
MATH 598: TOPICS IN STATISTICS
AUXILIARY VARIABLE METHODS AND THE GIBBS SAMPLER

The principle of auxiliary or latent variables is to extend the state-space of the Markov chain in such a way that
the full conditionals posterior become tractable, or which help to break the dependence amongst the variables.
Consider target distribution πX(x) for random variables X , and let U be a collection of random variables such
that the joint distribution πX,U (x, u) has marginal πX(x)

πX(x) =

∫
πX,U (x, u) du

In a Gibbs sampler context, we could consider constructing a Markov chain using the two conditional distributions

πX|U (x|u) πU |X(u|x)

and then collecting the samples for X , which are necessarily samples from πX(x). Note that

πX,U (x, u) = πX(x)πU |X(u|x)

We are free to select the U variables in whichever way is appropriate. We seek to introduce U such that

• the full conditionals are straightforward to sample;

• the dependence structure amongst the X variables is broken.

For example, suppose we have a structure such that

πX(x) ∝ π
(0)
X (x)

K∏
k=1

bk(x)

where π(0)
X (x) can be sampled in straightforward fashion. Let

Uk|X = x ∼ Uniform(0, bk(x)) k = 1, . . . ,K

be a collection of conditionally independent random variables.

πX,U (x, u) = πX(x)πU |X(u|x)

=

{
π
(0)
X (x)

K∏
k=1

bk(x)

}{
K∏
k=1

1

bk(x)
1[0,bk(x)](uk)

}

=
{
π
(0)
X (x)

}{ K∏
k=1

1[0,bk(x)](uk)

}

Therefore

πX|U (x|u) ∝ π
(0)
X (x)

K∏
k=1

1[uk,∞)(bk(x))

that is, proportional to π(0)
X (x) with support restricted by

bk(x) ≥ uk k = 1, . . . ,K.

To sample this full conditional distribution, we may sample π(0)
X (x) – recall this is straightforward – and reject the

sampled x values for which the constraints are not met.

This method is also utilized in the Slice Sampler that is now widely use in the MCMC literature.

1

EXAMPLE: Sampling an awkward distribution
Suppose we wish to produce a sample from the pdf

π(x) ∝ xα−1 exp
{
−
[
βx+

γ

x

]}
x > 0

for parameters α, β, γ > 0. This pdf is similar to the Gamma pdf, but is not as tractable. The normalizing constant
is not trivial to compute in general.

pdfunc<-function(x,a,b,g,log=F){
yv<-(a-1)*log(x)-b*x-g/x
if(!log){yv<-exp(yv)}
return(yv)

}
xv<-seq(0,10,by=0.01)
yv0<-pdfunc(xv,2,1,1)
c0<-integrate(pdfunc,lower=0,upper=100,a=2,b=1,g=1)$val
yv1<-pdfunc(xv,3,0.5,1.5)
c1<-integrate(pdfunc,lower=0,upper=100,a=3,b=0.5,g=1.5)$val
yv2<-pdfunc(xv,1.5,3,0.5)
c2<-integrate(pdfunc,lower=0,upper=100,a=1.5,b=3,g=0.5)$val
par(mar=c(4,4,1,0))
plot(xv,yv0/c0,ylim=range(0,max(yv0/c0,yv1/c1,yv2/c2)),xlab='x',ylab=expression(pi(x)),type='l')
lines(xv,yv1/c1,col='red')
lines(xv,yv2/c2,col='blue')
legend(6,1,c(expression(paste('(',alpha,',',beta,',',gamma,') = (2,1,1)')),
expression(paste('(',alpha,',',beta,',',gamma,') = (3,0.5,1.5)')),
expression(paste('(',alpha,',',beta,',',gamma,') = (1.5,3,0.5)'))),lty=1,col=c('black','red','blue'))

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

π(
x)

(α,β,γ) = (2,1,1)
(α,β,γ) = (3,0.5,1.5)
(α,β,γ) = (1.5,3,0.5)

To sample this distribution using an auxiliary variable Gibbs sampler, we note that

π(x) ∝ π(0)(x)b(x)

where
π(0)(x) ∝ xα−1 exp {−βx} b(x) = exp

{
−γ
x

}
,

2

that is, π(0)
X (x) ≡ Gamma(α, β) which may be sampled directly. In line with the auxiliary variable approach

outlined above, this suggests introducing variable U where

U |X = x ∼ Uniform(0, b(x)) ≡ Uniform(0, exp{−γ/x})

so that the joint pdf for X and U IS

πX,U (x, u) = πX(x)πU |X(u|x) =
{
π
(0)
X (x)b(x)

} 1

b(x)
1[0,b(x)](u) =

{
π
(0)
X (x)

}
1[0,b(x)](u)

Therefore
πX|U (x|u) ∝ π

(0)
X (x)1[u,∞)(b(x))

that is, proportional to π(0)
X (x) with support restricted by the constraint b(x) ≥ u for fixed u. To sample this full

conditional distribution, we may sample π(0)
X (x) ≡ Gamma(α, β) and reject the sampled x values for which the

constraint is not met. This is easily implemented in the following Gibbs sampler.

al<-2;be<-3;gam<-1.5
old.x<-rgamma(1,al,be);old.u<-runif(1,0,exp(-gam/old.x))
nreps<-10000
xu.samp<-matrix(0,nrow=nreps,ncol=2)
for(irep in 1:nreps){

old.x<-rgamma(1,al,be)
while(old.u > exp(-gam/old.x)){old.x<-rgamma(1,al,be)}
old.u<-runif(1,0,exp(-gam/old.x))
xu.samp[irep,]<-c(old.x,old.u)

}
par(mar=c(4,4,3,0));plot(xu.samp[,1],type='l',xlab='Iteration',ylab='x')
title('Trace plot for X samples')

0 2000 4000 6000 8000 10000

1
2

3
4

Iteration

x

Trace plot for X samples

par(mar=c(4,4,2,0),pty='s');plot(xu.samp,xlab='x',ylab='u',pch=19,cex=0.5,ylim=range(0,1))
title('Sample from joint pdf of (X,U)',line=1)

3

●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

● ●
●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●● ●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●●

●

●
●

●

●

●●

●

●
● ●

●
●

●

● ●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●●●

●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

● ●

●

●

●●●

●

●

●

●

●

●
●

●

● ●

●

●

●●
●

●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●●

●

●

●

●

●

●●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

● ●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●● ●●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●
●

●●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

● ●

●

●

●● ●

●

●

●

●
●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●●

●

●
●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●● ●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●
●

●
●

●
●

●
●
● ●

●

●
●

●
● ●

●

●

●●

●

● ●
●

●

●

●
●●

●

●

●

●●

●

●

●

● ●

●●

●●

● ●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●●
●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●
●

●

●

●

●

●●●

●

●
●

●
●●●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

● ●

●

●

●

●
● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●● ●
●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●
●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●●●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●● ●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

● ●

●
● ●

●
●

●●

●
●

●

●

●

●

●

●
● ●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

● ●
●

●

●
● ●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●

● ●

●

●
● ●●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●
●

● ●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●
● ●●●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●

●●

●
●●
●●● ●

●

●●

●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●●

●
●●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

● ●●

●

●

●

●

● ●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●●

●
●● ●

●● ●●

●

●
●

●

●

●

●

●

●

●
●

●● ● ●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●●●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●
●

●
●

●

●

●

●●
● ●

●
●

●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
● ●●●

●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

● ●
●

●

●

●

●

● ●

● ●

●●
●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●
●

●

●
●●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●● ●●

●

●

● ●

●
●

●

●● ●●
●

●

●
●
●

●●
●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●
●

● ●●●
●●

●

●

●

●

●

●
●

●

●

●●

● ●●●

●
●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●●

●

●●

●
●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●
●

● ●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
● ●●

●

●

● ●

●
●●

●

●
●

●

●

●●●

●

●

●

●

●●
● ●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●●●

●

●

●●
●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●
●●

●

●

●●

●

●

●

●

●
●

●
●

●

● ●

●

●●
●

●
●

● ●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●
●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●●
●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

● ●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

● ●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●●
●●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

● ●
●

●

●

●●

●
●

●

●

●●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●
●

●●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
● ●

●

●●

●
●

● ●

● ●

●

●

●

●● ●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●●

●●●●

●
●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●
● ●

● ●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●● ●

●●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●●
●

●●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●
●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

● ●

●●

●

●

●

●●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●

●

●

●●●●●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●
●●●

●

●

●●

●

●●

●

●

●
●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●●
●
●

●
●

● ● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●●

●
● ●●
●

●

●

●
●

●

●

●
●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●●

● ●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●● ●● ●●● ●●

●
● ●

●

●

●

●

●●

●

●

●●
●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●●
●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●
●

● ●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●● ●

●

●
●

●

●●

●

●
●

●●●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

u

Sample from joint pdf of (X,U)

par(mar=c(4,4,1,0),pty='m')
acf(xu.samp[,1],main=' ');title('Acf for X samples',line=-1)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Acf for X samples

4

const<-integrate(pdfunc,lower=0,upper=100,a=al,b=be,g=gam)$val
yv<-pdfunc(xv,al,be,gam)/const
par(mar=c(4,4,2,0))
hist(xu.samp[,1],xlab='x',main='',col='gray',breaks=seq(0,6,by=0.2));box()
lines(xv,yv*nreps*0.2,col='red')
title('Histogram of MCMC samples for X',line=1)

x

F
re

qu
en

cy

0 1 2 3 4 5 6

0
50

0
10

00
15

00

Histogram of MCMC samples for X

In this problem, we may also use rejection sampling using the proposal density π̃(x) ≡ Gamma(α, β), so that

π(x)

π̃(x)
≤ c exp

{
−γ
x

}
≤ c

for some finite constant c. Then the rejection sampling accepts points x generated from π̃(x) provided aUniform(0, 1)
random variate u satisfies

u ≤ exp
{
−γ
x

}
.

#Rejection sampling

N0<-100000
X0<-rgamma(N0,al,be)
U<-runif(N0)
X<-X0[U<=exp(-gam/X0)]
N<-length(X)
N/N0 #Acceptance Rate

+ [1] 0.11594

hist(X[X<5],xlab='x',main='',col='gray',breaks=seq(0,5,by=0.2));box()
lines(xv,yv*N*0.2,col='red')
title('Histogram of Rejection sampling samples for X',line=1)

5

x

F
re

qu
en

cy

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00
Histogram of Rejection sampling samples for X

EXAMPLE: The Ising Model
The Ising model is a joint distribution for the collection of binary random variables {Xi} placed on a rectangular
(N ×M) lattice, with joint mass function

πX(x) =

exp

{
β
NM∑
i=1

∑
j∈∂i

1{xi}(xj)

}
Z(β)

where ∂i is a suitably defined neighbourhood of i, and where Z(β) is the normalizing constant. The support of
this mass function 2NM elements, which are all possible configurations of a binary vector of length NM . The full
conditional distribution for the Xi is a discrete distribution on {0, 1}, with

πi(xi|x(i)) ∝ exp

β ∑
j ∈ ∂i

1xj
(xi)

 .

This distribution reduces to

Pr(Xi = 0|X(i) = x(i)) =
eβni0

eβni0 + eβni1

where ni0 and ni1 are the numbers of neighbours of i that take the values 0 and 1 respectively.

The Gibbs sampler is readily implementable for the Ising model, but can be extremely slow to converge to the
stationary distribution. This is due in part to high dependence between the variables. One method for speeding
up simulation of variates from the Ising model is to introduce auxiliary variables as escribed below. The most
common latent variable method for the Ising model is the Swendsen-Wang algorithm.

πX(x) ∝ exp

{
β
∑
l

∑
m ∈ ∂l

1{xm}(xl)

}
.

where ∂l constitute the neighbours of site l. In the simplest case, if site l is at Cartesian location (i, j), the neigh-
bours are the four sites immediately

6

• to the left (i− 1, j)

• to the right (i+ 1, j)

• above (i, j + 1)

• below (i, j − 1)

site (i, j). The full conditional distributions for the Gibbs sampler are given by

Xl|X∂l = x∂l ∼ Bernoulli(θ(β;x∂l))

that is
Pr[Xl = 1|X∂l = x∂l] = θ(β;x∂l)

where

θ(β;x∂l) =
exp{βNl1}

exp{βNl0}+ exp{βNl1}
This algorithm updates one x value at a time, either in a fixed or random scan fashion.

The Swendsen-Wang algorithm introduces a collection of auxiliary bond variables, u. Consider two neighbouring
sites, l and m, say. Let ω = 1 − e−β . Define the binary bond random variable Ulm, conditional on Xl and Xm, to
have distribution described by

Pr[Ulm = 1|Xl = xl, Xm = xm] =

{
ω xl = xm

0 xl 6= xm

such that the collection of U variables are conditionally independent given X variables. The bond is present if
Ulm = 1, and absent otherwise. The figure below displays bond variables (green) between adjacent, similar x
values.

X

Y

1 2 3

1
2

3

X

Y

1 2 3

1
2

3

Consider the joint specification πX,U given by

πX,U (x, u) ∝
∏
l,m

{ωδxlxm
δulm1 + (1− ω)δulm0}

where the product is over all pairs of neighbouring sites, and δab = 1 if a = b, and zero otherwise. We have

πUlm|X(u|x) = πUlm|Xl,Xm
(u|xl, xm) =

{
ωu(1− ω)1−u xl = xm

1{0}(u) xl 6= xm

7

for u = 0, 1. Also marginalizing over the u variables by summing out over ulm = 0, 1 can be achieved over each
term in the product separately. We have∑

u

πX,U (x, u) ∝
∏
l,m

{(1− ω) + ωδxlxm
}

=
∏
l,m

{
e−β + (1− e−β)δxlxm

}
.

Multiplying through each term by e−β yields∑
u

πX,U (x, u) ∝
∏
l,m

{
1 + (eβ − 1)δxlxm

}
.

For each term in the product, when xl 6= xm, the term contributes 1; when xl = xm, the term contributes eβ . Hence

∑
u

πX,U (x, u) ∝
∏
l,m

exp{βδxlxm
} = exp

β∑
l,m

δxlxm

 = πX(x)

and so the correct marginal Ising model is recovered. Marginalizing over the X variables, we have∑
x

πX,U (x, u) ∝
∑
x

∏
l,m

{ωδxlxmδulm1 + (1− ω)δulm0}

∝ ωn(u)(1− ω)nb−n(u)

where n(u) is the total number of bonds present

n(u) =
∑
l,m

ulm

and nb is the total number of bonds possible. We now consider running a Gibbs sampler for πX,U .

• The full conditional distribution of U |X = x is determined by the definition above, that is,

πU |X(u|x) =
∏
l,m

πUlm|Xl,Xm
(ulm|xl, xm)

where

πUlm|Xl,Xm
(ulm|xl, xm) =

{
ωu(1− ω)1−u xl = xm

1{0}(u) xl 6= xm

for u = 0, 1, with the product being over all neighbouring sites. Thus the U variables can be updated
independently, conditional on X .

• The full conditional distribution of X|U is defined by the fact that

πX|U (x|u) ∝ πX,U (x, u) ∝
∏
l,m

{ωδxlxm
δulm1 + (1− ω)δulm0}

and that bonds link “clusters” of sites that have the same value. The conditional distribution does not
depend on the value of each xl, merely whether or not xl = xm.

Conditional on u, clusters can assume the label 0 or 1, independently with equal probability.

Thus the Gibbs sampler can be implemented by sampling from the two full conditional distributions

πX|U (x|u) πU |X(u|x)

recursively, both of which involve sampling from trivial distributions. There is some computational overhead in
implementing Swendsen-Wang, in particular, tracing the clusters.

8

For a specific computational example: with grid size N = 64, β = 0.90, the Gibbs sampler and Swendsen-Wang
(SW) algorithms were run in R for 60 iterations. The SW chain converges much more quickly; the Gibbs sampler
chain exhibits slower convergence for larger values of β. With β = 0.9, the performance of the two methods is
quite different.

run.Gibbs<-function(N,beta.val,nreps,plot.out=T){ #Gibbs sampler for Ising Model
t0<-proc.time()[3]
Kval<-beta.val
pval<-1-exp(-Kval)
count.z<-c(0,0)
Match.vec.Gibbs<-rep(0,nreps)

Bond.list<-numeric()
for(i in 1:N){

for(j in 1:N){
if(i+1 <= N){

blist<-c(i,j,i+1,j)
Bond.list<-rbind(Bond.list,blist)

}
if(j+1 <= N){

blist<-c(i,j,i,j+1)
Bond.list<-rbind(Bond.list,blist)

}
}

}
Nbonds<-nrow(Bond.list)
Bonds<-rep(0,Nbonds)

Grid.X<-rep(c(1:N),N); Grid.Y<-rep(c(1:N),each=N)
Xvals<-c(1:N); Yvals<-c(1:N)
par(pty="s",mfrow=c(3,2),mar=c(3,3,3,3))
for(irep in 1:nreps){

if(irep == 1){
New.Grid.Z<-rbinom(Nsq,1,0.5)

}
Grid.Z<-matrix(New.Grid.Z,nrow=N,ncol=N)

count.z[2]<-Grid.Z[1,2]+Grid.Z[2,1]
count.z[1]<-2-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[1,1]+1])/sum(exp(Kval*count.z))
Grid.Z[1,1]<-sample(c(Grid.Z[1,1],1-Grid.Z[1,1]),prob=c(prob.z,1-prob.z),size=1)
for(j in 2:(N-1)){

count.z[2]<-Grid.Z[1,j-1]+Grid.Z[1,j+1]+Grid.Z[2,j]
count.z[1]<-3-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[1,j]+1])/sum(exp(Kval*count.z))
Grid.Z[1,j]<-sample(c(Grid.Z[1,j],1-Grid.Z[1,j]),prob=c(prob.z,1-prob.z),size=1)

}
count.z[2]<-Grid.Z[1,N-1]+Grid.Z[2,N-1]
count.z[1]<-2-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[1,N]+1])/sum(exp(Kval*count.z))
Grid.Z[1,N]<-sample(c(Grid.Z[1,N],1-Grid.Z[1,N]),prob=c(prob.z,1-prob.z),size=1)
for(i in 2:(N-1)){

count.z[2]<-Grid.Z[i,j+1]+Grid.Z[i-1,j]+Grid.Z[i+1,j]
count.z[1]<-3-count.z[2]

prob.z<-exp(Kval*count.z[Grid.Z[i,1]+1])/sum(exp(Kval*count.z))
Grid.Z[i,1]<-sample(c(Grid.Z[i,1],1-Grid.Z[i,1]),prob=c(prob.z,1-prob.z),size=1)
for(j in 2:(N-1)){

count.z[2]<-Grid.Z[i,j-1]+Grid.Z[i,j+1]+Grid.Z[i-1,j]+Grid.Z[i+1,j]
count.z[1]<-4-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[i,j]+1])/sum(exp(Kval*count.z))
Grid.Z[i,j]<-sample(c(Grid.Z[i,j],1-Grid.Z[i,j]),prob=c(prob.z,1-prob.z),size=1)

}
count.z[2]<-Grid.Z[i,j-1]+Grid.Z[i-1,j]+Grid.Z[i+1,j]

9

count.z[1]<-3-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[i,N]+1])/sum(exp(Kval*count.z))
Grid.Z[i,N]<-sample(c(Grid.Z[i,N],1-Grid.Z[i,N]),prob=c(prob.z,1-prob.z),size=1)

}
count.z[2]<-Grid.Z[N,2]+Grid.Z[N-1,1]
count.z[1]<-2-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[N,1]+1])/sum(exp(Kval*count.z))
Grid.Z[N,1]<-sample(c(Grid.Z[N,1],1-Grid.Z[N,1]),prob=c(prob.z,1-prob.z),size=1)
for(j in 2:(N-1)){

count.z[2]<-Grid.Z[N,j-1]+Grid.Z[N,j+1]+Grid.Z[N-1,j]
count.z[1]<-3-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[N,j]+1])/sum(exp(Kval*count.z))
Grid.Z[N,j]<-sample(c(Grid.Z[N,j],1-Grid.Z[N,j]),prob=c(prob.z,1-prob.z),size=1)

}
count.z[2]<-Grid.Z[N,N-1]+Grid.Z[N-1,N]
count.z[1]<-2-count.z[2]
prob.z<-exp(Kval*count.z[Grid.Z[N,N]+1])/sum(exp(Kval*count.z))
Grid.Z[N,N]<-sample(c(Grid.Z[N,N],1-Grid.Z[N,N]),prob=c(prob.z,1-prob.z),size=1)

if(plot.out & irep %% 10 == 0){
plot(Grid.X,Grid.Y,type="n",xlab="X",ylab="Y")
title(paste('Gibbs Iteration ',irep))
image(Xvals,Yvals,Grid.Z,col=c("black","red"),add=T)

}
New.Grid.Z<-as.vector(Grid.Z)

Matches<-sum(as.numeric(apply(Bond.list,1,function(x){
return(Grid.Z[x[1],x[2]]==Grid.Z[x[3],x[4]])})))

Match.vec.Gibbs[irep]<-Matches
}
t1<-proc.time()[3]
return(list(match=Match.vec.Gibbs,time=t1-t0))

}

run.SW<-function(N,beta.val,nreps,plot.out=T){ #Swendsen-Wang algorithm for Ising Model
t0<-proc.time()[3]
Kval<-beta.val
pval<-1-exp(-Kval)
Match.vec.SW<-rep(0,nreps)
Bond.list<-numeric()
for(i in 1:N){

for(j in 1:N){
if(i+1 <= N){

blist<-c(i,j,i+1,j)
Bond.list<-rbind(Bond.list,blist)

}
if(j+1 <= N){

blist<-c(i,j,i,j+1)
Bond.list<-rbind(Bond.list,blist)

}
}

}
Nbonds<-nrow(Bond.list)
Bonds<-rep(0,Nbonds)
Grid.X<-rep(c(1:N),N); Grid.Y<-rep(c(1:N),each=N)
Xvals<-c(1:N); Yvals<-c(1:N)
par(pty="s",mfrow=c(3,2),mar=c(3,3,3,3))
for(irep in 1:nreps){

if(irep == 1){
Grid.Z<-rbinom(Nsq,1,0.5)

}else{

10

Grid.Z<-New.Grid.Z
}
New.Z<-matrix(Grid.Z,nrow=N,ncol=N)

Match<-as.numeric(apply(Bond.list,1,function(x){return(New.Z[x[1],x[2]]==New.Z[x[3],x[4]])}))
Bonds<-Match
Bond.Z<-rbinom(length(Match),1,pval)*Match
Matches<-sum(Match)
Match.vec.SW[irep]<-Matches

Clust.mat<-matrix(0,N,N)
Clust.mat[1,1]<-1

nclust<-1
for(i in 1:Nbonds){

i1<-Bond.list[i,1]
j1<-Bond.list[i,2]
i2<-Bond.list[i,3]
j2<-Bond.list[i,4]
if(Clust.mat[i1,j1]==0){

nclust<-nclust+1
Clust.mat[i1,j1]<-nclust

}
if(Bond.Z[i]==1){

if(Clust.mat[i2,j2] == 0){
Clust.mat[i2,j2]<-Clust.mat[i1,j1]

}else{
label1<-Clust.mat[i1,j1]
label2<-Clust.mat[i2,j2]
new.label<-min(label1,label2)
Clust.mat[Clust.mat==label1]<-new.label
Clust.mat[Clust.mat==label2]<-new.label

}
}

}

if(Clust.mat[N,N]==0){Clust.mat[N,N]<-nclust+1;nclust<-nclust+1}

Clust.vec<-as.vector(Clust.mat)
Cluster.list<-c(1:max(Clust.vec))
Clust.col<-rbinom(length(Cluster.list),1,0.5)
Grid.Z.vec<-Clust.col[Clust.vec]

New.Grid.Z<-matrix(Grid.Z.vec,N,N)

if(plot.out & irep %% 10 == 0){
plot(Grid.X,Grid.Y,type="n",xlab="X",ylab="Y")
title(paste('SW Iteration ',irep))
image(Xvals,Yvals,New.Grid.Z,col=c("black","red"),add=T)

}
}
t1<-proc.time()[3]
return(list(match=Match.vec.SW,time=t1-t0))

}

#Run
N<-64
Nsq<-N*N
match.G<-run.Gibbs(N,0.9,60);match.S<-run.SW(N,0.9,60)

11

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y
Gibbs Iteration 10

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y

Gibbs Iteration 20

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y

Gibbs Iteration 30

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y
Gibbs Iteration 40

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Y

Gibbs Iteration 50

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Y

Gibbs Iteration 60

12

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y
SW Iteration 10

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y

SW Iteration 20

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y

SW Iteration 30

0 10 20 30 40 50 60

0
10

20
30

40
50

60

X

Y
SW Iteration 40

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Y

SW Iteration 50

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Y

SW Iteration 60

13

Recall that the Ising model has

log πX(x) = β

NM∑
i=1

∑
j∈∂i

1{xi}(xj)− logZ(β)

so we may track the quantity
NM∑
i=1

∑
j∈∂i

1{xi}(xj)

which is the number of adjacent matching values to give an indication of the posterior density value being sam-
pled.

print(c(match.G$time,match.S$time))

+ elapsed elapsed
+ 5.46 7.99

par(mfrow=c(1,1),mar=c(4,4,2,0))
plot(1:60,match.S$match,xlab='Iteration',ylab='Adjacent Matches',pch=19,cex=0.6,

ylim=range(c(match.S$match,match.G$match)))
points(1:60,match.G$match,pch=3,cex=0.6)
legend(40,5000,c('Gibbs','SW'),pch=c(3,19),pt.cex=c(0.6,0.6))
title('Number of adjacent matching values')

●

●

●

●

● ●

●
●

●
● ●

●
●

●
●

●
●

●

●
●

●

●

●
● ● ● ●

● ● ●
●

● ● ●

●

●

● ●

● ●
●

●

● ● ● ●
●

● ● ● ●

●
● ●

●
● ●

●

●
●

0 10 20 30 40 50 60

40
00

45
00

50
00

55
00

60
00

65
00

70
00

Iteration

A
dj

ac
en

t M
at

ch
es

●

Gibbs
SW

Number of adjacent matching values

14

Example: Bayesian analysis of Finite Mixture Models
Suppose that Y1 . . . , Yn are a conditionally i.i.d. from the K component finite mixture model for y ∈ R

fY (y;θ) =

K∑
k=1

ωkfk(y; θk)

K∑
k=1

ωk = 1

for 0 < ωk < 1 where f1, . . . , fK are component densities. The likelihood is

Ln(θ) =
n∏
i=1

{
K∑
k=1

ωkfk(yi; θk)

}

For a Bayesian analysis, we specify a prior distribution

π0(θ) = p(ω1, . . . , ωK , θ1, . . . , θK)

which yields a posterior which is not analytically tractable. Here

π0(θ) ∝ Ln(θ)π0(θ).

Consider the discrete auxiliary variables U1, . . . , Un introduced into the likelihood density for each i via the iden-
tity

fY (y;θ) =

K∑
k=1

fY |U (y|u;θ)fU (u)

where U has the Multinomial(1, ω1, . . . , ωK) distribution

fU (u) =

K∏
k=1

ω
1{k}(u)

k

and fY |U,θ(y|u,θ) ≡ fu(y|θ). The U variables are discrete labels indicating which of the component densities,
f1, . . . , fK , each data point is sampled from, with

Pr[U = k] = ωk k = 1, . . . ,K

Consider the joint posterior distribution on the unknown (unobservable) quantities

πθ,U(θ,u|y) ∝ Ln(θ,u)π0(θ,u)

Here

π0(θ,u) = π0(θ)π0(u|θ) = π0(θ)

n∏
i=1

{
K∏
k=1

ω
1{k}(u)

k

}
where π0(θ) is the joint prior on the ω and θ variables. Running the Gibbs sampler on the full conditional distri-
butions

πθ|U(θ|u,y) πU|θ(u|θ,y)

yields samples from the joint posterior. Marginally, the Gibbs sampler produces a sample from

πθ(θ|y)

which is the target posterior of interest.

For the first conditional, given U = u, we have a factorization

πθ|U(θ|u,y) = πθ1,...,θK |U(θ1, . . . , θK |u,y)πω|U(ω1, . . . , ωK |u,y)

and can update these parameters independently in two parts.

15

• πθ|U(θ|u,y) (Part I): if the prior on the θ parameters factorizes into independent components, then

πθ1,...,θK |U(θ1, . . . , θK |u,y) =
K∏
k=1

πθk|U(θk|u,y)

where

πθk|U(θk|u,y) ∝

{ ∏
i:ui=k

fk(yi|θk)

}
p(θk)

and we can update the θ parameters independently conditional on u. This may require a Metropolis-
Hastings update.

• πθ|U(θ|u,y) (Part II): a standard choice for the prior for the ω parameters is the Dirichlet prior

p(ω1, . . . , ωK) ∝
K∏
k=1

ωαk−1
k

=⇒ p(ω1, . . . , ωK |u,y) ∝
K∏
k=1

ωnk+αk−1
k

where, for k = 1, . . . ,K, nk =
n∑
i=1

1{k}(ui) is the count of the U variables that are set equal to k. Thus the full

conditional distribution is also Dirichlet, and can be sampled directly.

• πU|θ(u|θ,y): by conditional independence of the Y given θ, we must have

πU|θ(u|θ,y) =
n∏
i=1

πUi|θ(ui|θ, yi)

where, by Bayes theorem

πUi|θ(ui|θ, yi) =
fui

(yi;θ)fUi
(ui;θ)

K∑
k=1

fk(yi;θ)fUi
(k;θ)

=
fui(yi; θui)ωui

K∑
k=1

fk(yi; θk)ωk

which is a discrete distribution on {1, . . . ,K}. Thus updating the U variables is straightforward.

This formulation reveals a connection with the EM algorithm; the full conditional distribution of Ui is identical
to the conditional distribution of the missing data, given the observed data. Indeed, the entire formulation is
similar, the only difference is that we replace the Expectation and Maximization steps by sampling steps. The
Gibbs sampler does not perform maximization to get the ML estimate, it produces samples from the posterior
distribution of the parameters.

Note: Some care is needed in interpreting the Gibbs sampler output, as the component labels are, in fact, arbitrarily
assigned in the mixture formulation. Therefore, the U variables can exhibit label-switching. A simple solution is to
add an additional Metropolis-Hastings step at the end of each Gibbs sampler iteration that permutes the labels on
the U variables, that is, for K = 3, if the random permutation is (3, 1, 2), then

• All Us labelled 1 are relabelled 3

• All Us labelled 2 are relabelled 1

• All Us labelled 3 are relabelled 2

This Metropolis-Hastings proposal is always accepted, as it does not change the posterior density value.

For a specific example, consider n = 200 data generated from the two component mixture pdf

fY (y; θ) = ω1f1(y; θ1) + ω2f2(y; θ2)

where specifically

16

• f1(y; θ1) ≡ Normal(µ1, σ
2
1), with θ1 = (µ1, σ

2
1);

• f2(y; θ2) ≡ Normal(µ2, σ
2
2), with θ2 = (µ2, σ

2
2);

• 0 < ω1, ω2 < 1, ω1 + ω2 = 1.

This is a five parameter model. We introduce the auxiliary variables U1, . . . , Un as described above to indicate the
mixture component from which each of the data originates. Using a conjugate prior structure

π0(µ1, σ
2
1 , µ2, σ

2
2 , ω1) = π0(µ1|σ2

1)π0(σ
2
1)π0(µ2|σ2

2)π0(σ
2
2)π0(ω1)

where for k = 1, 2

• π0(σ
2
k) ≡ InvGamma(α/2, β/2)

• π0(µk|σ2
k) ≡ Normal(b, σ2

k/λ)

• π0(ω1) ≡ Uniform(0, 1).

In the Gibbs sampler, we may sample from the full conditional posterior distributions for these parameters, and
under this prior, the full conditionals are also available in closed form: for k = 1, 2

• πn(σ
2
k) ≡ InvGamma(αnk/2, βnk/2) where

αnk = α+ nk βnk = β +

n∑
i=1

1{k}(ui)(yi − yk)2 +
nkλ

nk + λ
(yk − b)2

and

nk =

n∑
i=1

1{k}(ui) yk =
1

nk

n∑
i=1

1{k}(ui)

are the component-specific summary statistics conditional on the auxiliary variables.

• πn(µk|σ2
k) ≡ Normal(bnk, σ2

k/λnk) where

bnk =
nkyk + λb

nk + λ
λnk = λ+ nk

• πn(ω1) ≡ Beta(n1 + 1, n2 + 1).

In the following simulation, we have

ω1 = 0.2 µ1 = 0 σ2
1 = 3 µ2 = 5 σ2

2 = 5.

set.seed(2342)
n<-200
K<-2
omega.vec<-c(0.2,0.8);mu.vec<-c(0,5);sig.vec<-c(3,5)

U<-sample(c(1:2),size=n,rep=T,prob=omega.vec)
Y<-rnorm(n,mu.vec[U],sqrt(sig.vec[U]))

xv<-seq(-10,20,by=0.01)
yv<-xv*0
for(k in 1:K){

yv<-yv+omega.vec[k]*dnorm(xv,mu.vec[k],sqrt(sig.vec[k]))
}
par(mar=c(4,4,2,0))
hist(Y,breaks=seq(-10,20,by=1),col='gray',main='Histogram of data with true pdf');box()
lines(xv,yv*n*1,col='red')

17

Histogram of data with true pdf

Y

F
re

qu
en

cy

−10 −5 0 5 10 15 20

0
5

10
15

20
25

30

The Gibbs sampler is run for 2000 iterations.

old.U<-sample(c(1:2),size=n,rep=T)
old.mu<-quantile(Y,prob=c(0.25,0.75))
old.sigsq<-c(4,4)
old.omega<-rep(1/K,K)

nreps<-2000

al.prior<-5
be.prior<-5
b.prior<-0
lam.prior<-0.01

mu.samples<-sig.samples<-omega.samples<-matrix(0,nrow=nreps,ncol=K)
log.posterior<-rep(0,nreps)

dinvgamma<-function(x,al,be,log=T){

fv<-be*log(al)-lgamma(al)-(al+1)*log(x)-be/x
if(!log){fv<-exp(xv)}
return(fv)

}

par(mar=c(4,4,2,0))
hist(Y,breaks=seq(-10,20,by=1),col='gray',main='Posterior samples of fitted pdfs');box()

for(irep in 1:nreps){
Mu.mat<-matrix(rep(old.mu,n),ncol=K,byrow=T)
Sig.mat<-matrix(rep(sqrt(old.sigsq),n),ncol=K,byrow=T)

18

Omega.mat<-matrix(rep(old.omega,n),ncol=K,byrow=T)
Bmat<-exp(-0.5*((Y-Mu.mat)/Sig.mat)^2)*Omega.mat/Sig.mat
Btot<-apply(Bmat,1,sum)
Bmat<-Bmat/Btot

old.U<-apply(Bmat,1,function(x){sample(c(1:K),size=1,prob=x)})

nvec<-rep(0,K)
for(k in 1:K){

Ysub<-Y[old.U == k]
nk<-length(Ysub)
nvec[k]<-nk
if(length(nk) > 0){

ybar<-mean(Ysub)
yssq<-sum((Ysub-ybar)^2)
al.post<-nk+al.prior
be.post<-yssq+be.prior+nk*lam.prior*(ybar-b.prior)^2/(nk+lam.prior)
old.sigsq[k]<-1/rgamma(1,al.post/2,be.post/2)
b.post<-(nk*ybar+lam.prior*b.prior)/(nk+lam.prior)
tau.post<-old.sigsq[k]/(nk+lam.prior)
old.mu[k]<-rnorm(1,b.post,sqrt(tau.post))

}else{
old.sigsq[k]<-1/rgamma(1,al.prior/2,be.prior/2)
old.mu[k]<-rnorm(1,b.prior,sqrt(old.sigsq[k]/lam.prior))

}
mu.samples[irep,]<-old.mu
sig.samples[irep,]<-old.sigsq

}

old.omega<-rgamma(K,nvec+1,1)
old.omega<-old.omega/sum(old.omega)
omega.samples[irep,]<-old.omega

Mu.mat<-matrix(rep(old.mu,n),ncol=K,byrow=T)
Sig.mat<-matrix(rep(sqrt(old.sigsq),n),ncol=K,byrow=T)
Omega.mat<-matrix(rep(old.omega,n),ncol=K,byrow=T)
Bmat<-exp(-0.5*((Y-Mu.mat)/Sig.mat)^2)*Omega.mat/Sig.mat

log.posterior[irep]<-sum(log(apply(Bmat,1,sum)))+
sum(dnorm(old.mu,b.prior,sqrt(old.sigsq/lam.prior),log=T))+

sum(dinvgamma(old.sigsq,al.prior/2,be.prior/2,log=T))
if(irep %% 200 == 0){

yv<-xv*0
for(k in 1:K){

yv<-yv+old.omega[k]*dnorm(xv,old.mu[k],sqrt(old.sigsq[k]))
}
lines(xv,yv*n*1,col='red')

}
}

19

Posterior samples of fitted pdfs

Y

F
re

qu
en

cy

−10 −5 0 5 10 15 20

0
5

10
15

20
25

30

par(mar=c(4,5,1,0));plot(mu.samples[,1],type='l',ylab=expression(mu[1]))

0 500 1000 1500 2000

−
2

−
1

0
1

2

Index

µ 1

20

par(mar=c(4,5,1,0));plot(mu.samples[,2],type='l',ylab=expression(mu[2]))

0 500 1000 1500 2000

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Index

µ 2

par(mar=c(4,5,1,0));plot(sig.samples[,1],type='l',ylab=expression(sigma[1]^2))

0 500 1000 1500 2000

0
2

4
6

8
10

Index

σ 12

par(mar=c(4,5,1,0));plot(sig.samples[,2],type='l',ylab=expression(sigma[2]^2))

21

0 500 1000 1500 2000

3
4

5
6

7
8

9

Index

σ 22

par(mar=c(4,5,2,0),pty='s',mfrow=c(1,2))
plot(mu.samples,pch=19,cex=0.5,xlab=expression(mu[1]),ylab=expression(mu[2]))
title(expression(pi[n](mu[1],mu[2])))
plot(sig.samples,pch=19,cex=0.5,xlab=expression(sigma[1]^2),ylab=expression(sigma[2]^2))
title(expression(pi[n](sigma[1]^2,sigma[2]^2)))

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

● ●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
● ●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
● ●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
● ●

● ●

●●
●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●● ●●

●

●
●●

●

● ●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●●
●

●●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●●

●●

●●●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●●

● ●
●

●
●

●

●●
●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●●
●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●●
●

●

●
●

● ●

●
●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

−2 −1 0 1 2

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

µ1

µ 2

πn(µ1, µ2)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●●
●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

● ●

●

●
●

●

●●

●●●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
● ●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●●

●

●●

●● ●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

3
4

5
6

7
8

9

σ1
2

σ 22

πn(σ1
2, σ2

2)

22

par(mar=c(4,5,3,0),pty='m',mfrow=c(1,1))
hist(omega.samples[,1],col='gray',main=expression(paste('Histogram for ',omega[1])),

xlab=expression(omega[1]));box()

Histogram for ω1

ω1

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
20

0
40

0
60

0

par(mar=c(4,5,2,0),pty='m',mfrow=c(1,1))
plot(log.posterior,type='l',xlab='Iteration',ylab='Log posterior')

0 500 1000 1500 2000

−
33

5
−

33
0

−
32

5

Iteration

Lo
g

po
st

er
io

r

23

