MATH 598: TOPICS IN STATISTICS
MODEL SELECTION VIA REVERSIBLE JUMP MCMC

Consider two competing pharmacokinetic (PK) models for response data y(¢) measured at different time points
tl, . ,tnl

1. Model M;: One compartment, elimination only;
E[Y (t)] = A1 exp{—\1t} t>0
2. Model M3: One compartment, absorption and elimination;
E[Y (t)] = As (exp{—DAa1t} — exp{—(Aa1 + A22)t}) t>0

where (A1, A1) and (Ag, A21, A22) are positive parameters. Under an assumption of additive, heteroscedastic Nor-
mal errors, we have two competing explanations for the observed data; both models can be fitted using ordinary
least-squares.

In the following example, we simulate data from Model M3, with parameters
921 = 1og AQ =2 022 = log )\21 =-0.5 923 = 1og /\22 =-0.5
with noise variance o2 = 0.32.

library (MASS)
library(mvnfast)

set.seed(4263374)

n<-20

x<-sort (runif(n,0,5))

th<-exp(c(2,-0.5,-0.5))

y<-funct.m2(x,th)+rnorm(n,0, .3)

par(mar=c(4,4,2,0))

plot(x,y,xlim=range(0,5) ,ylim=range(0,2.5) ,pch=19,xlab="t",ylab="y(t)")

xval<-seq(0,5,by=0.01)

yval<-funct.m2(xval,th)

lines(xval,yval,col="red")

fit.1<-optim(c(0,0,0),fn=loglike.optim,yv=y,xv=x,
fv=funct.ml,np=3,control=1ist(maxit=1000) ,hessian=T)

yvall<-funct.ml(xval,exp(fit.1$par[1:2]))

lines(xval,yvall,col="green")

fit.2<-optim(c(0,0,0,0),fn=loglike.optim,yv=y,xv=x,
fv=funct.m2,np=4,control=1list (maxit=10000) ,hessian=T)

yval2<-funct.m2(xval,exp(fit.2$par[1:3]))

lines(xval,yval2,col="blue")
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We can compare the two models by using the BIC: for k£ = 1,2, we have

BIC, = —2log Ean (§k) + dg logn
where dj, is the total number of parameters for model Mj,.

BIC1<-2*fit.1$value+3*log(n)
BIC2<-2#fit.2%value+d*log(n)
c(BIC1,BIC2)

+ [1] 21.29536 13.59642
PK.data<-data.frame(x,y)

ATIC(nls(y~Axexp(-B*x) ,data=PK.data,start=1ist (A=1,B=0.5)) ,k=10g(20))
+ [1] 21.29536

AIC(nls(y~Axexp(-B*x)*(1l-exp(-C*x)) ,data=PK.data,start=1ist (A=1,B=1,C=1)) ,k=1og(20))
+ [1] 13.59642

Under BIC, the evidence favours model M, for which BIC; = 13.596417, over model M;, where BIC; = 21.295358.

We now consider a fully Bayesian solution using reversible jump MCMC. In the log-scale parameterization
61 = (log Ay,log A1)

0 = (log Az, log a1, log Aao).
We place equal prior probabilities on M; and M,, and then place independent N (0, 72) priors on the components
of 61 and 6. The prior on the residual error variance o2 is Inverse Gamma with parameters 20 and 8.




The ML estimates 6; and 6, can be computed easily, as can the Hessian matrices I and I; these likelihood-based
results yield reasonable approximations to the posterior distributions to produce independence MH algorithms.
Specifically, at the ML estimates for o under the two models, we may approximate the conditional posterior for 6
by the Normal density

M (041, y) = Normal(fr,n 1621 ) (1)

We may also introduce the prior information and use the conjugate analysis to return an approximate Normal
conditional posterior distribution. Finally, on fitting using ML, the estimates of o under the two models are found
to be quite similar (M; : 51 = 0.252, M5 : 5 = 0.329).

Reversible Jump MCMC: A reversible jump MCMC algorithm can be constructed as follows: we again consider
four move types:

1 m = 1: move within M;; update 0; from 721 (0| My, o)

2 m = 2: move within M;; update 65 from 72 (05| My, o)

3 m = 3: move from M; to M,; propose a new 6, and carry out an accept/reject step.

4 m = 4: move from Model M, to Model M;; propose a new 6;, and carry out an accept/reject step.

with the remaining parameter o2 being updated in a Gibbs sampler algorithm at each iteration.

e For moves m = 1,2, we use standard Metropolis-Hastings steps, either jointly on the whole parameter
vector, or for each of the parameters individually. The asymptotic approximations in (1) can be used.

* Moves m = 3,4 are a forward /reverse move pair. For move 3, several options are available; for example, we
could adopt the earlier strategy, and generate a new variate « from the prior for the additional parameter,
and then merely use the mapping

(9117912711) L (921 = 9117922 = 912,923 = u)

with reverse move setting 6»3 = 0.

This approach may be adequate, but more probably would not facilitate good mixing across the models. A
better strategy is to consider a different augmentation, where we generate u = (u1, uz, ug) from the model
in (1) fork = 2, and map (911, 912, U, U2, U3) to

(021 = w1, 022 = u2, 623 = ug, vy = b11,v2 = 012)

with the paired reverse move being to generate v = (v1, v2) from the model in (1) for k£ = 1.

This guarantees that the proposed value 6, lies in a region with reasonably high posterior support under
model M,, although it does not guarantee that the move will be accepted with high probability.

In the Hastings ratio, the Jacobian of the transformation is 1, and under equal probabilities of forward /re-
verse moves, we have that
7T7L(M2, 92)17‘/ (’Ulv UQ)

Tn (M1, 01)py (w1, uz, us3)

can be written

L2 (62) { ﬁ1¢(92j/7)/7} $2(011, 012: 01, 1)
=

L' (61) { I1 ¢(91j/7)/7} ¢3(021, 022, 0235 02, I)
j=1
where 7 is the prior standard deviation for the  parameters. The logic of this construction is that numerically

Lflwl (61) = Normalg(gl,il_l) L’ﬁb (62) = NO?"mCll:;(é\Q,/I\Q_l).

Note that if the prior information is also incorporated, the asymptotic approximation to the posterior may
be improved further.

The algorithm was run for 100000 iterations to collect 10000 posterior samples.



#Prior
tau<-4
prior.al<-20
prior.be<-8

#Normal approximations to the conditional posterior distributions
var.l <-solve(fit.1$hessian[1:2,1:2]+diag(1/tau"~2,2))
ests.1<-var.1 %x*}% (fit.1$hessian[1:2,1:2] Yx*} fit.1$par[1:2])
sig.1<-exp(fit.1$par[3])

prec.1<-solve(var.1)

var.2<-solve(fit.28$hessian[1:3,1:3]+diag(1/tau~2,3))
ests.2<-var.2 %x*} (fit.28hessian[1:3,1:3] Yx*¥ fit.2%par[1:3])
sig.2<-exp(fit.2%par[4])

prec.2<-solve(var.2)

#Run MCMC
nsamp<-10000
nburn<-1000
nthin<-1
imod.tot<-c(0,0)
nr<-20
for(irep in 1:nr){
ifix<-F
imod<-1
Res<-run.RJMCMC (nburn,nsamp,nthin)
imod.tot<-imod.tot+table (Res$model)
print(c(irep,as.numeric(table (Res$model) /nsamp)))

—

[1]
(1]
(1]
(1]
(1]
(1]
[1]

.0000 0.6676 0.3324
.00 0.65 0.35
.0000 0.6581
.0000 0.6406
.0000 0.6609
.0000 0.6844
.0000 0.6858
[1] 8.0000 0.6719 0.3281
[1] 9.0000 0.6405 0.3595
[1] 10.0000 0.6727 0.3273
[1] 11.0000 0.6706 0.3294
[1] 12.0000 0.6704 0.3296
[1] 13.0000 0.6678 0.3322
[1] 14.0000 0.6391 0.3609
[1] 15.0000 0.6733 0.3267
[1] 16.0000 0.6531 0.3469
[1] 17.0000 0.6539 0.3461
[1] 18.0000 0.6647 0.3353
[1] 19.0000 0.6688 0.3312
[1] 20.0000 0.6558 0.3442

.3419
.3594
.3391
.3156
.3142
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#0verall estimate of model probabilities
imod.tot/ (nr*nsamp)

+
+ 1 2
+ 0.6625 0.3375

In this run with 7 = 4, the chain spent about 66 % of the time in model M, indicating the posterior probabilities
are
Ta(M1) = 0.66  m,(Ms) = 0.34.

The model posterior probabilities vary with the choice of 7; this is as expected, as the model probabilities are



closely related to the marginal likelihood, or prior predictive distribution, which is the expected value of the
likelihood for the observed data with respect to the prior distribution. It is evident from the discussion that the

rior specification acts as a penalty for complexity. For illustration, if 7 = 1, the model probabilities change to
(0.43,0.57); if 7 = 10, the model probabilities are approximately (0.80, 0.20).

thi<-Res$th[Res$model==1,]
th2<-Res$th[Res$model==2,]

par (mar=c(4,4,0,1))
plot(thl,pch=19,cex=0.5,xlab=expression(theta[11]),ylab=expression(thetal[12]))
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pairs(th2,pch=19,cex=0.5,1labels=c(expression(theta[21]) ,expression(theta[22]) ,expression(thetal[22])))
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Conditional on M; or M, being true, we can perform inference about the parameters of the two models, and also
reconstruct estimates and posterior credible intervals for E[Y].
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