MATH 598

Introduction to Causal Inference Methods

Dr David A. Stephens

Department of Mathematics & Statistics Room 1225, Burnside Hall

david.stephens@mcgill.ca

Part 1 Introduction

The objective of *causal inference* is to quantify the effect of an *intervention*:

- in a multi-variable system, suppose we are able to manipulate (i.e. alter the value of) one of the variables separately from all other variables;
- we wish to report the impact of that manipulation on one or more of the other variables.

In many scientific enterprises, this is a primary objective.

Consider three random variables: X, Y and Z. Ultimately we will collect data

$$\{(x_i, y_i, z_i), i = 1, \dots, n\}$$

which are observed values of the variables.

A probabilistic model for the data comprises a joint density

$$f_{X,Y,Z}(x,y,z)$$

or for discrete variables a *joint mass function*, which represents how the data are generated. This joint model automatically specifies

- the *marginal* distributions, $f_X(x)$, $f_Y(y)$ and $f_Z(z)$;
- the *conditional* distributions

$$f_{X|Y}(\mathbf{x}|\mathbf{y})$$
 $f_{X|Z}(\mathbf{x}|\mathbf{z})$ $f_{Y|X}(\mathbf{y}|\mathbf{x})$ \cdots

and

$$f_{Y|X,Z}(y|x,z)$$
 $f_{Y,Z|X}(y,z|x)$

etc.

We have the *chain rule factorization*

$$f_{X,Y,Z}(x,y,z) = f_X(x) f_{Z|X}(z|x) f_{Y|X,Z}(y|x,z)$$

but also

$$f_{X,Y,Z}(x,y,z) = f_Z(z)f_{Y|Z}(y|z)f_{X|Y,Z}(x|y,z)$$

and so on, for any ordering of the variables.

Marginalization:

$$\begin{split} f_{Y}(y) &= \iint f_{X,Y,Z}(x,y,z) \, dx \, dz \\ &= \iint f_{Y|X,Z}(y|x,z) f_{Z|X}(z|x) f_{X}(x) \, dz \, dx \\ &\equiv \iint f_{Y|X,Z}(y|x,z) f_{X|Z}(x|z) f_{Z}(z) \, dx \, dz \end{split}$$

Conditioning: provided $f_{X,Z}(x, z) > 0$,

$$egin{aligned} f_{Y|X,Z}(y|x,z) &= rac{f_{X,Y,Z}(x,y,z)}{f_{X,Z}(x,z)} \ &\equiv rac{f_{X,Y,Z}(x,y,z)}{\int f_{X,Y,Z}(x,t,z) \; dt} \end{aligned}$$

Note

• for *discrete* variables, integrals replaced by sums,

$$\begin{split} f_{Z|X}(z|\mathbf{x}) &= \frac{f_{X,Z}(\mathbf{x},z)}{f_X(\mathbf{x})} \equiv \frac{\Pr[X=\mathbf{x},Z=z]}{\Pr[X=\mathbf{x}]} \\ &= \frac{\Pr[X=\mathbf{x},Z=z]}{\sum\limits_t \Pr[X=\mathbf{x},Z=t]} \end{split}$$

• Can have *mixed* cases: *Z* discrete, *X* continuous.

Expectations: we can compute the summary

$$\begin{split} \mathbb{E}_{Y}[Y] &= \int y \ f_{Y}(y) \ dy \\ &\equiv \int y \left\{ \iint f_{X,Y,Z}(x,y,z) \ dx \ dz \right\} \ dy \\ &\equiv \int y \left\{ \iint f_{Y|X,Z}(y|x,z) f_{Z|X}(z|x) f_{X}(x) \ dx \ dz \right\} \ dy \\ &\equiv \iint \left\{ \int y \ f_{Y|X,Z}(y|x,z) \ dy \right\} f_{Z|X}(z|x) f_{X}(x) \ dx \ dz \end{split}$$

We may denote

$$\int y f_{Y|X,Z}(y|x,z) dy \equiv \mathbb{E}_{Y|X,Z}[Y|X=x,Z=z]$$

that is, as a *conditional expectation*. Thus

$$\mathbb{E}_{Y}[Y] = \iint \mathbb{E}_{Y|X,Z}[Y|X = x, Z = z]f_{Z|X}(z|x)f_{X}(x) dx dz$$

which we may also re-write

$$\mathbb{E}_{Y}[Y] = \mathbb{E}_{X,Z}\left[\mathbb{E}_{Y|X,Z}[Y|X,Z]
ight]$$

which is known as *iterated expectation*.

Note

The quantity

$$\mathbb{E}_{Y|X,Z}[Y|X=x,Z=z]$$

is a function of the two values (x, z) and therefore is *non-random*, whereas

$$\mathbb{E}_{Y|X,Z}[Y|X,Z]$$

is a function of (X, Z) and is therefore a *random variable*.

Consider the conditional expectation $\mathbb{E}_{Y|Z}[Y|Z = \mathbf{z}]$ for some fixed value \mathbf{z} . We have

$$\begin{split} \mathbb{E}_{Y|Z}[Y|Z = \mathbf{z}] &= \int y \ f_{Y|X,Z}(y|\mathbf{z}) \ dy \\ &= \iint y \ f_{Y|X,Z}(y|\mathbf{x},\mathbf{z}) f_{X|Z}(\mathbf{x}|\mathbf{z}) \ dy \ dx \\ &= \iiint \mathbb{1}_{\{\mathbf{z}\}}(v) y \ f_{Y|X,Z}(y|\mathbf{x},v) f_{X|Z}(\mathbf{x}|v) \ dy \ dx \ dv \end{split}$$

where

$$\mathbb{1}_{\{\mathsf{Z}\}}(\mathsf{v}) = \begin{cases} 1 & \mathsf{v} = \mathsf{Z} \\ 0 & \mathsf{v} \neq \mathsf{Z} \end{cases}$$

•

is the *indicator function*.

That is,

$$\mathbb{E}_{Y|Z}[Y|Z = \mathsf{z}] = \iiint y \ f_{Y|X,Z}(y|x,v) f_{X|Z}(x|v) f_V(v) \ dy \ dx \ dv$$
$$\equiv \mathbb{E}_{X,V}[\mathbb{E}_{Y|X,V}[Y|X,V]]$$

where V is a *degenerate* random variable with

$$f_V(v) = \Pr[V = v] = \mathbb{1}_{\{\mathsf{z}\}}(v) = \left\{egin{array}{cc} 1 & v = \mathsf{z} \ 0 & v
eq \mathsf{z} \end{array}
ight.$$

.

Independence: Two random variables *X*, *Z* are *independent*

$X \perp\!\!\!\perp Z$

if and only if

$$f_{X,Z}(x,z) = f_X(x) f_Z(z) \qquad orall (x,z) \in \mathbb{R}^2$$

that is, for all $(x,z) \in \mathbb{R}^2$, or equivalently

 $f_{X|Z}(x|z) = f_X(x) \qquad orall (x,z) ext{ s.t. } f_Z(z) > 0$

or

$$f_{Z|X}(z|\mathbf{x}) = f_Z(z) \qquad \forall (\mathbf{x},z) \text{ s.t. } f_X(\mathbf{x}) > 0.$$

Note

• For three variables, we require for independence

$$f_{X,Y,Z}(x,y,z) = f_X(x)f_Y(y)f_Z(z) \qquad orall (x,y,z) \in \mathbb{R}^3$$

• We can consider *conditional independence*: say

$$Y \perp\!\!\!\perp Z \mid X$$

if and only if

$$f_{Y,Z|X}(y,z|x) = f_{Z|X}(z|x)f_{Y|X}(y|x)$$

for all $(x,z,y)\in \mathbb{R}^3$ where the conditional densities are well-defined.

Note

Suppose that *X* and *V* are two random variables, but suppose that *V* is *degenerate* at some fixed value $v_0 \in \mathbb{R}$, that is,

 $\Pr[V=v_0]=1.$

Consider the joint distribution of X and V: we have that for arbitrary x

$$f_{X,V}(x,v) = \left\{egin{array}{cc} g(x,v_0) & x\in\mathbb{R}, v=v_0\ & \ & 0 & x\in\mathbb{R}, v
eq v_0 \end{array}
ight.$$

for some function g(x, v).

Note

Therefore, marginally

$$f_X(x) = g(x, v_0)$$

which must be a density in x. Hence for all $(x, v) \in \mathbb{R}^2$

$$f_{X,V}(x,v) = f_X(x)f_V(v)$$

and hence X and V are independent

$$X \perp\!\!\!\perp V.$$

In the previous calculation, suppose *X* and *Z* are independent:

$$\begin{split} \mathbb{E}_{Y|Z}[Y|Z = \mathsf{z}] &= \iint y \ f_{Y|X,Z}(y|\mathbf{x},\mathsf{z}) f_{X|Z}(\mathbf{x}|\mathsf{z}) \ dy \ dx \\ &= \iint y \ f_{Y|X,Z}(y|\mathbf{x},\mathsf{z}) f_X(\mathbf{x}) \ dy \ dx \qquad \text{as } X \perp Z \\ &\equiv \mathbb{E}_X[\mathbb{E}_{Y|X,Z}[Y|X,\mathsf{z}]] \end{split}$$

That is, we can compute $\mathbb{E}_{Y|Z}[Y|Z = \mathbf{z}]$ by

- fixing Z = z independently of X,
- computing for each fixed x

$$\mathbb{E}_{Y|X,Z}[Y|X=x,Z=\mathsf{Z}]=\mu(x,\mathsf{Z})$$

say,

• averaging the result over the distribution $f_X(\mathbf{x})$

$$\mathbb{E}_X[\mu(X, \mathbf{Z})]$$

Regression: we might propose

$$\mathbb{E}_{Y|X,Z}[Y|X = x, Z = \mathsf{Z}] = \beta_0 + \beta_1 x + \psi_0 \mathsf{Z}$$

or

$$\mathsf{E}_{Y|X,Z}[Y|X = \mathbf{x}, Z = \mathsf{Z}] = \beta_0 + \beta_1 \mathbf{x} + \psi_0 \mathsf{Z} + \psi_1 \mathbf{x} \mathsf{Z}$$

etc. for some *parameters* β , ψ to specify the *mean model*

 $\mu(\mathbf{x}, \mathbf{z}; \beta, \psi).$

Binary variables: suppose X, Y, Z are binary and consider

$$\Pr[X = x, Y = y, Z = z] \qquad (x, y, z) \in \{0, 1\}^3.$$

Suppose $\Pr[Z = 0] \Pr[Z = 1] \neq 0$, that is

 $\Pr[Z = 0] > 0$ and $\Pr[Z = 1] > 0$.

We have for $(y,z)\in\{0,1\}^2$

$$Pr[Y = y|Z = z] = \sum_{x=0}^{1} Pr[Y = y|X = x, Z = z]Pr[X = x|Z = z]$$

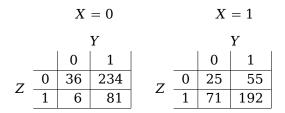
= Pr[Y = y|X = 0, Z = z]Pr[X = 0|Z = z]
+ Pr[Y = y|X = 1, Z = z]Pr[X = 1|Z = z]
\neq Pr[Y = y|X = 0, Z = z]Pr[X = 0]
+ Pr[Y = y|X = 1, Z = z]Pr[X = 1]

in general.

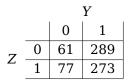
Simpson's Paradox: Consider

$$X = \begin{cases} 0 & \text{Group 0} \\ 1 & \text{Group 1} \end{cases}$$
$$Z = \begin{cases} 0 & \text{Treatment A} \\ 1 & \text{Treatment B} \end{cases}$$
$$Y = \begin{cases} 0 & \text{Not cured} \\ 1 & \text{Cured} \end{cases}$$

Data:



Collapsing over *X*:



Estimated cure rates for the two treatment groups:

▶ In Group 0 (*X* = 0):

$$Z = 0: \ \frac{234}{270} \simeq 0.87 \qquad Z = 1: \ \frac{81}{87} \simeq 0.93$$

▶ In Group 1 (*X* = 1):

$$Z = 0: \ \frac{55}{80} \simeq 0.69 \qquad Z = 1: \ \frac{192}{263} \simeq 0.73$$

In the pooled data:

$$Z = 0: \ \frac{289}{350} \simeq 0.83 \qquad Z = 1: \ \frac{273}{350} \simeq 0.78$$

Therefore in each of the two Groups separately,

Treatment B beats Treatment A

but in the *pooled* data, it seems

Treatment A beats Treatment B.

Not surprising:

$$Pr[Y = 1 | Z = 1] = Pr[Y = 1 | X = 0, Z = 1]Pr[X = 0 | Z = 1]$$
$$+ Pr[Y = 1 | X = 1, Z = 1]Pr[X = 1 | Z = 1]$$

and we have from the data

$$\widehat{\Pr}[Y = 1 | X = 0, Z = 1] = 0.93$$

$$\widehat{\Pr}[Y = 1 | X = 0, Z = 0] = 0.87$$

$$\widehat{\Pr}[Y = 1 | X = 1, Z = 1] = 0.73$$

$$\widehat{\Pr}[Y = 1 | X = 1, Z = 0] = 0.69$$

$$d$$

$$\widehat{\Pr}[Y = 1 | Z = 1] = 0.78$$
 i.e. $(1 - w_1) \widehat{a} + w_1 \widehat{c}$
 $\widehat{\Pr}[Y = 1 | Z = 0] = 0.83$ i.e. $(1 - w_0) \widehat{b} + w_0 \widehat{d}$

where

$$w_1 = \widehat{\Pr}[X = 1 | Z = 1] = \frac{263}{263 + 87} \simeq 0.75$$

and

$$w_0 = \widehat{\Pr}[X = 1 | Z = 0] = \frac{80}{80 + 270} \simeq 0.22.$$

The weights

$$\Pr[X = 1 | Z = 1]$$
 $\Pr[X = 1 | Z = 0]$

are substantially different, representing (in the joint distribution rather than the data) dependence between X and Z.

- There is an *imbalance* between the two treatments when considering the representation of the two Groups of individuals;
- as the probability of cure is different for the two groups, this imbalance affects the conclusions from the pooled data.

Note

It is important to consider whether we wish to report

• a *conditional on x* comparison

$$\Pr[Y = 1 | X = x, Z = 1]$$
 vs $\Pr[Y = 1 | X = x, Z = 0]$

• a *marginal* comparison

$$\Pr[Y = 1 | Z = 1]$$
 vs $\Pr[Y = 1 | Z = 0]$.

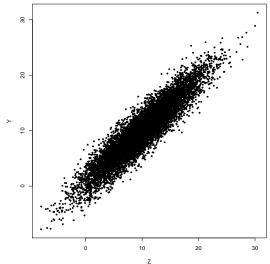
This kind of result is not limited to discrete variables: suppose

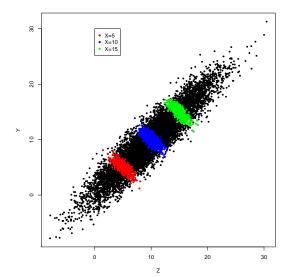
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \sim \textit{Normal}_3(\mu, \Sigma)$$

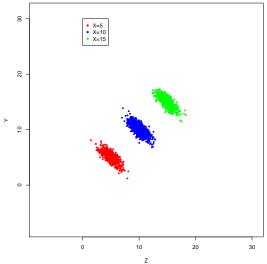
constructed as follows:

- Marginal for X: $X \sim Normal(\mu_X, \sigma_X^2)$
- *Conditional* for (Y, Z) given X = x:

$$(Y,Z)|X = x \sim Normal_2\left(\begin{pmatrix} x\\ x \end{pmatrix}, \begin{pmatrix} 1.0 & -0.9\\ -0.9 & 1.0 \end{pmatrix}\right)$$





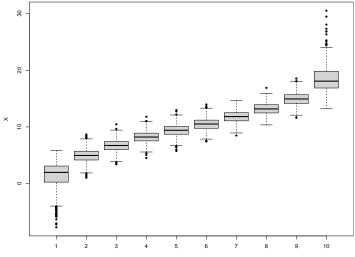


In this model

- ▶ Marginally, *Y* and *Z* are *positively* correlated;
- Conditionally on any X = x, Y and Z have negative correlation (by construction the correlation is -0.9).

We can examine the distribution of X for each Z: the following boxplot splits the data by deciles of Z.

Some basic probability calculus



Decile of Z

By standard theory for the multivariate Normal distribution

$$Y|X = x, Z = x \sim Normal(x + \rho(z - x), (1 - \rho^2))$$

that is

$$\mathbb{E}[Y|X = x, Z = z] = x + \rho(z - x) = \rho z + (1 - \rho)x$$

Some basic probability calculus

Also

$$Z|X = x \sim Normal(x, 1)$$

and so

$$egin{aligned} &f_{X|Z}(\mathbf{x}|\mathbf{z}) \propto f_{Z|X}(\mathbf{z}|\mathbf{x}) f_X(\mathbf{x}) \ &\equiv \textit{Normal}\left(rac{z+\mu_X/\sigma_X^2}{1+1/\sigma_X^2},rac{1}{1+1/\sigma_X^2}
ight) \end{aligned}$$

Therefore

$$\begin{split} \mathbb{E}_{Y|Z}[Y|Z = z] &= \mathbb{E}_{X|Z} \left[\mathbb{E}_{Y|X,Z}[Y|X,Z = z] \middle| Z = z \right] \\ &= \mathbb{E}_{X|Z} \left[\rho z + (1-\rho)X|Z = z \right] \\ &= \rho z + (1-\rho)\mathbb{E}_{X|Z} \left[X|Z = z \right] \\ &= \rho z + (1-\rho)\frac{z + \mu_X/\sigma_X^2}{1 + 1/\sigma_X^2} \\ &= \frac{(1-\rho)\mu_X}{\sigma_X^2 + 1} + \left(\rho + (1-\rho)\frac{\sigma_X^2}{\sigma_X^2 + 1} \right) z \end{split}$$

In this system, X and Z are not independent, and so the marginal effect on Y of changing Z is measured by the coefficient of z in $\mathbb{E}_{Y|Z}[Y|Z = z]$, that is,

$$ho+(1-
ho)rac{\sigma_X^2}{\sigma_X^2+1}$$

whereas if we imagine manipulating Z independently of X, the effect is measured by the coefficient in

$$\mathbb{E}[Y|X = x, Z = z]$$

that is, ρ .

Note that in this system, the conditional model for *Y*, given X = x and Z = z, in particular the mean model

$$\mathbb{E}_{Y|X,Z}[Y|X=x,Z=z] = \rho z + (1-\rho)x$$

is unchanged irrespective of any assumption about the (X, Z) distribution.

Thus the critical distinction concerns whether we imagine Z being manipulated independently of X.

Here we have

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \sim \text{Normal}_3 \left(\begin{bmatrix} \mu_X \\ \mu_Y \\ \mu_Z \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \sigma_{XY} & \sigma_{XZ} \\ \sigma_{XY} & \sigma_Y^2 & \sigma_{YZ} \\ \sigma_{XZ} & \sigma_{YZ} & \sigma_Z^2 \end{bmatrix} \right)$$

where by iterated expectation we can conclude

 $\mu_Y = \mu_Z = \mu_X.$

By the general result for the multivariate normal distribution

$$\begin{bmatrix} Y \\ Z \end{bmatrix} \left| X = \mathbf{x} \sim Normal_2 \left(\begin{bmatrix} \mu_X \\ \mu_X \end{bmatrix} + \frac{1}{\sigma_X^2} \begin{bmatrix} \sigma_{XY} \\ \sigma_{XZ} \end{bmatrix} (\mathbf{x} - \mu_X), \Sigma_{YZ.X} \right) \right|$$

where

$$\Sigma_{YZ.X} = \begin{bmatrix} \sigma_Y^2 & \sigma_{YZ} \\ \sigma_{YZ} & \sigma_Z^2 \end{bmatrix} - \frac{1}{\sigma_X^2} \begin{bmatrix} \sigma_{XY} \\ \sigma_{XZ} \end{bmatrix} \begin{bmatrix} \sigma_{XY} & \sigma_{XZ} \end{bmatrix}$$

Some basic probability calculus

We must have by construction

$$\Sigma_{YZ.X} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

so that $\sigma_{XY} = \sigma_{XZ} = \sigma_X^2$ and

$$\sigma_Y^2 = 1 + \frac{\sigma_{XY}^2}{\sigma_X^2} = 1 + \sigma_X^2$$
$$\sigma_Z^2 = 1 + \sigma_X^2$$
$$\sigma_{YZ} = \rho + \frac{\sigma_{XY}\sigma_{XZ}}{\sigma_X^2} = \rho + \sigma_X^2.$$

Here

$$\rho = \operatorname{Corr}[Y, Z | X = x] = \rho_{YZ.X}$$

is the *partial correlation* between *Y* and *Z* given X = x, which is different from

$$ho_{YZ} = rac{\sigma_{YZ}}{\sqrt{\sigma_Y^2 \sigma_Z^2}} = rac{
ho + \sigma_X^2}{1 + \sigma_X^2}$$

which is the ordinary *correlation*.

Some basic probability calculus

Example:

See knitr 01

- ▶ Y scalar
- **x** is $1 \times p$
- β is $p \times 1$

Often we model using a *linear combination*

$$\mathbb{E}[\mathbf{Y}|\mathbf{x}] = g(\mathbf{x}\beta)$$

for some mapping function g(.), and assume

 $\operatorname{Var}[Y|\mathbf{x}] = V(\mathbf{x})$

for some non-negative function V(.).

Most commonly for continuous-valued Y

$$\mathbb{E}[Y|\mathbf{x}] = \mathbf{x}\beta$$

and

$$\operatorname{Var}[Y|\mathbf{x}] = \sigma^2$$

For a data set of size n comprising

- outcome data $\mathbf{y} = (y_1, \dots, y_n)^\top$
- predictor data **X** an $n \times p$ matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

we assume

$$\mathbb{E}[\mathbf{Y}|\mathbf{X}] = \mathbf{X}\beta \qquad \text{Var}[\mathbf{Y}|\mathbf{X}] = \sigma^2 \mathbf{I}_n$$

This is equivalent to the model

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

where ε is an $(n \times 1)$ vector of random variables with

$$\mathbb{E}[\varepsilon | \mathbf{X}] = \mathbf{0}_n \qquad \text{Var}[\varepsilon | \mathbf{X}] \equiv \mathbb{E}[\varepsilon \varepsilon^\top | \mathbf{X}] = \sigma^2 \mathbf{I}_n$$

We may choose to treat **X** as *fixed* or *random* quantities.

with X fixed, estimate parameters β and σ² using ordinary least squares (OLS)

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^\top (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

that is, $\widehat{\beta}$ solves

$$\mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\beta) = \mathbf{0}_p$$

so that

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

and

$$\widehat{\sigma}^2 = \frac{1}{n-p} (\mathbf{y} - \mathbf{X}\widehat{\beta})^\top (\mathbf{y} - \mathbf{X}\widehat{\beta})$$

Note that

$$\mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}eta) = \sum_{i=1}^{n} \mathbf{x}_{i}^{\top}(y_{i} - \mathbf{x}_{i}eta)$$

showing the form of the *estimating function*.

 ${}^{\blacktriangleright}$ with X random, using the model equation

$$\mathbf{X}^{\top}\mathbf{Y} = \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} + \mathbf{X}^{\top}\boldsymbol{\varepsilon}$$

and taking expectations with respect to the joint distribution

$$\mathbb{E}[\mathbf{X}^{\top}\mathbf{Y}] = \mathbb{E}[\mathbf{X}^{\top}\mathbf{X}]\beta + \mathbb{E}[\mathbf{X}^{\top}\varepsilon].$$

By assumption

$$\mathbb{E}[\mathbf{X}^{\top}\varepsilon] = \mathbb{E}_{\mathbf{X}}[\mathbf{X}^{\top}\mathbb{E}_{\varepsilon|\mathbf{X}}[\varepsilon|\mathbf{X}]] = \mathbf{0}_{p}.$$

Thus

$$\mathbb{E}[\mathbf{X}^{\top}\mathbf{Y}] = \mathbb{E}[\mathbf{X}^{\top}\mathbf{X}]\beta$$

and provided $\mathbb{E}[X^\top X]$ is non-singular, we have

$$\beta = \{ \mathbb{E}[\mathbf{X}^{\top}\mathbf{X}] \}^{-1} \mathbb{E}[\mathbf{X}^{\top}\mathbf{Y}].$$

Note also that

$$\mathbb{E}[\mathbf{X}^{\top}(\mathbf{Y} - \mathbf{X}\beta)] = \mathbf{0}_p$$

Using the method of moments, we have that

$$\{\mathbb{E}[\mathbf{X}^{\top}\mathbf{X}]\}^{-1}$$
 is estimated by $\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}^{\top}\mathbf{x}_{i}\right\}^{-1}$

and

$$\mathbb{E}[\mathbf{X}^{\top}\mathbf{Y}]$$
 is estimated by $\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}^{\top}y_{i}$

yielding an identical result to OLS.

By standard theory, we have for

$$\widehat{\beta}_n = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$$

that as the sample size grows the corresponding estimator

$$\widehat{\beta}_n = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y}$$

has good behaviour

• consistency: as $n \longrightarrow \infty$,

$$\hat{\beta}_n \xrightarrow{p} \beta_{\text{true}}$$

with $\beta_{\rm \tiny TRUE}$ the true (data generating) value.

asymptotic normality

$$\sqrt{n}(\widehat{\beta}_n - \beta_{\text{true}}) \stackrel{d}{\longrightarrow} Normal_p(\mathbf{0}_p, \sigma^2 \mathbf{V})$$

where

$$\mathbf{V}^{-1} = \min_{n \longrightarrow \infty} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} \right\}$$

provided the limit exists and is non-singular.

Note

This theory holds assuming *correct specification* of $\mathbb{E}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y}|\mathbf{X}]$.

• $\mathbf{Y} - \mathbf{X}\beta$ is *uncorrelated* with the columns of \mathbf{X} .

A parallel theory holds under *mis-specification*; however, most critically we *do not* obtain consistent estimators if the mean model is mis-specified.

Example:

Suppose we specify

$$\mathsf{E}_{Y|\mathbf{X}}[Y|\mathbf{X}] = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + z(\psi_0 + \psi_1 \mathbf{x}_1).$$

so that

$$\mathbf{x}_i = \begin{bmatrix} 1 & x_{i1} & x_{i2} & z_i & z_i x_{i1} \end{bmatrix}.$$

Using the above formulae, this leads us to estimates

$$\widehat{\beta}_n = \begin{bmatrix} \widehat{\beta}_0 & \widehat{\beta}_1 & \widehat{\beta}_2 & \widehat{\psi}_0 & \widehat{\psi}_1 \end{bmatrix}^\top$$

Example:

Then we may estimate the expected response for Z set to take the value z as

$$\frac{1}{n}\sum_{i=1}^{n}(\widehat{\beta}_{0}+\widehat{\beta}_{1}\mathbf{x}_{i1}+\widehat{\beta}_{2}\mathbf{x}_{i2}+\mathsf{Z}(\widehat{\psi}_{0}+\widehat{\psi}_{1}\mathbf{x}_{i1}))$$

Then, if we compare z = 1 with z = 0 we get the estimated difference

$$\widehat{\mathbb{E}}[Y|\mathbf{x}_1, \mathbf{x}_2, \mathbf{1}] - \widehat{\mathbb{E}}[Y|\mathbf{x}_1, \mathbf{x}_2, \mathbf{0}] = \frac{1}{n} \sum_{i=1}^n (\widehat{\psi}_0 + \widehat{\psi}_1 \mathbf{x}_{i1})$$

Moment-based estimation & sample averages

The idea of *moment-based estimation* is to estimate expectations using *sample averages*.

Sample mean:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

is an estimator of

$$\mu = \mathbb{E}_X[X] = \int x f_X(x) \ dx$$

Generalized version:

$$\frac{1}{n}\sum_{i=1}^n g(X_i)$$

is an estimator of

$$\mathbb{E}_X[g(X)] = \int g(x) f_X(x) \ dx$$

Moment-based estimation & sample averages

We are approximating the integral

$$\int g(x)f_X(x) \ dx$$

by the *empirical* version

$$\int g(x)\widehat{f}_n(x) \ dx$$

where

$$\widehat{f}_n(\mathbf{x}) = rac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i\}}(\mathbf{x})$$

We can think of this as a type of *Monte Carlo* calculation.

Monte Carlo estimation is reliant on the fact that as $n \to \infty$, we have certain types of *convergence*:

• Laws of large numbers: Suppose X_1, \ldots, X_n, \ldots are iid random variables. Then, usually,

$$\frac{1}{n}\sum_{i=1}^{n}g(X_{i})\xrightarrow[p]{\text{a.s.}}\mathbb{E}_{X}[g(X)]$$

• Central Limit Theorems: Under mild conditions on the joint distribution of random variables X_1, \ldots, X_n, \ldots ,

$$a_n\left(\frac{1}{n}\sum_{i=1}^n g(X_i) - b_n\right) \xrightarrow{d} Normal(\mu, \sigma^2)$$

for suitable choices of the sequences $\{a_n\}$ and $\{b_n\}$.

Essentially, standardized sums of random variables have stable long-run behaviour. For example,

$$\overline{X}_n \xrightarrow{p} \mathbb{E}_X[X] \qquad \qquad \frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{p} \mathbb{E}_X[X^2]$$

as $n \longrightarrow \infty$, and so on.

Importance sampling: The identity

$$\int g(x)f(x) \ dx = \int g(x)f(x) \frac{f_0(x)}{f_0(x)} \ dx = \int \frac{g(x)f(x)}{f_0(x)} f_0(x) \ dx$$

where f_0 is a probability density with support including the support of f: that is we must choose f_0 such that

$$f_0(x) > 0$$
 whenever $f(x) > 0$

That is,

$$\mathbb{E}_f[g(X)] = \mathbb{E}_{f_0}\left[rac{g(X)f(X)}{f_0(X)}
ight]$$

so that an estimator of the LHS is

$$\widehat{I}_{N}^{(f_{0})}(g) = rac{1}{N}\sum_{i=1}^{N}rac{g(X_{i})f(X_{i})}{f_{0}(X_{i})}$$

where $X_1, ..., X_N \sim f_0(.)$.

- $\widehat{I}_N^{(f_0)}$ is termed the *importance sampling* estimator.
- ► *f*⁰ is termed the *importance sampling density*.

Moment-based estimation & sample averages

Note

The importance sampling method tells us that even if we have an expectation that we need to estimate for distribution f, we can instead use 'data' sampled from a *different* distribution f_0 . By careful choice of f_0 , the estimator can have better performance than the Monte Carlo estimator in finite samples.

Note that

$$\widehat{I}_{N}^{(f_{0})}(g) = rac{1}{N}\sum_{i=1}^{N}rac{f(X_{i})}{f_{0}(X_{i})}g(X_{i}) = rac{1}{N}\sum_{i=1}^{N}w_{0}(X_{i})g(X_{i})$$

say, where

$$w_0(X_i) = \frac{f(X_i)}{f_0(X_i)}$$

is the *importance sampling weight*.

Moment-based estimation & sample averages

Note that

$$\mathbb{E}_{f_0}[w_0(X)] \equiv \mathbb{E}_{f_0}\left[\frac{f(X)}{f_0(X)}\right] = \int f(x) \, dx = 1$$

 \mathbf{SO}

$$\mathbb{E}_{f_0}\left[\frac{1}{N}\sum_{i=1}^N w_0(X_i)\right] = 1$$

although for any realization

$$\frac{1}{N}\sum_{i=1}^N w_0(\mathbf{x}_i) \neq 1$$

in general.

Example:

Consider the two distributions for variables X, Y, Z:

$$f: f_{X,Y,Z}(x, y, z) = f_X(x) f_{Z|X}(z|x) f_{Y|X,Z}(y|x, z)$$

$$f^*: f^*_{X,Y,Z}(\mathbf{x},\mathbf{y},z) = f_X(\mathbf{x}) f^*_Z(z) f_{Y|X,Z}(\mathbf{y}|\mathbf{x},z) \qquad \text{ i.e. } X \perp\!\!\!\!\perp Z$$

so that

$$\frac{f_{X,Y,Z}^{*}(\mathbf{x}, \mathbf{y}, z)}{f_{X,Y,Z}(\mathbf{x}, \mathbf{y}, z)} = \frac{f_{Z}^{*}(z)}{f_{Z|X}(z|\mathbf{x})}$$

Example:

Thus, for any function $g(\mathbf{x}, \mathbf{y}, \mathbf{z})$, using the importance sampling idea

$$\mathbb{E}_{f^*}[g(X,Y,Z)] = \mathbb{E}_f\left[rac{f_Z^*(Z)}{f_{Z|X}(Z|X)}g(X,Y,Z)
ight]$$

provided, for all z such that $f_Z^\ast(z)>0,$ we have $f_{Z|X}(z|x)>0$ for all x.

Example:

We are *reweighting* contributions to the expectation to account for the fact that

- under f^* , each contribution g(x, y, z) gets weight determined by $f^*_Z(z)$;
- under $f_{\text{,}}$ each contribution g(x,y,z) gets weight determined by $f_{Z\mid X}(z\mid \! x)$

Part 2 Causal Graphs

The structure of a joint distribution is essentially specified the set of *conditional distributions* that appear in the chain rule factorization. In general we have

$$f_{X,Y,Z}(x,y,z) = f_X(x)f_{Y|X}(y|x)f_{Z|X,Y}(z|x,y)$$

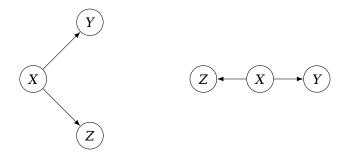
but perhaps we might assume that

 $Z \perp \!\!\!\perp Y | X$

so that $f_{Z|X,Y}(z|x,y) = f_{Z|X}(z|x)$ and

 $f_{X,Y,Z}(x,y,z) = f_X(x)f_{Y|X}(y|x)f_{Z|X}(z|x)$

We can depict the conditional independence using a graph:



This type of graph is sometimes called a *fork*.

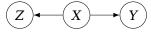
- Nodes (X), (Y), (Z) denote the variables;
- Edges with *arrows* indicate the nature of dependence in the chain rule factorization;
- Directed arrows specify the conditional independence assumptions;

Nodes without *incoming* edges are *founders*;

corresponds to

 $f_X(x)f_{Y|X}(y|x)$

Nodes with only *outgoing* edges act to *block* dependence:
 in



$$f_{X,Y,Z}(x,y,z) = f_X(x)f_{Y|X}(y|x)f_{Z|X}(z|x)$$

it is evident that $Y \perp \!\!\!\perp Z | X$.

However, note that

 $Y \not \perp Z$

By standard probability calculus

$$f_{Y,Z}(y,z) = \int f_{Y|X}(y|x) f_{Z|X}(z|x) f_X(x) dx$$
$$f_Y(y) = \int f_{Y|X}(y|x) f_X(x) dx$$
$$f_Z(z) = \int f_{Z|X}(z|x) f_X(x) dx$$

so in general

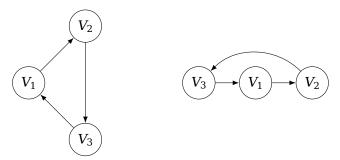
$$f_{Y,Z}(y,z) \neq f_Y(y)f_Z(z).$$

A (causal) graph G is described using the following elements:

- ► A set of *nodes* or *vertices*, *V*₁, *V*₂,..., representing variables.
- A set of *edges*, E_1, E_2, \ldots , representing dependencies.
- Two nodes are *adjacent* if there is an edge between them.
- Edges can be *directed*, denoted using arrows, or *undirected*; if all edges are directed, the graph is directed.
- The graph with the arrow directions removed is termed the *skeleton*.

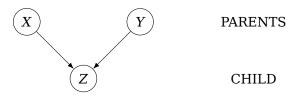
- A *path* between to nodes V₁ and V₂ is a sequence of edges connecting those nodes;
 - a *directed* path is a path where the directions of arrows on edges are obeyed.
 - two nodes are *connected* if a path exists between them, and *disconnected* otherwise.

 In general, a graph may contain *cycles*, that is, directed paths that start and end at the same node.



A directed graph that has no cycles is termed a *directed acyclic graph* (DAG).

The language of *'kinship'* may be used to describe graphical connections:



 $f_{X,Y,Z}(x,y,z) = f_X(x)f_Y(y)f_{Z|X,Y}(z|x,y)$

In this DAG, we have $X \perp \!\!\!\perp Y$:

$$\begin{split} f_{X,Y}(x,y) &= \int f_X(x) f_Y(y) f_{Z|X,Y}(z|x,y) \, dz \\ &= f_X(x) f_Y(y) \int f_{Z|X,Y}(z|x,y) \, dz \\ &= f_X(x) f_Y(y) \end{split}$$

as

$$\int f_{Z|X,Y}(z|x,y) \, dz = 1$$

However, conditioning on Z = z

$$\begin{split} f_{X,Y|Z}(x,y|z) &= \frac{f_{X,Y,Z}(x,y,z)}{f_Z(z)} & \text{definition} \\ &= \frac{f_X(x)f_Y(y)f_{Z|X,Y}(z|x,y)}{f_Z(z)} & \text{by assumption} \\ &= f_X(x)f_Y(y)\frac{f_{Z|X,Y}(z|x,y)}{f_Z(z)} \\ &\neq f_X(x)f_Y(y) \end{split}$$

in general.

That is,

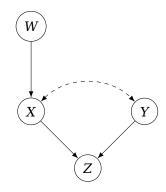
$X \perp\!\!\!\perp Y$

but

$X \not \perp Y \mid Z$

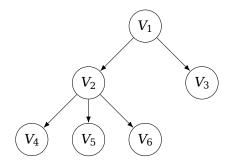
Conditioning on Z induces dependence; the node Z is sometimes termed a *collider*.

Causal Graphs



- *X* and *Y* are *spouses*, and *parents* of *Z*.
- X, Y and W are ancestors of Z.
- X is a *child* of W.
- Z is a *child* of X and Y.

A *tree* is a graph where each node has at most one *parent*.



A *chain* is a graph where each node has at most one *child*.

$$V_1 \rightarrow V_2 \rightarrow V_3$$

For variables X_1, X_2, \ldots, X_d , define for $j = 1, \ldots, d$ the *set* of *parents* of X_j , denoted

$$\mathrm{PA}_j \equiv \{X_1^{(j)},\ldots,X_{n_j}^{(j)}\},$$
 say

such that for $X_k \notin P_{A_j}$,

$$X_j \perp \!\!\!\perp X_k \mid X_1^{(j)}, \ldots, X_{n_j}^{(j)}$$

and that no proper subset of P_{A_j} yields the conditional independence. That is, P_{A_j} is the *smallest* set of variables for which the conditional independence statement holds.

We have for the chain rule factorization

$$\begin{split} f_{X_1,\dots,X_d}(\mathbf{x}_1,\dots,\mathbf{x}_d) &= f_{X_1}(\mathbf{x}_1) \prod_{j=2}^d f_{X_j \mid X_1,\dots,X_{j-1}}(\mathbf{x}_j \mid \mathbf{x}_1,\dots,\mathbf{x}_{j-1}) \\ &\equiv f_{X_1}(\mathbf{x}_1) \prod_{j=2}^d f_{X_j \mid \mathsf{PA}_j}(\mathbf{x}_j \mid \mathbf{x}_1^{(j)},\dots,\mathbf{x}_{n_j}^{(j)}) \end{split}$$

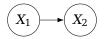
To construct the factorization, we start with the *founders* for which the parent set is *empty*.

Causal Graphs

 X_1, X_2

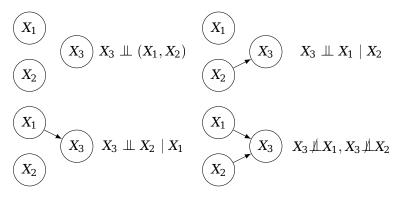
$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$$

or

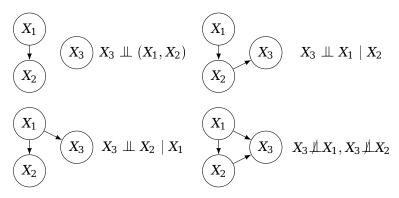


$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1) f_{X_2|X_1}(x_2|x_1)$$

Add in X_3 : independence case



Add in X_3 : dependence case



Compatibility: The probability distribution P is *compatible* with graph G if P admits the factorization implied by G.

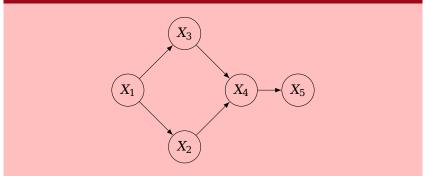
- note the G does not define P, merely the chain rule factorization that P admits;
- termed 'Markov compatibility'; P is Markov with respect to G, that is, we may deduce from G that

$$f_{X,Y,Z}(x,y,z) = f_X(x)f_Y(y)f_{Z|X,Y}(z|x,y)$$

say, but we do not know the forms or values of the individual terms.

Causal Graphs

Example:



 $f_{X_1}(x_1)f_{X_2|X_1}(x_2|x_1)f_{X_3|X_1}(x_3|x_1)f_{X_4|X_2,X_3}(x_4|x_2,x_3)f_{X_5|X_4}(x_5|x_4)$

Note

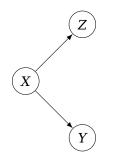
We need so ensure that all conditional densities are welldefined, that is, we must condition on values that carry are in the *support* of the *marginal density* for the conditioning variables. For example, we can only compute

$$f_{X_3|X_1,X_2}(x_3|x_1,x_2)$$

for (x_1, x_2) such that

 $f_{X_1,X_2}(x_1,x_2) > 0.$

When we write

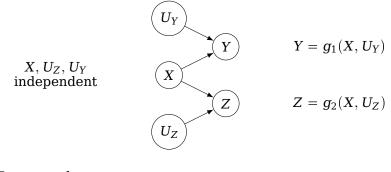


what precisely (mechanistically) does the symbol ——— mean ?

One interpretation is via a *structural* interpretation:

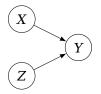
- generate X independently,
- generate Y and Z independently as functions of the realized X, for example

Y = 3XZ = 4X + 9



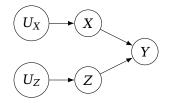
For example

 $Y = X + U_Y$ $Z = X + U_Z$



Y = g(X, Z)

If we fixed X = x and Z = z, we would know Y = g(x, z) precisely.



so that $X = g_1(U_X)$, $Z = g_2(U_Z)$, and

Y = g(X, Z).

If we know X = x and Z = z, then we do not need to know the values of U_X and U_Z to determine Y. That is

 $Y \perp\!\!\!\!\perp (U_X, U_Z) \mid (X, Z)$

We can interpret causation in terms of these functions.

- X causes Y if it appears in the function, g, that assigns Ys value;
- ➤ X causes Y if, in the graph representing the joint distribution, there is a directed path from X to Y;
- X is a *direct cause* of Y if there is an arrow from X to Y

Variables that have no 'causes' (ancestors) are termed *exogenous*; variables that have at least one cause are termed *endogenous*.

Consider three disjoint sets of nodes

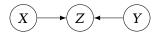
 $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$

of DAG G. To assess whether

 $X \perp\!\!\!\perp Y \mid Z \qquad \forall X \in \mathcal{X}, Y \in \mathcal{Y}, Z \in \mathcal{Z}$

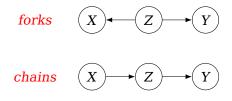
for any distribution compatible with the DAG, we must assess whether Z 'blocks' paths from X to Y.

Consider the *collider* ('inverted fork') graph

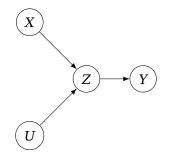


Z is a collider on this path.

A *directed path* from one node to another cannot contain a collider; all parts must be



The notion of being a collider is *path-specific*: for example



- ► *Z* is a *collider* on *XZU*
- *Z* is **not a collider** on *XZY*.

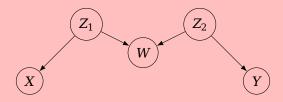
Unconditional d-separation: A path is *open* (or *unblocked*, or *active*) unconditionally if there is no collider on the path; if there is a collider, the path is *closed* (*blocked*, *inactive*)

Two variables *X* and *Y* are *d*-separated if there is no open path between them; if there is an open path, the two variables are d-connected.

d-separation

Example: Diabetes example (Rothman et al. p 188)

- *Z*₁ family income
- Z₂ genetic risk
- W parental diabetes
- X low educational attainment
- Y diabetes of subject



Example: Diabetes example (Rothman et al. p 188)

X and Y are d-separated; there is one path between X and Y, but it is blocked at W by the collider.

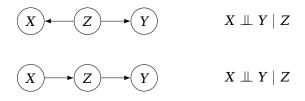
 $f_{Z_1}(z_1)f_{Z_2}(z_2)f_{W|Z_1,Z_2}(w|z_1,z_2)f_{X|Z_1}(x|z_1)f_{Y|Z_2}(y|z_2)$

and *X* and *Y* are *independent*:

• integrate out w, then z_1 , then z_2 .

Conditional d-separation: we can consider similar statements obtained after *conditioning* on a variable.

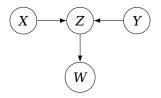
For a non-collider Z: consider conditioning on Z



For a collider Z: consider conditioning on Z

$$(X) \longrightarrow (Z) \longleftarrow (Y) \qquad X \not\perp Y \mid Z$$

However, consider



 $f_X(x)f_Y(y)f_{Z|X,Y}(z|x,y)f_{W|Z}(w|z)$

We have that *X* and *Y* are independent.

But

$$\begin{split} f_{X,Y,W}(x,y,w) &= f_X(x) f_Y(y) \int f_{Z|X,Y}(z|x,y) f_{W|Z}(w|z) \, dz \\ &= f_X(x) f_Y(y) f_{W|X,Y}(w|x,y) \end{split}$$

Therefore we have that

and W is a collider.

Therefore

- (i) conditioning on a *non-collider Z blocks* the path at *Z*;
- (ii) conditioning on a *collider* Z or a *descendant* W of Z opens the path at Z;

Suppose S is a set of variables.

- S blocks a path from X to Y if, after conditioning on S, the path is closed; S unblocks a path if after conditioning the path is open.
- If *S* blocks every path from *X* to *Y*, then *X* and *Y* are *d*-separated.

• If S d-separates X and Y, $X \perp \!\!\!\perp Y \mid S$,

$$f_{X|Y,S}(x|y,s) \equiv f_{X|S}(x|s) \quad \forall (x,y,s).$$

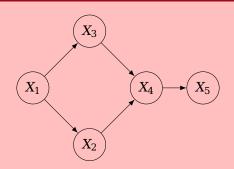
▶ If *S* does not d-separate *X* and *Y*, then *X* and *Y* may be dependent, and

 $f_{X|Y,S}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{s})$

cannot be made independent of *y* in general.

d-separation

Example:

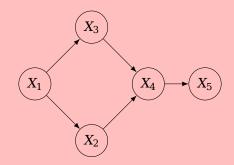


 $\{X_2\}$ and $\{X_3\}$ are d-separated by $\{X_1\}$, and $X_2 \perp X_3 \mid X_1$.

- there are two paths between *X*₂ and *X*₃;
 - $X_2X_1X_3$: blocked by conditioning on X_1 .
 - $X_2X_4X_3$: blocked by the collider at X_4 , and $X_4 \notin \{X_1\}$.

d-separation

Example:

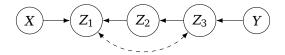


 $\{X_2\}$ and $\{X_3\}$ are *not* d-separated by $\{X_1, X_5\}$:

- $X_2 \not\perp X_3 \mid (X_1, X_5).$
- X_5 is a descendant of collider X_4 ;

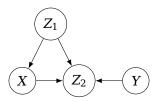
Selection bias: Conditioning on the common effect of two causes renders the two causes dependent; this is known as

selection bias or Berkson bias



Here $X \perp \!\!\!\perp Y$: there are two paths between X and Y

- $XZ_1Z_2Z_3Y$ is blocked by the collider Z_1 .
- XZ_1Z_3Y is blocked by the colliders Z_1 and Z_3 . Therefore $X \not\perp Y \mid \{Z_1, Z_3\}$.



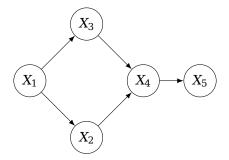
Here $X \perp \!\!\!\perp Y$: there are two paths between X and Y

- XZ_1Z_2Y
- XZ_2Y

both blocked by collider Z_2 . Therefore $X \not\perp Y \mid \{Z_2\}$.

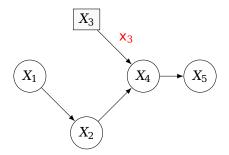
If X and Y are d-separated by S then $X \perp Y \mid S$ for all distributions compatible with G; conversely, if they are not d-separated, then X and Y are dependent given S for at least on distribution compatible with G.

Consider the DAG



 $f_{X_1}(x_1)f_{X_2|X_1}(x_2|x_1)f_{X_3|X_1}(x_3|x_1)f_{X_4|X_2,X_3}(x_4|x_2,x_3)f_{X_5|X_4}(x_5|x_4)$

Suppose we *intervene* to set $X_3 = x_3$. The relevant DAG is now



 $f_{X_1}(x_1)f_{X_2|X_1}(x_2|x_1)f_{X_3}^*(x_3)f_{X_4|X_2,X_3}(x_4|x_2,x_3)f_{X_5|X_4}(x_5|x_4)$ where $f_{X_3}^*(.)$ is a *degenerate* distribution at x_3 . X_1 is *no longer a cause* of X_3 .

Note

We note the distinction between the distributions

$$f_{X_1,X_2,X_4,X_5|X_3}(\textbf{x}_1,\textbf{x}_2,\textbf{x}_4,\textbf{x}_5|\textbf{x}_3) = \frac{f_{X_1,X_2,X_3,X_4,X_5}(\textbf{x}_1,\textbf{x}_2,\textbf{x}_3,\textbf{x}_4,\textbf{x}_5)}{f_{X_3}(\textbf{x}_3)}$$

which arises from the original DAG, and

$$f^*_{X_1,X_2,X_4,X_5|X_3}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_4,\mathbf{x}_5|\mathbf{x}_3) = \frac{f^*_{X_1,X_2,X_3,X_4,X_5}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5)}{f^*_{X_3}(\mathbf{x}_3)}$$

which arises from the *intervention* DAG.

Note

In the causal literature, the distinction is sometimes acknowledged using the 'do' operator

$$f_{X_1,X_2,X_4,X_5}(x_1,x_2,x_4,x_5 \mid do(X_3) = x_3)$$

is the same as

$$f^*_{X_1,X_2,X_4,X_5|X_3}(x_1,x_2,x_4,x_5 \mid \textbf{x_3})$$

This notation was introduced by J. Pearl.

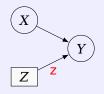
Intervening on a variable X to set the level to \mathbf{x} has the effect of

- removing all *incoming* arrows to X
- switching the marginal for X to the degenerate distribution $f_X^*(.)$

$$f_X^*(x) = \mathbb{1}_{\{\mathbf{x}\}}(x) \quad x \in \mathbb{R}.$$

Note

In the earlier example



 $f_X(x)f_{Z|X}(z|x)f_{Y|X,Z}(y|x,z)$

 $f_X(x)f_Z^*(\mathbf{Z})f_{Y|X,Z}(y|x,\mathbf{Z})$

We aim to understand the effect of Z on Y, say

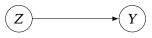
An open undirected path between Z and Y allows for the association between Z and Y to be modified by the presence of other variables.

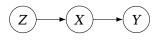
This is known as a *biasing* path.

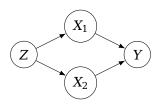
 by association, we typically mean some form of correlation (or partial correlation).

Graphical representation of bias

the association between Z and Y is unconditionally unbiased (or marginally unbiased) for the effect of Z on Y if the only open paths between them are directed paths.







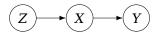
For variables S, S is *sufficient* to control bias in the association between Z and Y if, conditional on S, the *open* paths between Z and Y are precisely the *directed* paths between Z and Y.

► *S* is *minimally sufficient* if no proper subset of *S* is sufficient.

The set of parents of nodes in S is always sufficient, but may not be minimally sufficient.

Conditioning on descendants of Z: such conditioning

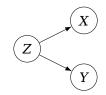
(i) *blocks* directed paths



 $Z \perp\!\!\!\perp Y \mid X$ but $Z \not\perp\!\!\!\perp Y$

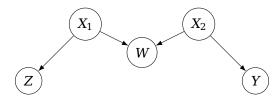
- (ii) can *unblock* or *create* paths that lead to *biasing* of the effect of Z on Y.
 - collider case
 - selection bias case.

(iii) may be unnecessary in statistical terms: for example



Conditioning on *X* will not affect bias.

Undirected paths from Z to Y are termed 'backdoor' paths (relative to Z) if they start with an arrow pointing *into* Z.



The only path from Z to Y is a backdoor path.

Before conditioning

- all biasing paths in a DAG are backdoor paths, and
- all *open* backdoor paths are biasing paths.

To obtain an unbiased estimate of the effect of Z on Y, all backdoor paths between Z and Y must be <u>blocked</u>.

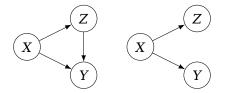
A set S satisfies the **backdoor criterion** with respect to Z and Y if

- (i) S contains no descendant of Z, and
- (ii) there is no open backdoor path from Z to Y after conditioning on S.

Conditioning on S allows identification of the causal effect of Z on Y.

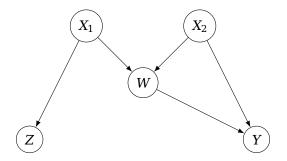
Confounding: A *confounding path* between Z and Y is a biasing path (that is, an undirected open path) that ends with an arrow into Y.

Variables on a confounding path are termed *confounders*.



X is a confounder in both cases.

Graphical representation of bias



W is a collider on the path from Z to Y

Path 1: $Z X_1 W X_2 Y$

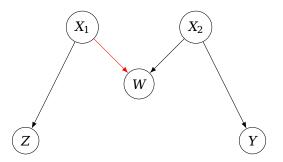
and hence this path is blocked.

However unconditional on W, the effect of Z on Y is confounded by the backdoor path, Path 2: ZX_1WY .

Conditioning on W alone opens Path 1, therefore to block both paths need to condition on

 $S \equiv \{W, X_2\}.$

Graphical representation of bias

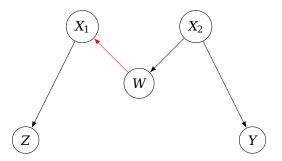


Conditioning on *W* opens the confounding path. Therefore $Z \perp Y$ (as there is no open path between them), but

$Z \not\perp Y \mid W$

Further conditioning on either $\{X_1\}$ or $\{X_2\}$ blocks the path.

Graphical representation of bias



Conditioning on W blocks the confounding path. Therefore conditioning on any one of

 $\{X_1\}, \{W\}, \{X_2\}$

will block the path.

- *Direct effect:* A direct effect of Z on Y (relative to X) is the effect captured by a *directed* path from Z to Y that does not pass through X.
- *Indirect effect:* An indirect effect of *X* on *Y* that is captured by directed paths that pass through *X*.

In this formulation, X is termed an *intermediate* or *mediator* variable.

Note that *X* may be ignored as a mediator, and merely treated as a third variable.

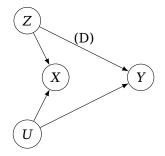
Direct and indirect effects

Indirect effect

Direct (D) & Indirect effect

Direct effect is confounded

Direct and indirect effects



No indirect effect

Direct effect is not confounded

X is a collider, so there is no other open path from Z to Y.

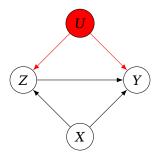
Note

$$Z \longrightarrow X \longrightarrow Y$$

If we ignore *X* as a mediator:

- *controlled* direct effect: consider *X* = *x* held constant.
- *natural* direct effect: consider Z = z held constant, with X taking multiple values.

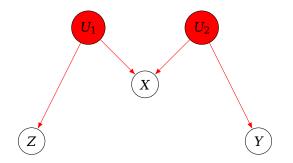
Suppose that in reality there is a further variable U that is a confounder, but is unmeasured in the observed data.



There is a hidden confounding path $Z \ U \ Y$. Conditioning on U is not possible, as we are unaware of its existence.

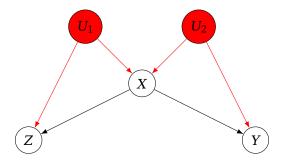
Unmeasured confounding

With two unmeasured confounders:



We have that X, Y and Z are *independent*; the (true but hidden) path between Z and Y is blocked at collider X.

However with the same unmeasured confounders:



In the modelled DAG, $Y \perp \!\!\!\perp Z \mid X$; however, conditioning on X opens the hidden path.

Part 3 Causal Effects

The *causal effect* of variable Z on variable Y is the amount to which an *intervention* to change Z modifies some aspect

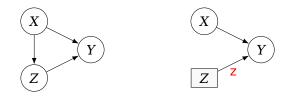
- expected value
- quantile
- distribution

of Y.

The intervention changes Z from z_0 to z_1 , say; in the earlier notation, we consider the intervention model

$$f_{X,Y,Z}^*(\mathbf{x},\mathbf{y},\mathsf{z}) = f_X(\mathbf{x}) f_Z^*(\mathsf{z}) f_{Y|X,Z}(\mathbf{y}|\mathbf{x},\mathsf{z})$$

evaluated for different values of z.



 $f_X(x) f_{Z|X}(z|x) f_{Y|X,Z}(y|x,z) \qquad \quad f_X(x) f_Z^*(\textbf{Z}) f_{Y|X,Z}(y|x,\textbf{Z})$

The effect of intervening on Z is to remove all inbound arrows to node Z, and to fix the value of Z to z. We then consider features pertaining to

 $f_{Y|X,Z}(y|x, \mathbf{Z}).$

Note

Usually we reserve the term 'causal effect' for cases where the treatment

- is a *single* specific quantity;
- is genuinely *manipulable* by intervention;
- precedes the outcome temporally.

The *counterfactual* or *potential outcome* notation is widely used to formulate causal inference questions.

Let Y(z) denote the random variable recording the (*potential* or *counterfactual*) outcome *Y* that would be observed if there is an intervention to set Z = z.

For any individual, there is therefore a family of potential outcomes

$$\{Y(\mathsf{Z}):\mathsf{Z}\in\mathsf{Z}\subseteq\mathcal{Z}\}.$$

For example, if $Z \in \{0, 1\} \equiv \mathbb{Z}$, then

Y(0): outcome if intervention sets z = 1

Y(1): outcome if intervention sets z = 0

In practice, it is sufficient to consider a *countable* set Z.

In most cases, the intervention is a *hypothetical* one, and we utilize data arising from a study where Z is observed as part of some stochastic mechanism.

It is reasonable (in fact, necessary) to assume that for observed outcome Y and observed treatment Z, we have

$$Y = \sum_{\mathsf{z} \in \mathcal{Z}} Y(\mathsf{z}) \mathbb{1}_{\{\mathsf{z}\}}(Z)$$

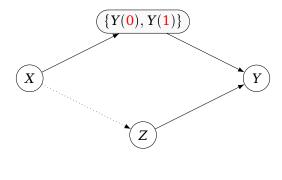
(with probability 1). That is, the observed outcome is identical to the potential outcome arising from the counterfactual treatment that matches the observed treatment.

Potential outcome notation

In the binary case, we may write

$$Y = (1 - Z)Y(0) + ZY(1)$$

and assume strong ignorability



 $\{Y(\textbf{0}),Y(\textbf{1})\} \perp\!\!\!\perp Z \mid X$

Note

- *Y* and Y(z) are different random variables.
- We will typically only observe a single treatment for each individual, so only one of the potential outcomes will be observed.
- Modelling the joint distribution of Y(z) for multiple values of z for a single individual will be challenging.
- Cannot have *unmeasured confounding*, that is, *X* must be an exhaustive list of confounders.

We consider the data being generated as follows:

- ▶ an individual is selected at random, and brings their characteristics X ~ f_X;
- the effect of treatment on this individual is to be modelled; the distribution of each potential outcome Y(z), conditional on X, is considered;
- as soon as treatment is assigned/observed, the relevant counterfactual distribution is selected.

Consider the distribution

 $f_{Y(\mathbf{Z})|X}(y|x).$

According to earlier assumptions, we should have that

$$f_{Y(\mathbf{Z})|X}(y|x) \equiv f_{Y|X,Z}(y|x,\mathbf{Z})$$

that is, conditional on *X*, the effect on *Y* of the intervention to set Z = z is the same as if *Z* were stochastically assigned.

Then marginally, for each ${\bf z}$

$$f_{Y(z)}(y) = \int f_{Y(z)|X}(y|x) f_X(x) \ dx \equiv \int f_{Y|X,Z}(y|x, z) f_X(x) \ dx$$

yield

 $f_{Y(0)}(y) = f_{Y(1)}(y)$

say.

to

To describe the causal effect, we may consider *causal contrasts*

- Y(1) Y(0)
- $Y(\mathbf{z_1}) Y(\mathbf{z_0})$
- $\log Y(\mathbf{1}) \log Y(\mathbf{0})$

and so on.

These quantities are random variables, so it is more common to express the causal effect through summaries of $f_{\rm Y(Z)}(y)$

- Moments: $\mathbb{E}[Y(\mathbf{z})]$
- Quantiles

In an *experimental study* precisely the right kind of 'intervention' to study causal contrast is made.

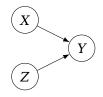
A simple form of experimental study proceeds as follows: 2n individuals are sampled from a homogeneous population.

- *n* are assigned treatment Z = 0;
- *n* are assigned treatment Z = 1

irrespective of the individual characteristics of the subjects; the assignment of Z is *independent* of X.

Finally, the outcome Y is measured for each of the 2n subjects.

Here, for each half of the study, the data generating mechanism is as follows.



 $f_X(x)f_Z(z)f_{Y|X,Z}(y|x,z)$

Here we do not need to distinguish the data generating mechanism from the hypothetical intervention, by independence. We may also consider a *randomized* version of this study; for each of the individuals in the study, we assign Z = z, independently of X, according to the distribution

$$f_Z(z) = p^z (1-p)^{1-z} \quad z \in \{0,1\}.$$

that is, an individual receives

- Z = 0 with probability 1 p
- Z = 1 with probability p

for some 0 .

Let N_1 denote the total number of individuals for whom Z = 1

$$N_1 = \sum_{i=1}^{2n} \mathbb{1}_{\{1\}}(Z_i)$$

so that

 $N_1 \sim Binomial(2n, p).$

In the study, we observe $N_1 = n_1$.

In both non-randomized and randomized studies, the same distributional factorization pertains.

We will denote this distribution

$$f_X^{\mathcal{E}}(x) f_Z^{\mathcal{E}}(z) f_{Y|X,Z}^{\mathcal{E}}(y|x,z)$$

with the superscript $\ensuremath{\mathcal{E}}$ indicating the experimental assumption.

Suppose we wish to estimate the difference in outcome (on average) between those individuals assigned Z = 1 and those assigned Z = 0.

The causal contrast of interest is then

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

which is known as the *average treatment effect* (ATE). The quantity

$$\mathbb{E}[Y(1)]$$

is termed the average potential outcome (APO).

In terms of the above distributions, we may write

$$\begin{split} \mathbb{E}[Y(\mathsf{z})] &\equiv \mathbb{E}_{Y|Z}^{\mathcal{E}}[Y|Z=\mathsf{z}] = \int y \ f_{Y|Z}^{\mathcal{E}}(y|\mathsf{z}) \ dy \\ &= \iint y \ f_{Y|X,Z}^{\mathcal{E}}(y|\mathsf{x},\mathsf{z}) f_{X}^{\mathcal{E}}(\mathsf{x}) \ dy \ dx \end{split}$$

by independence of X and Z. Multiplying top and bottom by $f_Z^{\varepsilon}(z)$, we have

$$\mathbb{E}_{Y|Z}^{\varepsilon}[Y|Z = \mathbf{z}] = \frac{\iint y \ f_{Y|X,Z}^{\varepsilon}(y|\mathbf{x}, \mathbf{z}) f_{Z}^{\varepsilon}(\mathbf{z}) f_{X}^{\varepsilon}(\mathbf{x}) \ dy \ dx}{f_{Z}^{\varepsilon}(\mathbf{z})}$$

We may write the double integral as a triple integral: with a slight abuse of notation,

$$\frac{\iiint \mathbb{1}_{\{\mathsf{z}\}}(z) y \ f_{Y|X,Z}^{\varepsilon}(y|\mathbf{x},z) f_{Z}^{\varepsilon}(z) f_{X}^{\varepsilon}(\mathbf{x}) \ dy \ dx \ dz}{\iiint \mathbb{1}_{\{\mathsf{z}\}}(z) f_{Y|X,Z}^{\varepsilon}(y|\mathbf{x},z) f_{Z}^{\varepsilon}(z) f_{X}^{\varepsilon}(\mathbf{x}) \ dy \ dx \ dz}$$

Thus

$$\mathbb{E}^{\mathcal{E}}_{Y|Z}[Y|Z = \mathbf{Z}] = \frac{\mathbb{E}^{\mathcal{E}}_{X,Y,Z}[\mathbb{1}_{\{\mathbf{Z}\}}(Z)Y]}{\mathbb{E}^{\mathcal{E}}_{X,Y,Z}[\mathbb{1}_{\{\mathbf{Z}\}}(Z)]}$$

Now using the sample data, we may use moment-based estimation to estimate numerator and denominator:

$$\widehat{\mathbb{E}}_{X,Y,Z}^{\varepsilon}[\mathbb{1}_{\{\mathbf{z}\}}(Z)Y] = \frac{1}{2n} \sum_{i=1}^{2n} \mathbb{1}_{\{\mathbf{z}\}}(Z_i)Y_i$$
$$\widehat{\mathbb{E}}_{X,Y,Z}^{\varepsilon}[\mathbb{1}_{\{\mathbf{z}\}}(Z)] = \frac{1}{2n} \sum_{i=1}^{2n} \mathbb{1}_{\{\mathbf{z}\}}(Z_i)$$

and hence estimate the ratio by

$$\widehat{\mathbb{E}}_{Y|Z}^{\varepsilon}[Y|Z = \mathbf{z}] = \frac{\sum_{i=1}^{2n} \mathbb{1}_{\{\mathbf{z}\}}(Z_i)Y_i}{\sum_{i=1}^{2n} \mathbb{1}_{\{\mathbf{z}\}}(Z_i)}.$$
(1)

This follows as we actually have a sample from

$$f_{Y|X,Z}^{\mathcal{E}}(y|x,z)f_Z^{\mathcal{E}}(z)f_X^{\mathcal{E}}(x)$$

In this estimator:

- numerator is merely the sum of the Y_is for all those individuals who received treatment Z = z;
- denominator is merely the number of individuals who received treatment Z = z.

Thus, we are merely estimating the quantity $\mathbb{E}[Y(z)]$ by taking the *sample mean* in the group for which Z = z.

For the binary case, the formulae simplify

$$\widehat{\mathbb{E}}_{Y|Z}^{\varepsilon}[Y|Z=1] = \frac{\sum_{i=1}^{2n} Z_i Y_i}{\sum_{i=1}^{2n} Z_i} = \frac{1}{N_1} \sum_{i=1}^{2n} Z_i Y_i$$
$$\widehat{\mathbb{E}}_{Y|Z}^{\varepsilon}[Y|Z=0] = \frac{\sum_{i=1}^{2n} (1-Z_i)Y_i}{\sum_{i=1}^{2n} (1-Z_i)} = \frac{1}{N_0} \sum_{i=1}^{2n} (1-Z_i)Y_i.$$

Note that we know that

$$f_Z^arepsilon(\mathbf{z}) = p^{\mathsf{z}}(1-p)^{1-\mathsf{z}}$$

so we can consider the alternative estimator

$$\widehat{\mathbb{E}}_{Y|Z}^{\varepsilon}[Y|Z = \mathbf{Z}] = \frac{1}{2np^{\mathbf{Z}}(1-p)^{1-\mathbf{Z}}} \sum_{i=1}^{2n} \mathbb{1}_{\{\mathbf{Z}\}}(Z_i)Y_i.$$
(2)

That is

$$\widehat{\mathbb{E}}[Y(1)] = \frac{1}{2np} \sum_{i=1}^{2n} \mathbb{1}_{\{1\}}(Z_i) Y_i$$
$$\widehat{\mathbb{E}}[Y(0)] = \frac{1}{2n(1-p)} \sum_{i=1}^{2n} \mathbb{1}_{\{0\}}(Z_i) Y_i$$

and the estimator of the ATE is

$$\widehat{\mathbb{E}}[Y(1)] - \widehat{\mathbb{E}}[Y(0)].$$

In a randomized study of size n, the estimator from (1) may be written

$$\widehat{\mathbb{E}}_{Y|Z}^{\varepsilon}[Y|Z=\mathsf{z}] = \frac{\sum_{i=1}^{n} \mathbb{1}_{\{\mathsf{z}\}}(Z_i)Y_i}{\sum_{i=1}^{n} \mathbb{1}_{\{\mathsf{z}\}}(Z_i)} \equiv \sum_{i=1}^{n} W_i(\mathsf{z})Y_i$$

where

$$W_i(\mathsf{z}) = \frac{\mathbb{1}_{\{\mathsf{z}\}}(Z_i)}{\sum_{j=1}^n \mathbb{1}_{\{\mathsf{z}\}}(Z_j)}.$$

Note that $\mathbb{E}_Z^arepsilon[W_i(\mathsf{z})] = rac{1}{n}$ and $0\leqslant W_i(\mathsf{z})\leqslant 1$ $\sum_{i=1}^n W_i(\mathsf{z}) = 1.$

Note also that for this estimator we can define

$$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{\mathsf{Z}\}}(Z_i) = \frac{1}{n} \sum_{i=1}^{n} Z_i$$

so that

$$\widehat{\mathbb{E}}_{Y|Z}^{\mathcal{E}}[Y|Z=1] = \frac{1}{n\widehat{p}}\sum_{i=1}^{n}Z_{i}Y_{i}$$
$$\widehat{\mathbb{E}}_{Y|Z}^{\mathcal{E}}[Y|Z=0] = \frac{1}{n(1-\widehat{p})}\sum_{i=1}^{n}(1-Z_{i})Y_{i}$$

Both estimators (1) and (2) are *unbiased* for the APO.

(1)
$$\hat{\mu}_n(1) = \frac{1}{n\hat{p}} \sum_{i=1}^n Z_i Y_i$$
 $\hat{\mu}_n(0) = \frac{1}{n(1-\hat{p})} \sum_{i=1}^n (1-Z_i) Y_i$
(2) $\tilde{\mu}_n(1) = \frac{1}{np} \sum_{i=1}^n Z_i Y_i$ $\tilde{\mu}_n(0) = \frac{1}{n(1-p)} \sum_{i=1}^n (1-Z_i) Y_i$

This results in estimators that are unbiased for the ATE:

$$\hat{\delta}_n = \frac{1}{n\hat{p}} \sum_{i=1}^n Z_i Y_i - \frac{1}{n(1-\hat{p})} \sum_{i=1}^n (1-Z_i) Y_i = \frac{1}{n} \sum_{i=1}^n \frac{(Z_i - \hat{p})}{\hat{p}(1-\hat{p})} Y_i$$
$$\tilde{\delta}_n = \frac{1}{np} \sum_{i=1}^n Z_i Y_i - \frac{1}{n(1-p)} \sum_{i=1}^n (1-Z_i) Y_i = \frac{1}{n} \sum_{i=1}^n \frac{(Z_i - p)}{p(1-p)} Y_i$$

The only difference between the estimators is whether we use \hat{p} or p to represent the treatment probability.

It transpires that

$$\lim_{n \longrightarrow \infty} n \operatorname{Var}[\widehat{\delta}_n] < \lim_{n \longrightarrow \infty} n \operatorname{Var}[\widetilde{\delta}_n]$$

that is, estimator $\hat{\delta}_n$ is (asymptotically) more *efficient*.

That is, *it is better to estimate* p rather than use its known value.

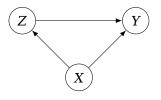
In an *observational study* we do not intervene to assign treatment to subjects, we observe it as part of the data collection process.

We denote the data generating mechanism

$$f^{\mathcal{O}}_{X,Y,Z}(x,y,z)$$

In the observational setting, there may be several possible proposed data generating mechanisms, but critically we may consider 'causes' of treatment Z.

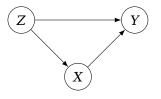
A DAG of interest involves a backdoor path from Z to Y



 $f_X^{\mathcal{O}}(\mathbf{x}) f_{Z|X}^{\mathcal{O}}(z|\mathbf{x}) f_{Y|X,Z}^{\mathcal{O}}(y|\mathbf{x},z)$

There is an open backdoor (and confounding) path Z X Y and therefore there is a possibility of bias.

To get at the causal effect of Z on Y, we must block the backdoor path by *conditioning* on X. Note that we might have the following DAG:



 $f_Z^{\mathcal{O}}(z) f_{X|Z}^{\mathcal{O}}(x|z) f_{Y|X,Z}^{\mathcal{O}}(y|x,z)$

There are two paths from Z to Y: the direct path, and the path Z X Y, which is again blocked by *conditioning* on X.

Here X is a mediator on the indirect path; we might be interested in both the direct and indirect effects of Z on Y.

Suppose we try to estimate the causal effect of Z on Y in the confounding case. First, consider

$$\mathbb{E}_{Y|Z}^{\mathcal{O}}[Y|Z = \mathbf{Z}]$$

which would be the equivalent of the earlier causal quantity (the APO at treatment z); however, here note that, in the observed data, Z = z is not achieved by intervention as in the experimental case.

We have, as in the earlier calculation

$$\begin{split} \mathbb{E}_{Y|Z}^{\mathcal{O}}[Y|Z = \mathbf{Z}] &= \iint y \; f_{Y|X,Z}^{\mathcal{O}}(y|\mathbf{x}, \mathbf{Z}) f_{X|Z}^{\mathcal{O}}(\mathbf{x}|\mathbf{Z}) \; dy \; dx \\ &= \frac{\iiint \mathbb{1}_{\{\mathbf{Z}\}}(z) y \; f_{Y|X,Z}^{\mathcal{O}}(y|\mathbf{x}, z) f_{X|Z}^{\mathcal{O}}(\mathbf{x}|z) f_{Z}^{\mathcal{O}}(z) dy \; dx \; dz}{\iiint \mathbb{1}_{\{\mathbf{Z}\}}(z) \; f_{Y|X,Z}^{\mathcal{O}}(y|\mathbf{x}, z) f_{X|Z}^{\mathcal{O}}(\mathbf{x}|z) f_{Z}^{\mathcal{O}}(z) dy \; dx \; dz} \end{split}$$

where again the indicator function $\mathbb{1}_{\{z\}}(z)$ reduces the contribution to the dz integrals to the point evaluation at z = z.

Hence, as before, we have

$$\mathbb{E}^{\mathcal{O}}_{Y|Z}[Y|Z = \mathbf{Z}] = \frac{\mathbb{E}^{\mathcal{O}}_{X,Y,Z}[\mathbb{1}_{\{\mathbf{Z}\}}(Z)Y]}{\mathbb{E}^{\mathcal{O}}_{X,Y,Z}[\mathbb{1}_{\{\mathbf{Z}\}}(Z)]}.$$

Note that by the chain rule factorization, we must have

$$f^{\mathcal{O}}_{X|Z}(\mathbf{x}|z)f^{\mathcal{O}}_{Z}(z) = f^{\mathcal{O}}_{X,Z}(\mathbf{x},z) = f^{\mathcal{O}}_{Z|X}(z|\mathbf{x})f^{\mathcal{O}}_{X}(x).$$

This result re-iterates that a DAG does not define a unique *joint* distribution:

Thus
$$\mathbb{E}_{Y|Z}^{\mathcal{O}}[Y|Z = \mathbf{Z}]$$
 can be rewritten
$$\frac{\iiint \mathbb{1}_{\{\mathbf{z}\}}(z)y \ f_{Y|X,Z}^{\mathcal{O}}(y|\mathbf{x}, z)f_{Z|X}^{\mathcal{O}}(z|\mathbf{x})f_{X}^{\mathcal{O}}(\mathbf{x})dy \ dx \ dz}{\iiint \mathbb{1}_{\{\mathbf{z}\}}(z) \ f_{Y|X,Z}^{\mathcal{O}}(y|\mathbf{x}, z)f_{Z|X}^{\mathcal{O}}(z|\mathbf{x})f_{X}^{\mathcal{O}}(\mathbf{x})dy \ dx \ dz}$$

This can be contrasted with the earlier formula for the APO

$$\mathbb{E}^{\mathcal{E}}_{Y|Z}[Y|Z = \mathbf{Z}] = \frac{\iiint \mathbbm{1}_{\{\mathbf{Z}\}}(z)y \ f^{\mathcal{E}}_{Y|X,Z}(y|\mathbf{x},z)f^{\mathcal{E}}_{Z}(z)f^{\mathcal{E}}_{X}(x)dy \ dx \ dz}{\iiint \mathbbm{1}_{\{\mathbf{Z}\}}(z)f^{\mathcal{E}}_{Y|X,Z}(y|\mathbf{x},z)f^{\mathcal{E}}_{Z}(z)f^{\mathcal{E}}_{X}(x) \ dy \ dx \ dz}$$

Now we can legitimately assume

$$f_X^{\mathcal{O}}(\mathbf{x}) \equiv f_X^{\mathcal{E}}(\mathbf{x})$$

as this distribution describes the population characteristics.

Also, with the proposed data generating distribution given by the confounding DAG, we have

$$f^{\mathcal{O}}_{Y|X,Z}(y|x,z) \equiv f^{\mathcal{E}}_{Y|X,Z}(y|x,z).$$

However, in general

$$f_{Z|X}^{\mathcal{O}}(z|x) \neq f_{Z}^{\mathcal{E}}(z) \quad \forall (x,z)$$

and so evidently

$$\mathbb{E}^{\mathcal{O}}_{Y|Z}[Y|Z = \mathbf{Z}] \neq \mathbb{E}^{\mathcal{E}}_{Y|Z}[Y|Z = \mathbf{Z}].$$

Thus, if we consider using moment-based estimation

$$\widehat{\mathbb{E}}_{X,Y,Z}^{\mathcal{O}}[\mathbb{1}_{\{\mathsf{z}\}}(Z)Y] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{\mathsf{z}\}}(Z_i)Y_i$$
$$\widehat{\mathbb{E}}_{X,Y,Z}^{\mathcal{O}}[\mathbb{1}_{\{\mathsf{z}\}}(Z)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{\mathsf{z}\}}(Z_i)$$

and then estimate the ratio by

$$\widehat{\mathbb{E}}_{Y|Z}^{\mathcal{O}}[Y|Z = \mathbf{z}] = \frac{\sum_{i=1}^{n} \mathbb{1}_{\{\mathbf{z}\}}(Z_i)Y_i}{\sum_{i=1}^{n} \mathbb{1}_{\{\mathbf{z}\}}(Z_i)}.$$
(3)

the estimator will in general be biased for the APO.

The bias arises as $Z \not\perp X$;

- this implies that, in the sample data, we cannot treat Z as if it were assigned independently of X;
- different observed values of Z will (in general) have different associated distributions of X, as $f_{X|Z}(x|z)$ changes as z changes;
- subpopulations identified by different values of z are not comparable; the characteristics of individuals in different subpopulations are different;
- ▶ if X also affects Y, we cannot simply compare the outcomes for different observed Z values, as individuals with different Z values have different X characteristics.

If we **know** that

$$\mathbb{E}^{\mathcal{E}}_{Y|X,Z}\big[Y|X,Z\big] = \mathbb{E}^{\mathcal{O}}_{Y|X,Z}\big[Y|X,Z\big] = \mu(X,Z)$$

say, then as $f_X^{\ensuremath{\mathcal{E}}}(x)=f_X^{\ensuremath{\mathcal{O}}}(x)$ it follows by iterated expectation that

$$\mathbb{E}_{Y|Z}^{\mathcal{E}}[Y|Z=\mathbf{Z}] = \mathbb{E}_{Y|Z}^{\mathcal{O}}[Y|X,Z=\mathbf{Z}] \equiv \mathbb{E}_{X}^{\mathcal{O}}[\mu(X,\mathbf{Z})]$$

where

$$\begin{split} \mathbb{E}_{Y|Z}^{\mathcal{O}}[Y|X, Z = \mathbf{z}] &= \iint y \ f_{Y|X,Z}^{\mathcal{O}}(y|\mathbf{x}, \mathbf{z}) f_X^{\mathcal{O}}(x) \ dy \ dx \\ &= \int \mathbb{E}_{Y|X,Z}^{\mathcal{O}}[Y|X, Z = \mathbf{z}] f_X^{\mathcal{O}}(x) \ dx. \end{split}$$

Then a moment-based estimator of the APO is

$$\widehat{\mu}_{\scriptscriptstyle \mathrm{OR}}(\mathsf{Z}) \equiv \widehat{\mathbb{E}}^{\mathcal{E}}_{Y|Z}[Y|Z=\mathsf{Z}] = rac{1}{n}\sum_{i=1}^n \mu(X_i,\mathsf{Z}).$$

and in the binary case, the corresponding estimator of the ATE is

$$\widehat{\delta}_{\scriptscriptstyle \mathrm{OR}} = \widehat{\mu}_{\scriptscriptstyle \mathrm{OR}}(\mathbf{1}) - \widehat{\mu}_{\scriptscriptstyle \mathrm{OR}}(\mathbf{0}) = rac{1}{n}\sum_{i=1}^n \left\{ \mu(X_i,\mathbf{1}) - \mu(X_i,\mathbf{0})
ight\}.$$

The subscript OR indicates *outcome regression*.

This approach is termed a *model-based* analysis; note that it requires correct specification of the $\mu(\mathbf{x}, \mathbf{z})$ function; if we mistakenly assume

$$\mathbb{E}^{\mathcal{E}}_{Y|X,Z}\big[Y|X,Z\big] = \mathbb{E}^{\mathcal{O}}_{Y|X,Z}\big[Y|X,Z\big] = m(X,Z)$$

then the resulting estimators, for example

$$\widehat{\delta}_{_{\mathrm{OR}}} = rac{1}{n} \sum_{i=1}^{n} \left\{ m(X_i, \mathbf{1}) - m(X_i, \mathbf{0}) \right\}.$$

are, in general, biased.

Note that we can afford some mis-specification: for example, if Z is binary, we can always write

$$\mu(\mathbf{x}, \mathbf{z}) = \mu_0(\mathbf{x}) + z\mu_1(\mathbf{x})$$
 TRUE
 $m(\mathbf{x}, \mathbf{z}) = m_0(\mathbf{x}) + zm_1(\mathbf{x})$ MODEL

in which case the estimator

$$\frac{1}{n}\sum_{i=1}^n m_1(X_i)$$

is unbiased for the ATE provided

$$\mathbb{E}_X^{\mathcal{O}}[m_1(X)] = \mathbb{E}_X^{\mathcal{O}}[\mu_1(X)] \equiv \mathbb{E}_X^{\mathcal{E}}[\mu_1(X)].$$

That is, we can *mis-specify* $m_0(x)$.

In the binary case, if

$$\widehat{p} = rac{1}{n}\sum_{i=1}^n Z_i$$

then we may consider an alternate estimator

$$\widehat{\delta}_{_{\mathrm{OR}}}^{*} = rac{1}{n\widehat{p}}\sum_{i=1}^{n}Z_{i}\mu(X_{i},Z_{i}) - rac{1}{n(1-\widehat{p})}\sum_{i=1}^{n}(1-Z_{i})\mu(X_{i},Z_{i})$$

which estimates the mean separately in the two subgroups defined by the observations Z = 1 and Z = 0 separately. That is,

$$\widehat{\delta}_{_{\mathrm{OR}}}^{*} = rac{1}{n}\sum_{i=1}^{n}rac{(Z_{i}-\widehat{p})}{\widehat{p}(1-\widehat{p})}\mu(X_{i},Z_{i})$$

Note

In the model-based approach, we must have

$$\mu(\mathbf{x}, \mathbf{z})$$

specified precisely. In practice, however, we will propose *parametric* models, for example

$$\mu(\mathbf{x}, \mathbf{z}; \beta, \psi) = \mu_0(\mathbf{x}; \beta) + \mathbf{z}\mu_1(\mathbf{x}; \psi)$$

and then hope to estimate (β, ψ) from the observed data.

In general, this parametric model must be *completely* correctly specified for consistent estimation of the ATE.

Note

For example, in the linear model case with

$$\mu(\mathbf{x}, z; \beta, \psi) = \mathbf{x}_{\beta}\beta + z \, \mathbf{x}_{\psi}\psi$$

we may only consistently estimate β and ψ , and hence the ATE, if this mean model is correctly specified.

Note

It is no longer sufficient to specify

$$\mu_1(\mathbf{x};\beta) = \mathbf{x}_{\psi}\psi$$

correctly as the *'treatment contributed'* expected response, correct specification of

$$\mu_0(\mathbf{x};\beta) = \mathbf{x}_\beta\beta$$

as the 'treatment free' expected response is also necessary.