

1tzupvqy fY |X ,Z py|x, vqfX |Z px|vq dy dx dv

where

1tzupvq �
#

1 v � z

0 v � z
.

is the indicator function.
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Some basic probability calculus

That is,

EY |Z rY |Z � zs �
½

y fY |X ,Z py|x, vqfX |Z px|vqfV pvq dy dx dv

� EX ,V rEY |X ,V rY |X ,V ss

where V is a degenerate random variable with

fV pvq � PrrV � vs � 1tzupvq �
#

1 v � z

0 v � z
.
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Some basic probability calculus

Independence: Two random variables X ,Z are independent

X KK Z

if and only if

fX ,Z px, zq � fX pxqfZ pzq @px, zq P R2

that is, for all px, zq P R2, or equivalently

fX |Z px|zq � fX pxq @px, zq s.t. fZ pzq ¡ 0

or

fZ |X pz|xq � fZ pzq @px, zq s.t. fX pxq ¡ 0.
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Some basic probability calculus

Note


 For three variables, we require for independence

fX ,Y ,Z px, y, zq � fX pxqfY pyqfZ pzq @px, y, zq P R3


 We can consider conditional independence: say

Y KK Z | X

if and only if

fY ,Z |X py, z|xq � fZ |X pz|xqfY |X py|xq

for all px, z, yq P R3 where the conditional densities are
well-defined.
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Some basic probability calculus

Note

Suppose that X and V are two random variables, but suppose
that V is degenerate at some fixed value v0 P R, that is,

PrrV � v0s � 1.

Consider the joint distribution of X and V : we have that for
arbitrary x

fX ,V px, vq �
#

gpx, v0q x P R, v � v0

0 x P R, v � v0

.

for some function gpx, vq.
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Some basic probability calculus

Note

Therefore, marginally

fX pxq � gpx, v0q

which must be a density in x. Hence for all px, vq P R2

fX ,V px, vq � fX pxqfV pvq

and hence X and V are independent

X KK V .
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Some basic probability calculus

In the previous calculation, suppose X and Z are independent:

EY |Z rY |Z � zs �
¼

y fY |X ,Z py|x, zqfX |Z px|zq dy dx

�
¼

y fY |X ,Z py|x, zqfX pxq dy dx as X KK Z

� EX rEY |X ,Z rY |X , zss
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Some basic probability calculus

That is, we can compute EY |Z rY |Z � zs by

� fixing Z � z independently of X ,

� computing for each fixed x

EY |X ,Z rY |X � x,Z � zs � µpx, zq

say,

� averaging the result over the distribution fX pxq

EX rµpX , zqs
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Some basic probability calculus

Regression: we might propose

EY |X ,Z rY |X � x,Z � zs � β0 � β1x � ψ0z

or

EY |X ,Z rY |X � x,Z � zs � β0 � β1x � ψ0z� ψ1xz

etc. for some parameters β, ψ to specify the mean model

µpx, z;β, ψq.
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Some basic probability calculus

Binary variables: suppose X ,Y ,Z are binary and consider

PrrX � x,Y � y,Z � zs px, y, zq P t0,1u3.

Suppose PrrZ � 0sPrrZ � 1s � 0, that is

PrrZ � 0s ¡ 0 and PrrZ � 1s ¡ 0.
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Some basic probability calculus

We have for py, zq P t0,1u2

PrrY � y|Z � zs �
1̧

x�0

PrrY � y|X � x,Z � zsPrrX � x|Z � zs

� PrrY � y|X � 0,Z � zsPrrX � 0|Z � zs
� PrrY � y|X � 1,Z � zsPrrX � 1|Z � zs

� PrrY � y|X � 0,Z � zsPrrX � 0s
� PrrY � y|X � 1,Z � zsPrrX � 1s

in general.
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Some basic probability calculus

Simpson’s Paradox:
Consider

X �
#

0 Group 0

1 Group 1

Z �
#

0 Treatment A

1 Treatment B

Y �
#

0 Not cured

1 Cured
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Some basic probability calculus

Data:

X � 0 X � 1

Y Y
0 1 0 1

Z
0 36 234

Z
0 25 55

1 6 81 1 71 192

Collapsing over X :

Y
0 1

Z
0 61 289
1 77 273
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Some basic probability calculus

Estimated cure rates for the two treatment groups:

� In Group 0 (X � 0):

Z � 0 :
234

270
l 0.87 Z � 1 :

81

87
l 0.93

� In Group 1 (X � 1):

Z � 0 :
55

80
l 0.69 Z � 1 :

192

263
l 0.73

In the pooled data:

Z � 0 :
289

350
l 0.83 Z � 1 :

273

350
l 0.78
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Some basic probability calculus

Therefore in each of the two Groups separately,

Treatment B beats Treatment A

but in the pooled data, it seems

Treatment A beats Treatment B.
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Some basic probability calculus

Not surprising:

PrrY � 1|Z � 1s � PrrY � 1|X � 0,Z � 1sPrrX � 0|Z � 1s
� PrrY � 1|X � 1,Z � 1sPrrX � 1|Z � 1s

and we have from the data

xPrrY � 1|X � 0,Z � 1s � 0.93 a©xPrrY � 1|X � 0,Z � 0s � 0.87 b©xPrrY � 1|X � 1,Z � 1s � 0.73 c©xPrrY � 1|X � 1,Z � 0s � 0.69 d©
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Some basic probability calculus

xPrrY � 1|Z � 1s � 0.78 i.e. p1�w1q a©�w1 c©xPrrY � 1|Z � 0s � 0.83 i.e. p1�w0q b©�w0 d©

where

w1 �xPrrX � 1|Z � 1s � 263

263� 87
l 0.75

and

w0 �xPrrX � 1|Z � 0s � 80

80� 270
l 0.22.
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Some basic probability calculus

The weights

PrrX � 1|Z � 1s PrrX � 1|Z � 0s

are substantially different, representing (in the joint distribu-
tion rather than the data) dependence between X and Z .

� There is an imbalance between the two treatments when
considering the representation of the two Groups of indi-
viduals;

� as the probability of cure is different for the two groups,
this imbalance affects the conclusions from the pooled
data.
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Some basic probability calculus

Note

It is important to consider whether we wish to report


 a conditional on x comparison

PrrY � 1|X � x,Z � 1s vs PrrY � 1|X � x,Z � 0s


 a marginal comparison

PrrY � 1|Z � 1s vs PrrY � 1|Z � 0s.
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Some basic probability calculus

This kind of result is not limited to discrete variables: suppose��X
Y
Z

�
� Normal3pµ,Σq

constructed as follows:

� Marginal for X : X � NormalpµX , σ
2
X q

� Conditional for pY ,Zq given X � x:

pY ,Zq|X � x � Normal2

��
x
x



,

�
1.0 �0.9
�0.9 1.0
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Some basic probability calculus
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Some basic probability calculus
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Some basic probability calculus
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Some basic probability calculus

In this model

� Marginally, Y and Z are positively correlated;

� Conditionally on any X � x, Y and Z have negative cor-
relation (by construction the correlation is -0.9).

We can examine the distribution of X for each Z : the following
boxplot splits the data by deciles of Z .
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Some basic probability calculus
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Some basic probability calculus

By standard theory for the multivariate Normal distribution

Y |X � x,Z � x � Normalpx � ρpz � xq, p1� ρ2qq

that is

ErY |X � x,Z � zs � x � ρpz � xq � ρz � p1� ρqx
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Some basic probability calculus

Also

Z |X � x � Normalpx,1q
and so

fX |Z px|zq 9 fZ |X pz|xqfX pxq

� Normal

�
z � µX{σ2

X

1� 1{σ2
X

,
1

1� 1{σ2
X
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Some basic probability calculus

Therefore

EY |Z rY |Z � zs � EX |Z

�
EY |X ,Z rY |X ,Z � zs

����Z � z

�
� EX |Z rρz � p1� ρqX |Z � zs
� ρz � p1� ρqEX |Z rX |Z � zs

� ρz � p1� ρqz � µX{σ2
X

1� 1{σ2
X

� p1� ρqµX

σ2
X � 1

�
�
ρ� p1� ρq σ2

X

σ2
X � 1



z
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Some basic probability calculus

In this system, X and Z are not independent , and so the
marginal effect on Y of changing Z is measured by the co-
efficient of z in EY |Z rY |Z � zs, that is,

ρ� p1� ρq σ2
X

σ2
X � 1

whereas if we imagine manipulating Z independently of X ,
the effect is measured by the coefficient in

ErY |X � x,Z � zs

that is, ρ.
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Some basic probability calculus

Note that in this system, the conditional model for Y , given
X � x and Z � z, in particular the mean model

EY |X ,Z rY |X � x,Z � zs � ρz � p1� ρqx

is unchanged irrespective of any assumption about the pX ,Zq
distribution.

Thus the critical distinction concerns whether we imagine Z
being manipulated independently of X .
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Some basic probability calculus

Here we have��X
Y
Z

�� � Normal3

����µX

µY

µZ

�� ,
�� σ2

X σXY σXZ

σXY σ2
Y σYZ

σXZ σYZ σ2
Z

���

where by iterated expectation we can conclude

µY � µZ � µX .
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Some basic probability calculus

By the general result for the multivariate normal distribution�
Y
Z

� ����X � x � Normal2

��
µX

µX

�
� 1

σ2
X

�
σXY

σXZ

�
px � µX q,ΣYZ .X



where

ΣYZ .X �
�
σ2

Y σYZ

σYZ σ2
Z

�
� 1

σ2
X

�
σXY

σXZ

� �
σXY σXZ

�

44



Some basic probability calculus

We must have by construction

ΣYZ .X �
�
1 ρ

ρ 1

�
so that σXY � σXZ � σ2

X and

σ2
Y � 1� σ2

XY

σ2
X

� 1� σ2
X

σ2
Z � 1� σ2

X

σYZ � ρ� σXYσXZ

σ2
X

� ρ� σ2
X .
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Some basic probability calculus

Here

ρ � CorrrY ,Z |X � xs � ρYZ .X

is the partial correlation between Y and Z given X � x, which
is different from

ρYZ � σYZb
σ2

Yσ
2
Z

� ρ� σ2
X

1� σ2
X

which is the ordinary correlation.
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Some basic probability calculus

Example:

See knitr 01
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Regression models

� Y scalar

� x is 1� p

� β is p � 1

Often we model using a linear combination

ErY |xs � gpxβq

for some mapping function gp.q, and assume

VarrY |xs � Vpxq

for some non-negative function Vp.q.
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Regression models

Most commonly for continuous-valued Y

ErY |xs � xβ

and

VarrY |xs � σ2
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Regression models

For a data set of size n comprising

� outcome data y � py1, . . . , ynqJ
� predictor data X – an n � p matrix

X �

���x1
...
xn

���
we assume

ErY|Xs � Xβ VarrY|Xs � σ2In
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Regression models

This is equivalent to the model

Y � Xβ � ε

where ε is an pn � 1q vector of random variables with

Erε|Xs � 0n Varrε|Xs � ErεεJ|Xs � σ2In
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Regression models

We may choose to treat X as fixed or random quantities.

� with X fixed, estimate parameters β and σ2 using ordi-
nary least squares (OLS)

pβ � arg min
β
py� XβqJpy� Xβq

that is, pβ solves

XJpy� Xβq � 0p

so that pβ � pXJXq�1XJy

and pσ2 � 1

n � p
py� XpβqJpy� Xpβq
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Regression models

Note that

XJpy� Xβq �
ņ

i�1

xJi pyi � xiβq

showing the form of the estimating function.
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Regression models

� with X random, using the model equation

XJY � XJXβ � XJε

and taking expectations with respect to the joint distri-
bution

ErXJYs � ErXJXsβ � ErXJεs.
By assumption

ErXJεs � EXrXJEε|Xrε|Xss � 0p .
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Regression models

Thus

ErXJYs � ErXJXsβ
and provided ErXJXs is non-singular, we have

β � tErXJXsu�1
ErXJYs.

Note also that

ErXJpY� Xβqs � 0p
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Regression models

Using the method of moments, we have that

tErXJXsu�1 is estimated by

#
1

n

ņ

i�1

xJi xi

+�1

and

ErXJYs is estimated by
1

n

ņ

i�1

xJi yi

yielding an identical result to OLS.
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Regression models

By standard theory, we have for

pβn � pXJXq�1XJy

that as the sample size grows the corresponding estimator

pβn � pXJXq�1XJY

has good behaviour
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Regression models

� consistency: as n ÝÑ 8,

pβn
pÝÑ βTRUE

with βTRUE the true (data generating) value.

� asymptotic normality

?
nppβn � βTRUEq dÝÑ Normalpp0p , σ

2Vq

where

V�1 � plim
nÝÑ8

#
1

n

ņ

i�1

xJi xi

+
provided the limit exists and is non-singular.
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Regression models

Note

This theory holds assuming correct specification of EY|XrY|Xs.

 Y� Xβ is uncorrelated with the columns of X.

A parallel theory holds under mis-specification; however,
most critically we do not obtain consistent estimators if the
mean model is mis-specified.
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Regression models

Example:

Suppose we specify

EY |XrY |xs � β0 � β1x1 � β2x2 � zpψ0 � ψ1x1q.

so that
xi �

�
1 xi1 xi2 zi zi xi1

�
.

Using the above formulae, this leads us to estimates

pβn �
�pβ0

pβ1
pβ2

pψ0
pψ1

�J
.
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Regression models

Example:

Then we may estimate the expected response for Z set to take
the value z as

1

n

ņ

i�1

ppβ0 � pβ1xi1 � pβ2xi2 � zp pψ0 � pψ1xi1qq.

Then, if we compare z � 1 with z � 0 we get the estimated
difference

pErY |x1, x2,1s � pErY |x1, x2,0s � 1

n

ņ

i�1

p pψ0 � pψ1xi1q
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Moment-based estimation & sample averages

The idea of moment-based estimation is to estimate expecta-
tions using sample averages.

� Sample mean:

Xn � 1

n

ņ

i�1

Xi

is an estimator of

µ � EX rX s �
»

xfX pxq dx

� Generalized version:

1

n

ņ

i�1

gpXi q

is an estimator of

EX rgpXqs �
»

gpxqfX pxq dx
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Moment-based estimation & sample averages

We are approximating the integral»
gpxqfX pxq dx

by the empirical version»
gpxqpfnpxq dx

where pfnpxq � 1

n

ņ

i�1

1txi upxq

We can think of this as a type of Monte Carlo calculation.
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Moment-based estimation & sample averages

Monte Carlo estimation is reliant on the fact that as n ÝÑ 8,
we have certain types of convergence:

� Laws of large numbers: Suppose X1, . . . ,Xn , . . . are iid
random variables. Then, usually,

1

n

ņ

i�1

gpXi q a.s.ÝÝÑ
p

EX rgpXqs

� Central Limit Theorems: Under mild conditions on the
joint distribution of random variables X1, . . . ,Xn , . . .,

an

�
1

n

ņ

i�1

gpXi q � bn

�
dÝÑ Normalpµ, σ2q

for suitable choices of the sequences tanu and tbnu.
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Moment-based estimation & sample averages

Essentially, standardized sums of random variables have sta-
ble long-run behaviour. For example,

Xn
pÝÑ EX rX s 1

n

ņ

i�1

X2
i

pÝÑ EX rX2s

as n ÝÑ 8, and so on.
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Moment-based estimation & sample averages

Importance sampling: The identity»
gpxqfpxq dx �

»
gpxqfpxq f0pxq

f0pxq dx �
»

gpxqfpxq
f0pxq f0pxq dx

where f0 is a probability density with support including the
support of f : that is we must choose f0 such that

f0pxq ¡ 0 whenever fpxq ¡ 0
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Moment-based estimation & sample averages

That is,

Ef rgpXqs � Ef0

�
gpXqfpXq

f0pXq
�

so that an estimator of the LHS is

pI pf0qN pgq � 1

N

Ņ

i�1

gpXi qfpXi q
f0pXi q

where X1, . . . ,XN � f0p.q.
� pI pf0qN is termed the importance sampling estimator.

� f0 is termed the importance sampling density.
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Moment-based estimation & sample averages

Note

The importance sampling method tells us that even if we have
an expectation that we need to estimate for distribution f , we
can instead use ‘data’ sampled from a different distribution
f0.
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Moment-based estimation & sample averages

By careful choice of f0, the estimator can have better perfor-
mance than the Monte Carlo estimator in finite samples.

Note that

pI pf0qN pgq � 1

N

Ņ

i�1

fpXi q
f0pXi qgpXi q � 1

N

Ņ

i�1

w0pXi qgpXi q

say, where

w0pXi q � fpXi q
f0pXi q

is the importance sampling weight .
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Moment-based estimation & sample averages

Note that

Ef0rw0pXqs � Ef0

�
fpXq
f0pXq

�
�
»

fpxq dx � 1

so

Ef0

�
1

N

Ņ

i�1

w0pXi q
�
� 1

although for any realization

1

N

Ņ

i�1

w0pxi q � 1

in general.
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Moment-based estimation & sample averages

Example:

Consider the two distributions for variables X ,Y ,Z :

f : fX ,Y ,Z px, y, zq � fX pxqfZ |X pz|xqfY |X ,Z py|x, zq
f� : f�X ,Y ,Z px, y, zq � fX pxqf�Z pzqfY |X ,Z py|x, zq i.e. X KK Z

so that
f�X ,Y ,Z px, y, zq
fX ,Y ,Z px, y, zq �

f�Z pzq
fZ |X pz|xq
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Moment-based estimation & sample averages

Example:

Thus, for any function gpx, y, zq, using the importance sam-
pling idea

Ef�rgpX ,Y ,Zqs � Ef

�
f�Z pZq

fZ |X pZ |Xq
gpX ,Y ,Zq

�
provided, for all z such that f�Z pzq ¡ 0, we have fZ |X pz|xq ¡ 0
for all x.
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Moment-based estimation & sample averages

Example:

We are reweighting contributions to the expectation to ac-
count for the fact that


 under f�, each contribution gpx, y, zq gets weight deter-
mined by f�Z pzq;


 under f , each contribution gpx, y, zq gets weight deter-
mined by fZ |X pz|xq
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Part 2

Causal Graphs



Causal Graphs

The structure of a joint distribution is essentially specified the
set of conditional distributions that appear in the chain rule
factorization. In general we have

fX ,Y .Z px, y, zq � fX pxqfY |X py|xqfZ |X ,Y pz|x, yq

but perhaps we might assume that

Z KK Y |X

so that fZ |X ,Y pz|x, yq � fZ |X pz|xq and

fX ,Y ,Z px, y, zq � fX pxqfY |X py|xqfZ |X pz|xq
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Causal Graphs

We can depict the conditional independence using a graph:

Z

X

Y

Z X Y

This type of graph is sometimes called a fork .
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Causal Graphs

� Nodes X , Y , Z denote the variables;

� Edges with arrows indicate the nature of dependence in
the chain rule factorization;

� Directed arrows specify the conditional independence as-
sumptions;
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Causal Graphs

� Nodes without incoming edges are founders;

X Y

corresponds to

fX pxqfY |X py|xq

78



Causal Graphs

� Nodes with only outgoing edges act to block dependence:
in

Z X Y

fX ,Y ,Z px, y, zq � fX pxqfY |X py|xqfZ |X pz|xq
it is evident that Y KK Z |X .

However, note that

Y {KKZ
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Causal Graphs

By standard probability calculus

fY ,Z py, zq �
»

fY |X py|xqfZ |X pz|xqfX pxq dx

fY pyq �
»

fY |X py|xqfX pxq dx

fZ pzq �
»

fZ |X pz|xqfX pxq dx

so in general

fY ,Z py, zq � fY pyqfZ pzq.
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Causal Graphs

A (causal) graph G is described using the following elements:

� A set of nodes or vertices, V1,V2, . . ., representing vari-
ables.

� A set of edges, E1,E2, . . ., representing dependencies.

� Two nodes are adjacent if there is an edge between them.

� Edges can be directed , denoted using arrows, or undi-
rected ; if all edges are directed, the graph is directed.

� The graph with the arrow directions removed is termed
the skeleton.

81



Causal Graphs

� A path between to nodes V1 and V2 is a sequence of edges
connecting those nodes;

� a directed path is a path where the directions of arrows
on edges are obeyed.

� two nodes are connected if a path exists between them,
and disconnected otherwise.

82



Causal Graphs

� In general, a graph may contain cycles, that is, directed
paths that start and end at the same node.

V3

V1

V2

V3 V1 V2

A directed graph that has no cycles is termed a directed
acyclic graph (DAG).
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Causal Graphs

The language of ‘kinship’ may be used to describe graphical
connections:

X Y

Z

PARENTS

CHILD

fX ,Y ,Z px, y, zq � fX pxqfY pyqfZ |X ,Y pz|x, yq
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Causal Graphs

In this DAG, we have X KK Y :

fX ,Y px, yq �
»

fX pxqfY pyqfZ |X ,Y pz|x, yq dz

� fX pxqfY pyq
»

fZ |X ,Y pz|x, yq dz

� fX pxqfY pyq

as »
fZ |X ,Y pz|x, yq dz � 1
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Causal Graphs

However, conditioning on Z � z

fX ,Y |Z px, y|zq �
fX ,Y ,Z px, y, zq

fZ pzq definition

� fX pxqfY pyqfZ |X ,Y pz|x, yq
fZ pzq by assumption

� fX pxqfY pyq
fZ |X ,Y pz|x, yq

fZ pzq
� fX pxqfY pyq

in general.
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Causal Graphs

That is,

X KK Y

but

X {KKY | Z

Conditioning on Z induces dependence; the node Z is some-
times termed a collider.
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Causal Graphs

X Y

Z

W

� X and Y are spouses, and parents of Z .

� X ,Y and W are ancestors of Z .

� X is a child of W .

� Z is a child of X and Y .
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Causal Graphs

A tree is a graph where each node has at most one parent .

V1

V2 V3

V4 V5 V6
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Causal Graphs

A chain is a graph where each node has at most one child .

V1 V2 V3
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Causal Graphs

For variables X1,X2, . . . ,Xd , define for j � 1, . . . ,d the set of
parents of Xj , denoted

PAj � tX pjq
1 , . . . ,X

pjq
nj u, say

such that for Xk R PAj ,

Xj KK Xk | X
pjq
1 , . . . ,X

pjq
nj

and that no proper subset of PAj yields the conditional inde-
pendence. That is, PAj is the smallest set of variables for
which the conditional independence statement holds.
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Causal Graphs

We have for the chain rule factorization

fX1,...,Xd px1, . . . , xd q � fX1px1q
d¹

j�2

fXj |X1,...,Xj�1
pxj |x1, . . . , xj�1q

� fX1px1q
d¹

j�2

fXj |PAj
pxj |xpjq1 , . . . , x

pjq
nj q

To construct the factorization, we start with the founders for
which the parent set is empty.
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Causal Graphs

X1,X2

X1 X2

fX1,X2px1, x2q � fX1px1qfX2px2q

or

X1 X2

fX1,X2px1, x2q � fX1px1qfX2|X1
px2|x1q
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Causal Graphs

Add in X3: independence case

X1

X2

X3 X3 KK pX1,X2q
X1

X2

X3 X3 KK X1 | X2

X1

X2

X3 X3 KK X2 | X1

X1

X2

X3 X3 {KKX1,X3 {KKX2
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Causal Graphs

Add in X3: dependence case

X1

X2

X3 X3 KK pX1,X2q
X1

X2

X3 X3 KK X1 | X2

X1

X2

X3 X3 KK X2 | X1

X1

X2

X3 X3 {KKX1,X3 {KKX2
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Causal Graphs

Compatibility: The probability distribution P is compatible
with graph G if P admits the factorization implied by G .

� note the G does not define P , merely the chain rule fac-
torization that P admits;

� termed ‘Markov compatibility’; P is Markov with respect
to G , that is, we may deduce from G that

fX ,Y ,Z px, y, zq � fX pxqfY pyqfZ |X ,Y pz|x, yq

say, but we do not know the forms or values of the indi-
vidual terms.
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Causal Graphs

Example:

X1

X2

X3

X4 X5

fX1px1qfX2|X1
px2|x1qfX3|X1

px3|x1qfX4|X2,X3
px4|x2, x3qfX5|X4

px5|x4q
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Causal Graphs

Note

We need so ensure that all conditional densities are well-
defined, that is, we must condition on values that carry are
in the support of the marginal density for the conditioning
variables. For example, we can only compute

fX3|X1,X2
px3|x1, x2q

for px1, x2q such that

fX1,X2px1, x2q ¡ 0.
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Structural models

When we write

X

Y

Z

what precisely (mechanistically) does the symbol
mean ?
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Structural models

One interpretation is via a structural interpretation:

� generate X independently,

� generate Y and Z independently as functions of the real-
ized X , for example

Y � 3X

Z � 4X � 9
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Structural models

UY

X

UZ

Y

Z

X ,UZ ,UY
independent

Y � g1pX ,UY q

Z � g2pX ,UZ q

For example

Y � X �UY

Z � X �UZ
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Structural models

X

Y

Z

Y � gpX ,Zq
If we fixed X � x and Z � z, we would know Y � gpx, zq
precisely.
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Structural models

X

Y

Z

UX

UZ

so that X � g1pUX q, Z � g2pUZ q, and

Y � gpX ,Zq.
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Structural models

If we know X � x and Z � z, then we do not need to know the
values of UX and UZ to determine Y . That is

Y KK pUX ,UZ q | pX ,Zq

We can interpret causation in terms of these functions.
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Structural models

� X causes Y if it appears in the function, g, that assigns
Ys value;

� X causes Y if, in the graph representing the joint distri-
bution, there is a directed path from X to Y ;

� X is a direct cause of Y if there is an arrow from X to Y

Variables that have no ‘causes’ (ancestors) are termed exoge-
nous; variables that have at least one cause are termed en-
dogenous.
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d-separation

Consider three disjoint sets of nodes

X ,Y,Z

of DAG G . To assess whether

X KK Y | Z @X P X ,Y P Y,Z P Z

for any distribution compatible with the DAG, we must assess
whether Z ‘blocks’ paths from X to Y .
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d-separation

Consider the collider (‘inverted fork’) graph

X YZ

Z is a collider on this path.

A directed path from one node to another cannot contain a
collider; all parts must be

X YZforks

X YZchains
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d-separation

The notion of being a collider is path-specific: for example

X

YZ

U

� Z is a collider on XZU

� Z is not a collider on XZY .
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d-separation

Unconditional d-separation: A path is open (or unblocked ,
or active) unconditionally if there is no collider on the path; if
there is a collider, the path is closed (blocked , inactive)

Two variables X and Y are d-separated if there is no open path
between them; if there is an open path, the two variables are
d-connected.
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d-separation

Example: Diabetes example (Rothman et al. p 188)


 Z1 family income


 Z2 genetic risk


 W parental diabetes


 X low educational attainment


 Y diabetes of subject

Z1 Z2

X

W

Y
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d-separation

Example: Diabetes example (Rothman et al. p 188)

X and Y are d-separated; there is one path between X and Y ,
but it is blocked at W by the collider.

fZ1pz1qfZ2pz2qfW |Z1,Z2
pw|z1, z2qfX |Z1

px|z1qfY |Z2
py|z2q

and X and Y are independent :


 integrate out w, then z1, then z2.
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d-separation

Conditional d-separation: we can consider similar state-
ments obtained after conditioning on a variable.

For a non-collider Z : consider conditioning on Z

X YZ X KK Y | Z

X YZ X KK Y | Z

For a collider Z : consider conditioning on Z

X YZ X {KKY | Z
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d-separation

However, consider

X YZ

W

fX pxqfY pyqfZ |X ,Y pz|x, yqfW |Z pw|zq
We have that X and Y are independent.
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d-separation

But

fX ,Y ,W px, y,wq � fX pxqfY pyq
»

fZ |X ,Y pz|x, yqfW |Z pw|zq dz

� fX pxqfY pyqfW |X ,Y pw|x, yq

Therefore we have that

X YW X {KKY | W

and W is a collider.
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d-separation

Therefore

(i) conditioning on a non-collider Z blocks the path at Z ;

(ii) conditioning on a collider Z or a descendant W of Z
opens the path at Z ;
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d-separation

Suppose S is a set of variables.

� S blocks a path from X to Y if, after conditioning on S ,
the path is closed ; S unblocks a path if after conditioning
the path is open.

� If S blocks every path from X to Y , then X and Y are d-
separated .
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d-separation

� If S d-separates X and Y , X KK Y | S ,

fX |Y ,S px|y, sq � fX |S px|sq @px, y, sq.

� If S does not d-separate X and Y , then X and Y may be
dependent, and

fX |Y ,S px|y, sq
cannot be made independent of y in general.
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d-separation

Example:

X1

X2

X3

X4 X5

tX2u and tX3u are d-separated by tX1u, and X2 KK X3 | X1.


 there are two paths between X2 and X3;
� X2X1X3: blocked by conditioning on X1.

� X2X4X3: blocked by the collider at X4, and X4 R tX1u.
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d-separation

Example:

X1

X2

X3

X4 X5

tX2u and tX3u are not d-separated by tX1,X5u:

 X2 {KKX3 | pX1,X5q.

 X5 is a descendant of collider X4;
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d-separation

Selection bias: Conditioning on the common effect of two
causes renders the two causes dependent; this is known as

� selection bias or Berkson bias

X Z1 Z2 Z3 Y

Here X KK Y : there are two paths between X and Y

� XZ1Z2Z3Y is blocked by the collider Z1.

� XZ1Z3Y is blocked by the colliders Z1 and Z3.

Therefore X {KKY | tZ1,Z3u.
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d-separation

X

Z1

Z2 Y

Here X KK Y : there are two paths between X and Y

� XZ1Z2Y

� XZ2Y

both blocked by collider Z2. Therefore X {KKY | tZ2u.
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d-separation

If X and Y are d-separated by S then X KK Y | S for all dis-
tributions compatible with G ; conversely, if they are not d-
separated, then X and Y are dependent given S for at least
on distribution compatible with G .
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Interventions

Consider the DAG

X1

X2

X3

X4 X5

fX1px1qfX2|X1
px2|x1qfX3|X1

px3|x1qfX4|X2,X3
px4|x2, x3qfX5|X4

px5|x4q
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Interventions

Suppose we intervene to set X3 � x3. The relevant DAG is
now

X1

X2

X3

X4 X5

x3

fX1px1qfX2|X1
px2|x1qf�X3

px3qfX4|X2,X3
px4|x2, x3qfX5|X4

px5|x4q
where f�X3

p.q is a degenerate distribution at x3. X1 is no longer
a cause of X3.
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Interventions

Note

We note the distinction between the distributions

fX1,X2,X4,X5|X3
px1, x2, x4, x5|x3q � fX1,X2,X3,X4,X5px1, x2, x3, x4, x5q

fX3px3q
which arises from the original DAG, and

f�X1,X2,X4,X5|X3
px1, x2, x4, x5|x3q �

f�X1,X2,X3,X4,X5
px1, x2, x3, x4, x5q

f�X3
px3q

which arises from the intervention DAG.
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Interventions

Note

In the causal literature, the distinction is sometimes acknowl-
edged using the ‘do’ operator

fX1,X2,X4,X5px1, x2, x4, x5 | dopX3q � x3q

is the same as

f�X1,X2,X4,X5|X3
px1, x2, x4, x5 | x3q

This notation was introduced by J. Pearl.
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Interventions

Intervening on a variable X to set the level to x has the effect
of

� removing all incoming arrows to X

� switching the marginal for X to the degenerate distribu-
tion f�X p.q

f�X pxq � 1txupxq x P R.

127



Interventions

Note

In the earlier example

X

Y

Z

fX pxqfZ |X pz|xqfY |X ,Z py|x, zq

X

Y

Z z

fX pxqf�Z pzqfY |X ,Z py|x, zq
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Graphical representation of bias

We aim to understand the effect of Z on Y , say

� An open undirected path between Z and Y allows for the
association between Z and Y to be modified by the pres-
ence of other variables.

This is known as a biasing path.

� by association, we typically mean some form of correla-
tion (or partial correlation).
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Graphical representation of bias

� the association between Z and Y is unconditionally unbi-
ased (or marginally unbiased ) for the effect of Z on Y if
the only open paths between them are directed paths.

Z Y

Z X Y

Z

X1

X2

Y
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Graphical representation of bias

For variables S , S is sufficient to control bias in the associ-
ation between Z and Y if, conditional on S , the open paths
between Z and Y are precisely the directed paths between Z
and Y .

� S is minimally sufficient if no proper subset of S is suffi-
cient.

The set of parents of nodes in S is always sufficient, but may
not be minimally sufficient.
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Graphical representation of bias

Conditioning on descendants of Z : such conditioning

(i) blocks directed paths

Z X Y

Z KK Y | X but Z {KKY

132



Graphical representation of bias

(ii) can unblock or create paths that lead to biasing of the
effect of Z on Y .

� collider case

� selection bias case.
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Graphical representation of bias

(iii) may be unnecessary in statistical terms: for example

Z

X

Y

Conditioning on X will not affect bias.
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Graphical representation of bias

Undirected paths from Z to Y are termed ‘backdoor’ paths
(relative to Z ) if they start with an arrow pointing into Z .

X1 X2

Z

W

Y

The only path from Z to Y is a backdoor path.
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Graphical representation of bias

Before conditioning

� all biasing paths in a DAG are backdoor paths, and

� all open backdoor paths are biasing paths.

To obtain an unbiased estimate of the effect of Z on Y , all
backdoor paths between Z and Y must be blocked .
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Graphical representation of bias

A set S satisfies the backdoor criterion with respect to Z and
Y if

(i) S contains no descendant of Z , and

(ii) there is no open backdoor path from Z to Y after condi-
tioning on S .

Conditioning on S allows identification of the causal effect of
Z on Y .
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Graphical representation of bias

Confounding: A confounding path between Z and Y is a bi-
asing path (that is, an undirected open path) that ends with
an arrow into Y .

Variables on a confounding path are termed confounders.

Z

X

Y

Z

X

Y

X is a confounder in both cases.
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Graphical representation of bias

X1 X2

Z

W

Y

W is a collider on the path from Z to Y

Path 1: Z X1 W X2 Y

and hence this path is blocked.
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Graphical representation of bias

However unconditional on W , the effect of Z on Y is con-
founded by the backdoor path, Path 2: ZX1WY .

Conditioning on W alone opens Path 1, therefore to block both
paths need to condition on

S � tW ,X2u.
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Graphical representation of bias

X1 X2

Z

W

Y

Conditioning on W opens the confounding path. Therefore
Z KK Y (as there is no open path between them), but

Z {KKY | W

Further conditioning on either tX1u or tX2u blocks the path.
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Graphical representation of bias

X1 X2

Z

W

Y

Conditioning on W blocks the confounding path. Therefore
conditioning on any one of

tX1u, tWu, tX2u

will block the path.

142



Direct and indirect effects

� Direct effect: A direct effect of Z on Y (relative to X ) is
the effect captured by a directed path from Z to Y that
does not pass through X .

� Indirect effect: An indirect effect of X on Y that is cap-
tured by directed paths that pass through X .

In this formulation, X is termed an intermediate or mediator
variable.

Note that X may be ignored as a mediator, and merely treated
as a third variable.
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Direct and indirect effects

Z X Y

Indirect effect

Z

X

Y
(D)

Direct (D) & Indirect effect

Direct effect is confounded
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Direct and indirect effects

Z

X Y

U

(D)

No indirect effect

Direct effect is not confounded

X is a collider, so there is no other open path from Z to Y .
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Direct and indirect effects

Note

Z X Y

If we ignore X as a mediator:


 controlled direct effect: consider X � x held constant.


 natural direct effect: consider Z � z held constant, with
X taking multiple values.
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Unmeasured confounding

Suppose that in reality there is a further variable U that is a
confounder, but is unmeasured in the observed data.

Z Y

X

U

There is a hidden confounding path Z U Y . Conditioning on
U is not possible, as we are unaware of its existence.
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Unmeasured confounding

With two unmeasured confounders:

U1 U2

Z

X

Y

We have that X , Y and Z are independent ; the (true but hid-
den) path between Z and Y is blocked at collider X .
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Unmeasured confounding

However with the same unmeasured confounders:

U1 U2

Z

X

Y

In the modelled DAG, Y KK Z | X ; however, conditioning on X
opens the hidden path.
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Part 3

Causal Effects



Causal Effects

The causal effect of variable Z on variable Y is the amount to
which an intervention to change Z modifies some aspect

� expected value

� quantile

� distribution

of Y .

The intervention changes Z from z0 to z1, say; in the earlier
notation, we consider the intervention model

f�X ,Y ,Z px, y, zq � fX pxqf�Z pzqfY |X ,Z py|x, zq

evaluated for different values of z.
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Causal Effects

X

Y

Z

fX pxqfZ |X pz|xqfY |X ,Z py|x, zq

X

Y

Z z

fX pxqf�Z pzqfY |X ,Z py|x, zq

The effect of intervening on Z is to remove all inbound arrows
to node Z , and to fix the value of Z to z. We then consider
features pertaining to

fY |X ,Z py|x, zq.
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Causal Effects

Note

Usually we reserve the term ‘causal effect’ for cases where
the treatment


 is a single specific quantity;


 is genuinely manipulable by intervention;


 precedes the outcome temporally.
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Potential outcome notation

The counterfactual or potential outcome notation is widely
used to formulate causal inference questions.

Let Ypzq denote the random variable recording the (potential
or counterfactual ) outcome Y that would be observed if there
is an intervention to set Z � z.
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Potential outcome notation

For any individual, there is therefore a family of potential out-
comes

tYpzq : z P Z � Zu.
For example, if Z P t0,1u � Z, then

Yp0q : outcome if intervention sets z � 1

Yp1q : outcome if intervention sets z � 0

In practice, it is sufficient to consider a countable set Z.
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Potential outcome notation

In most cases, the intervention is a hypothetical one, and we
utilize data arising from a study where Z is observed as part
of some stochastic mechanism.

It is reasonable (in fact, necessary) to assume that for ob-
served outcome Y and observed treatment Z , we have

Y �
¸
z PZ

Ypzq1tzupZq

(with probability 1). That is, the observed outcome is identi-
cal to the potential outcome arising from the counterfactual
treatment that matches the observed treatment.
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Potential outcome notation

In the binary case, we may write

Y � p1� ZqYp0q � ZYp1q

and assume strong ignorability

X

tYp0q,Yp1qu

Z

Y

tYp0q,Yp1qu KK Z | X

157



Potential outcome notation

Note


 Y and Ypzq are different random variables.


 We will typically only observe a single treatment for each
individual, so only one of the potential outcomes will be
observed.


 Modelling the joint distribution of Ypzq for multiple values
of z for a single individual will be challenging.


 Cannot have unmeasured confounding, that is, X must be
an exhaustive list of confounders.
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Potential outcome notation

We consider the data being generated as follows:

� an individual is selected at random, and brings their char-
acteristics X � fX ;

� the effect of treatment on this individual is to be mod-
elled; the distribution of each potential outcome Ypzq,
conditional on X , is considered;

� as soon as treatment is assigned/observed, the relevant
counterfactual distribution is selected.
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Potential outcome notation

Consider the distribution

fYpzq|X py|xq.

According to earlier assumptions, we should have that

fYpzq|X py|xq � fY |X ,Z py|x, zq

that is, conditional on X , the effect on Y of the intervention to
set Z � z is the same as if Z were stochastically assigned.
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Potential outcome notation

Then marginally, for each z

fYpzqpyq �
»

fYpzq|X py|xqfX pxq dx �
»

fY |X ,Z py|x, zqfX pxq dx

to yield

fYp0qpyq fYp1qpyq
say.
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Potential outcome notation

To describe the causal effect, we may consider causal con-
trasts

� Yp1q � Yp0q
� Ypz1q � Ypz0q
� log Yp1q � log Yp0q

and so on.

These quantities are random variables, so it is more common
to express the causal effect through summaries of fYpzqpyq

� Moments: ErYpzqs
� Quantiles
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Experimental studies

In an experimental study precisely the right kind of ‘interven-
tion’ to study causal contrast is made.

A simple form of experimental study proceeds as follows: 2n
individuals are sampled from a homogeneous population.

� n are assigned treatment Z � 0;

� n are assigned treatment Z � 1

irrespective of the individual characteristics of the subjects;
the assignment of Z is independent of X .

Finally, the outcome Y is measured for each of the 2n sub-
jects.
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Experimental studies

Here, for each half of the study, the data generating mecha-
nism is as follows.

X

Y

Z

fX pxqfZ pzqfY |X ,Z py|x, zq

Here we do not need to distinguish the data generating mech-
anism from the hypothetical intervention, by independence.
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Experimental studies

We may also consider a randomized version of this study; for
each of the individuals in the study, we assign Z � z, indepen-
dently of X , according to the distribution

fZ pzq � pzp1� pq1�z z P t0,1u.

that is, an individual receives

� Z � 0 with probability 1� p

� Z � 1 with probability p

for some 0   p   1.
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Experimental studies

Let N1 denote the total number of individuals for whom Z � 1

N1 �
2ņ

i�1

1t1upZi q

so that

N1 � Binomialp2n,pq.
In the study, we observe N1 � n1.
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Experimental studies

In both non-randomized and randomized studies, the same
distributional factorization pertains.

We will denote this distribution

f E
X pxqf E

Z pzqf E
Y |X ,Z py|x, zq

with the superscript E indicating the experimental assump-
tion.
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Experimental studies

Suppose we wish to estimate the difference in outcome (on
average) between those individuals assigned Z � 1 and those
assigned Z � 0.

The causal contrast of interest is then

ErYp1q � Yp0qs � ErYp1qs � ErYp0qs

which is known as the average treatment effect (ATE). The
quantity

ErYp1qs
is termed the average potential outcome (APO).
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Experimental studies

In terms of the above distributions, we may write

ErYpzqs � E
E
Y |Z rY |Z � zs �

»
y f E

Y |Z py|zq dy

�
¼

y f E
Y |X ,Z py|x, zqf E

X pxq dy dx

by independence of X and Z . Multiplying top and bottom by
f E
Z pzq, we have

E
E
Y |Z rY |Z � zs �

¼
y f E

Y |X ,Z py|x, zqf E
Z pzqf E

X pxq dy dx

f E
Z pzq
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Experimental studies

We may write the double integral as a triple integral: with a
slight abuse of notation,½

1tzupzqy f E
Y |X ,Z py|x, zqf E

Z pzqf E
X pxq dy dx dz½

1tzupzqf E
Y |X ,Z py|x, zqf E

Z pzqf E
X pxq dy dx dz

Thus

E
E
Y |Z rY |Z � zs � E

E
X ,Y ,Z r1tzupZqY s
EE

X ,Y ,Z r1tzupZqs
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Experimental studies

Now using the sample data, we may use moment-based esti-
mation to estimate numerator and denominator:

pEE
X ,Y ,Z r1tzupZqY s �

1

2n

2ņ

i�1

1tzupZi qYi

pEE
X ,Y ,Z r1tzupZqs �

1

2n

2ņ

i�1

1tzupZi q

and hence estimate the ratio by

pEE
Y |Z rY |Z � zs �

2ņ

i�1

1tzupZi qYi

2ņ

i�1

1tzupZi q
. (1)
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Experimental studies

This follows as we actually have a sample from

f E
Y |X ,Z py|x, zqf E

Z pzqf E
X pxq

In this estimator:

� numerator is merely the sum of the Yi s for all those indi-
viduals who received treatment Z � z;

� denominator is merely the number of individuals who re-
ceived treatment Z � z.

Thus, we are merely estimating the quantity ErYpzqs by taking
the sample mean in the group for which Z � z.
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Experimental studies

For the binary case, the formulae simplify

pEE
Y |Z rY |Z � 1s �

2ņ

i�1

Zi Yi

2ņ

i�1

Zi

� 1

N1

2ņ

i�1

Zi Yi

pEE
Y |Z rY |Z � 0s �

2ņ

i�1

p1� Zi qYi

2ņ

i�1

p1� Zi q
� 1

N0

2ņ

i�1

p1� Zi qYi .
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Experimental studies

Note that we know that

f E
Z pzq � pzp1� pq1�z

so we can consider the alternative estimator

pEE
Y |Z rY |Z � zs � 1

2npzp1� pq1�z
2ņ

i�1

1tzupZi qYi . (2)
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Experimental studies

That is

pErYp1qs � 1

2np

2ņ

i�1

1t1upZi qYi

pErYp0qs � 1

2np1� pq
2ņ

i�1

1t0upZi qYi

and the estimator of the ATE is

pErYp1qs � pErYp0qs.
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Experimental studies

In a randomized study of size n, the estimator from (1) may
be written

pEE
Y |Z rY |Z � zs �

ņ

i�1

1tzupZi qYi

ņ

i�1

1tzupZi q
�

ņ

i�1

Wi pzqYi

where

Wi pzq �
1tzupZi q

ņ

j�1

1tzupZj q
.
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Experimental studies

Note that

E
E
Z rWi pzqs � 1

n

and

0 ¤ Wi pzq ¤ 1
ņ

i�1

Wi pzq � 1.
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Experimental studies

Note also that for this estimator we can define

pp � 1

n

ņ

i�1

1tzupZi q � 1

n

ņ

i�1

Zi

so that

pEE
Y |Z rY |Z � 1s � 1

npp
ņ

i�1

Zi Yi

pEE
Y |Z rY |Z � 0s � 1

np1� ppq
ņ

i�1

p1� Zi qYi
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Experimental studies

Both estimators (1) and (2) are unbiased for the APO.

(1) pµnp1q � 1

npp
ņ

i�1

Zi Yi pµnp0q � 1

np1� ppq
ņ

i�1

p1� Zi qYi

(2) rµnp1q � 1

np

ņ

i�1

Zi Yi rµnp0q � 1

np1� pq
ņ

i�1

p1� Zi qYi
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Experimental studies

This results in estimators that are unbiased for the ATE:

pδn � 1

npp
ņ

i�1

Zi Yi � 1

np1� ppq
ņ

i�1

p1� Zi qYi � 1

n

ņ

i�1

pZi � ppqppp1� ppqYi

rδn � 1

np

ņ

i�1

Zi Yi � 1

np1� pq
ņ

i�1

p1� Zi qYi � 1

n

ņ

i�1

pZi � pq
pp1� pqYi

The only difference between the estimators is whether we usepp or p to represent the treatment probability.
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Experimental studies

It transpires that

lim
nÝÑ8

nVarrpδn s   lim
nÝÑ8

nVarrrδn s

that is, estimator pδn is (asymptotically) more efficient .

That is, it is better to estimate p rather than use its known
value.
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Observational studies

In an observational study we do not intervene to assign treat-
ment to subjects, we observe it as part of the data collection
process.

We denote the data generating mechanism

fO
X ,Y ,Z px, y, zq

In the observational setting, there may be several possible
proposed data generating mechanisms, but critically we may
consider ‘causes’ of treatment Z .
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Observational studies

A DAG of interest involves a backdoor path from Z to Y

X

YZ

fO
X pxqfO

Z |X pz|xqfO
Y |X ,Z py|x, zq

There is an open backdoor (and confounding) path Z X Y and
therefore there is a possibility of bias.

To get at the causal effect of Z on Y , we must block the back-
door path by conditioning on X .
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Observational studies

Note that we might have the following DAG:

X

YZ

fO
Z pzqfO

X |Z px|zqfO
Y |X ,Z py|x, zq

There are two paths from Z to Y : the direct path, and the path
Z X Y , which is again blocked by conditioning on X .

Here X is a mediator on the indirect path; we might be inter-
ested in both the direct and indirect effects of Z on Y .
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Observational studies

Suppose we try to estimate the causal effect of Z on Y in the
confounding case. First, consider

E
O
Y |Z rY |Z � zs

which would be the equivalent of the earlier causal quantity
(the APO at treatment z); however, here note that, in the ob-
served data, Z � z is not achieved by intervention as in the
experimental case.
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Observational studies

We have, as in the earlier calculation

E
O
Y |Z rY |Z � zs �

¼
y fO

Y |X ,Z py|x, zqfO
X |Z px|zq dy dx

�

½
1tzupzqy fO

Y |X ,Z py|x, zqfO
X |Z px|zqfO

Z pzqdy dx dz½
1tzupzq fO

Y |X ,Z py|x, zqfO
X |Z px|zqfO

Z pzqdy dx dz

where again the indicator function 1tzupzq reduces the contri-
bution to the dz integrals to the point evaluation at z � z.

Hence, as before, we have

E
O
Y |Z rY |Z � zs � E

O
X ,Y ,Z r1tzupZqY s
EO

X ,Y ,Z r1tzupZqs
.
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Observational studies

Note that by the chain rule factorization, we must have

fO
X |Z px|zqfO

Z pzq � fO
X ,Z px, zq � fO

Z |X pz|xqfO
X pxq.

This result re-iterates that a DAG does not define a unique
joint distribution:

XZ

fO
Z pzqfO

X |Z px|zq

ZX

fO
X pxqfO

Z |X pz|xq
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Observational studies

Thus EO
Y |Z rY |Z � zs can be rewritten½

1tzupzqy fO
Y |X ,Z py|x, zqfO

Z |X pz|xqfO
X pxqdy dx dz½

1tzupzq fO
Y |X ,Z py|x, zqfO

Z |X pz|xqfO
X pxqdy dx dz

This can be contrasted with the earlier formula for the APO

E
E
Y |Z rY |Z � zs �

½
1tzupzqy f E

Y |X ,Z py|x, zqf E
Z pzqf E

X pxqdy dx dz½
1tzupzqf E

Y |X ,Z py|x, zqf E
Z pzqf E

X pxq dy dx dz
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Observational studies

Now we can legitimately assume

fO
X pxq � f E

X pxq

as this distribution describes the population characteristics.

Also, with the proposed data generating distribution given by
the confounding DAG, we have

fO
Y |X ,Z py|x, zq � f E

Y |X ,Z py|x, zq.
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Observational studies

However, in general

fO
Z |X pz|xq � f E

Z pzq @px, zq

and so evidently

E
O
Y |Z rY |Z � zs � E

E
Y |Z rY |Z � zs.
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Observational studies

Thus, if we consider using moment-based estimation

pEO
X ,Y ,Z r1tzupZqY s �

1

n

ņ

i�1

1tzupZi qYi

pEO
X ,Y ,Z r1tzupZqs �

1

n

ņ

i�1

1tzupZi q

and then estimate the ratio by

pEO
Y |Z rY |Z � zs �

ņ

i�1

1tzupZi qYi

ņ

i�1

1tzupZi q
. (3)

the estimator will in general be biased for the APO.
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Observational studies

The bias arises as Z {KKX ;

� this implies that, in the sample data, we cannot treat Z
as if it were assigned independently of X ;

� different observed values of Z will (in general) have dif-
ferent associated distributions of X , as fX |Z px|zq changes
as z changes;

� subpopulations identified by different values of z are not
comparable; the characteristics of individuals in different
subpopulations are different;

� if X also affects Y , we cannot simply compare the out-
comes for different observed Z values, as individuals with
different Z values have different X characteristics.
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Model-based estimation

If we know that

E
E
Y |X ,Z rY |X ,Z s � E

O
Y |X ,Z rY |X ,Z s � µpX ,Zq

say, then as f E
X pxq � fO

X pxq it follows by iterated expectation
that

E
E
Y |Z rY |Z � zs � E

O
Y |Z rY |X ,Z � zs � E

O
X rµpX , zqs

where

E
O
Y |Z rY |X ,Z � zs �

¼
y fO

Y |X ,Z py|x, zqfO
X pxq dy dx

�
»
E

O
Y |X ,Z rY |X ,Z � zsfO

X pxq dx.
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Model-based estimation

Then a moment-based estimator of the APO is

pµORpzq � pEE
Y |Z rY |Z � zs � 1

n

ņ

i�1

µpXi , zq.

and in the binary case, the corresponding estimator of the
ATE is

pδOR � pµORp1q � pµORp0q � 1

n

ņ

i�1

tµpXi ,1q � µpXi ,0qu .

The subscript OR indicates outcome regression.
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Model-based estimation

This approach is termed a model-based analysis; note that
it requires correct specification of the µpx, zq function; if we
mistakenly assume

E
E
Y |X ,Z rY |X ,Z s � E

O
Y |X ,Z rY |X ,Z s � mpX ,Zq

then the resulting estimators, for example

pδOR � 1

n

ņ

i�1

tmpXi ,1q �mpXi ,0qu .

are, in general, biased.
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Model-based estimation

Note that we can afford some mis-specification: for example,
if Z is binary, we can always write

µpx, zq � µ0pxq � zµ1pxq TRUE

mpx, zq � m0pxq � zm1pxq MODEL

in which case the estimator

1

n

ņ

i�1

m1pXi q

is unbiased for the ATE provided

E
O
X rm1pXqs � E

O
X rµ1pXqs � E

E
X rµ1pXqs.

That is, we can mis-specify m0pxq.
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Model-based estimation

In the binary case, if

pp � 1

n

ņ

i�1

Zi

then we may consider an alternate estimator

pδ�
OR
� 1

npp
ņ

i�1

ZiµpXi ,Zi q � 1

np1� ppq
ņ

i�1

p1� Zi qµpXi ,Zi q

which estimates the mean separately in the two subgroups
defined by the observations Z � 1 and Z � 0 separately. That
is, pδ�

OR
� 1

n

ņ

i�1

pZi � ppqppp1� ppqµpXi ,Zi q
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Model-based estimation

Note

In the model-based approach, we must have

µpx, zq

specified precisely. In practice, however, we will propose
parametric models, for example

µpx, z;β, ψq � µ0px;βq � zµ1px;ψq

and then hope to estimate pβ, ψq from the observed data.

In general, this parametric model must be completely cor-
rectly specified for consistent estimation of the ATE.
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Model-based estimation

Note

For example, in the linear model case with

µpx, z;β, ψq � xββ � z xψψ

we may only consistently estimate β and ψ, and hence the
ATE, if this mean model is correctly specified.
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Model-based estimation

Note

It is no longer sufficient to specify

µ1px;βq � xψψ

correctly as the ‘treatment contributed’ expected response,
correct specification of

µ0px;βq � xββ

as the ‘treatment free’ expected response is also necessary.

200


	Introduction
	Causal Graphs
	Causal Effects

