MATH 598: TOPICS IN STATISTICS

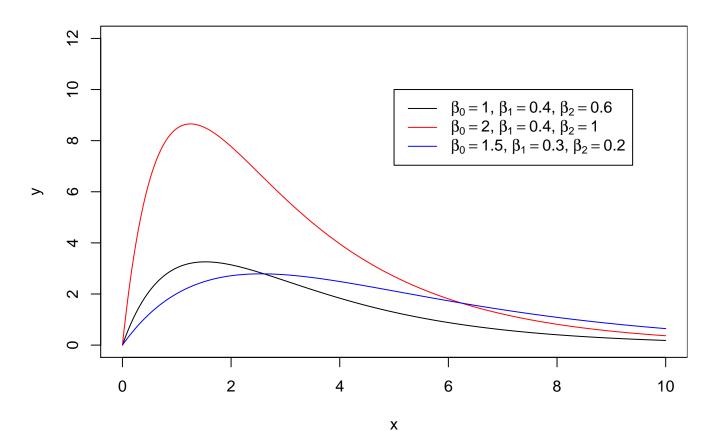
BAYESIAN INFERENCE FOR NONLINEAR REGRESSION

A non-linear regression model is a model for the conditional expectation of a response variable Y in terms of a function of predictors $\mathbf x$ that is non-linear in the parameters. For example, in pharmacokinetics, the concentration Y of drug in the bloodstream at time x after an initial dose D can be modelled using ordinary differential equations. One simple 'compartment' model represents the concentration y(x) at time x as

$$y(x) = D\beta_0(\exp\{-\beta_1 x\} - \exp\{-(\beta_1 + \beta_2)x\}) = \mu(x, D, \beta_0, \beta_1, \beta_2) \qquad x > 0$$

say, for parameters $\beta_0, \beta_1, \beta_2 > 0$.

```
pk.model<-function(xv,b0,b1,b2,Dose){</pre>
   yv \leftarrow Dose*be0*(exp(-b1*xv)-exp(-(b1+b2)*xv))
   return(yv)
x < -seq(0,10,by=0.01)
be0<-1;be1<-0.4;be2<-0.6
y<-pk.model(x,be0,be1,be2,D)</pre>
par(mar=c(4,4,1,0))
plot(x,y,type='l',ylim=range(0,12))
be0<-2;be1<-0.4;be2<-1
y < -pk.model(x,be0,be1,be2,D)
lines(x,y,col='red')
be0<-1.5;be1<-0.3;be2<-0.2
y<-pk.model(x,be0,be1,be2,D)
lines(x,y,col='blue')
lty=1,col=c('black','red','blue'))
```

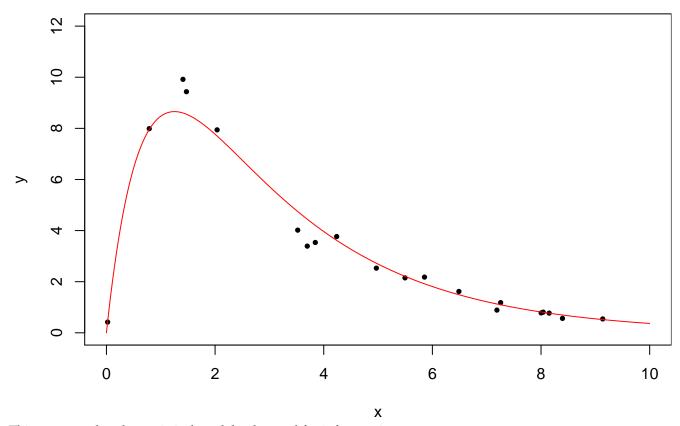


In practice, data are collected from individual patients across time, and these data are measured with observation error. One common model involves representing the data using multiplicative errors, that is

$$Y(x_i) = \mu(x_i, D, \beta_0, \beta_1, \beta_2)\epsilon_i$$

for $i=1,\ldots,n$, where $\log \epsilon_i \sim Normal(0,\sigma^2)$. Below, n=20 data points gathered uniformly on (0,10) are simulated according to this model, with $(\beta_0,\beta_1,\beta_2)=(2,0.4,1)$ and $\sigma=0.1$, for D=10.

```
set.seed(37)
D<-10
n<-20
sig<-0.1
x0<-seq(0,10,by=0.01)
x<-sort(runif(n,0,10))
epsilon<-exp(rnorm(n,0,sig))
be0<-2;be1<-0.4;be2<-1
y0<-pk.model(x0,be0,be1,be2,D)
y<-pk.model(x,be0,be1,be2,D)*epsilon
par(mar=c(4,4,1,0))
plot(x,y,xlim=range(0,10),ylim=range(0,12),pch=19,cex=0.6)
lines(x0,y0,col='red')</pre>
```



This suggests that the statistical model to be used for inference is

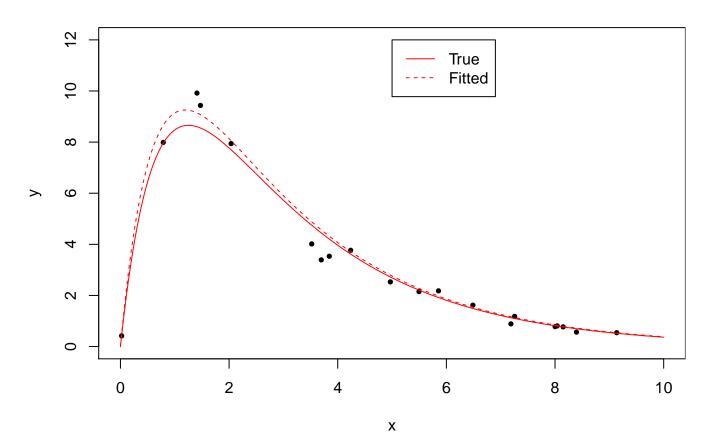
$$\log Y(x_i) = \log \mu(x, D, \beta_0, \beta_1, \beta_2) + \log \epsilon_i$$

for i = 1, ..., n. Frequentist estimation can be carried out using non-linear least squares. We can achieve the minimization of

$$\sum_{i=1}^{n} (\log y_i - \log \mu(x_i, D, \beta_0, \beta_1, \beta_2))^2$$

using optim.

```
pk.like<-function(be,Dv,xv,yv){</pre>
    res < -log(yv) - log(Dv*be[1]*(exp(-be[2]*xv)-exp(-(be[2]+be[3])*xv)))
    return(sum(res^2))
be.start<-c(1,0.1,0.2)
pk.fit<-optim(be.start,fn=pk.like,Dv=D,xv=x,yv=y)</pre>
pk.fit #par gives parameter estimates
+ $par
+ [1] 1.8600512 0.3953164 1.1350574
+ $value
+ [1] 0.2763411
+ $counts
+ function gradient
       152
+ $convergence
+ [1] 0
+ $message
+ NULL
par(mar=c(4,4,1,0))
plot(x,y,xlim=range(0,10),ylim=range(0,12),pch=19,cex=0.6)
lines(x0,y0,col='red')
be0.hat<-pk.fit$par[1];be1.hat<-pk.fit$par[2];be2.hat<-pk.fit$par[3]
y.hat<-pk.model(x0,be0.hat,be1.hat,be2.hat,D)</pre>
lines(x0,y.hat,col='red',lty=2)
legend(5,12,c('True','Fitted'),col='red',lty=c(1,2))
```

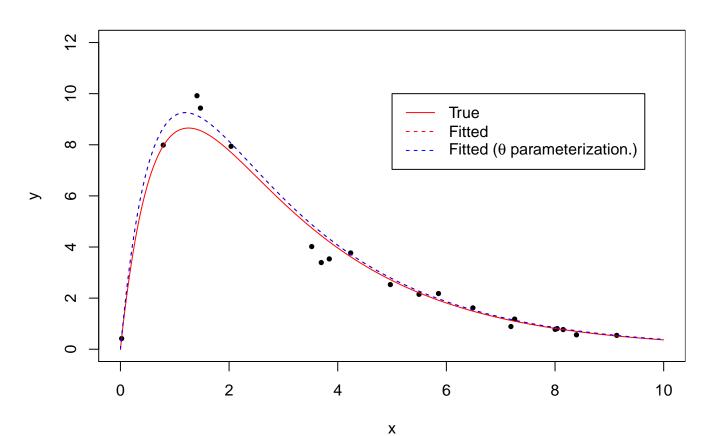


We can carry out the same optimization, but first reparamaterize onto the log scale, say

$$\theta_0 = \log \beta_0$$
 $\theta_1 = \log \beta_1$ $\theta_2 = \log \beta_2$

as this should make no difference in the minimization.

```
pk.like.th<-function(th,Dv,xv,yv){
   be < - exp(th)
   res < -log(yv) - log(Dv*be[1]*(exp(-be[2]*xv)-exp(-(be[2]+be[3])*xv)))
   return(sum(res^2))
th.start<-log(be.start)
pk.fit.th<-optim(th.start,fn=pk.like.th,Dv=D,xv=x,yv=y)
pk.fit.th$par
                   #par gives parameter estimates on theta scale
+ [1] 0.6203688 -0.9282107 0.1267071
exp(pk.fit.th$par) #on the beta scale - identical to previous analysis
+ [1] 1.8596137 0.3952603 1.1350846
par(mar=c(4,4,1,0))
plot(x,y,xlim=range(0,10),ylim=range(0,12),pch=19,cex=0.6)
lines(x0,y0,col='red')
be0.hat2<-exp(pk.fit.th$par[1]);be1.hat2<-exp(pk.fit.th$par[2]);be2.hat2<-exp(pk.fit.th$par[3])
y.hat2<-pk.model(x0,be0.hat2,be1.hat2,be2.hat2,D)
lines(x0,y.hat,col='red',lty=2)
lines(x0,y.hat2,col='blue',lty=2)
legend(5,10,c('True','Fitted',expression(paste('Fitted (',theta,' parameterization.)'))),
            col=c('red','red','blue'),lty=c(1,2,2))
```



For a Bayesian analysis, we use the same model to generate the likelihood: in the θ parameterization, we have

$$\mathcal{L}_{n}(\theta, \sigma^{2}) = \prod_{i=1}^{n} \left(\frac{1}{2\pi\sigma^{2}}\right)^{1/2} \exp\left\{-\frac{1}{2\sigma^{2}} (\log y_{i} - \log \mu(x_{i}, D, e^{\theta_{0}}, e^{\theta_{1}}, e^{\theta_{2}}))^{2}\right\}$$

$$= \left(\frac{1}{2\pi}\right)^{n/2} \left(\frac{1}{\sigma^{2}}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (\log y_{i} - \log \mu(x_{i}, D, e^{\theta_{0}}, e^{\theta_{1}}, e^{\theta_{2}}))^{2}\right\}$$

$$= \left(\frac{1}{2\pi}\right)^{n/2} \left(\frac{1}{\sigma^{2}}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^{2}} S(\mathbf{y}, \mathbf{x}, D, \theta_{0}, \theta_{1}, \theta_{2})\right\}$$

say. For the prior, we may choose independent priors on $\theta_0, \theta_1, \theta_2$ conditional on σ^2 . For σ^2 , as in the linear regression case, we may choose an Inverse Gamma prior

$$\pi_0(\sigma^2) \equiv InvGamma(a/2, b/2)$$

for suitable constants a and b; we may use the subjective prior knowledge that suggests that σ^2 is no greater than 5, and suggest a=b=8. Given σ^2 , for $(\theta_0,\theta_1,\theta_2)$ we may select independent $Normal(0,\sigma^2/\lambda)$ priors; more generally, a multivariate Normal prior

$$\pi_0(\theta_0, \theta_1, \theta_2 | \sigma^2) \equiv Normal_3(\mathbf{0}, \sigma^2 \mathbf{L}^{-1})$$

for some positive definite matrix \mathbf{L}^{-1} could be considered. For the posterior distribution, then, we have up to proportionality that

$$\pi_{n}(\theta_{0}, \theta_{1}, \theta_{2}, \sigma^{2}) \propto \mathcal{L}_{n}(\theta_{0}, \theta_{1}, \theta_{2}, \sigma^{2})\pi_{0}(\theta_{0}, \theta_{1}, \theta_{2}|\sigma^{2})\pi_{0}(\sigma^{2})$$

$$\propto \left(\frac{1}{\sigma^{2}}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^{2}}S(\mathbf{y}, \mathbf{x}, D, \theta_{0}, \theta_{1}, \theta_{2})\right\} \left(\frac{1}{\sigma^{2}}\right)^{3/2} \exp\left\{-\frac{1}{2\sigma^{2}}\theta^{\top}\mathbf{L}\theta\right\} \left(\frac{1}{\sigma^{2}}\right)^{a/2+1} \exp\left\{-\frac{b}{2\sigma^{2}}\right\}$$

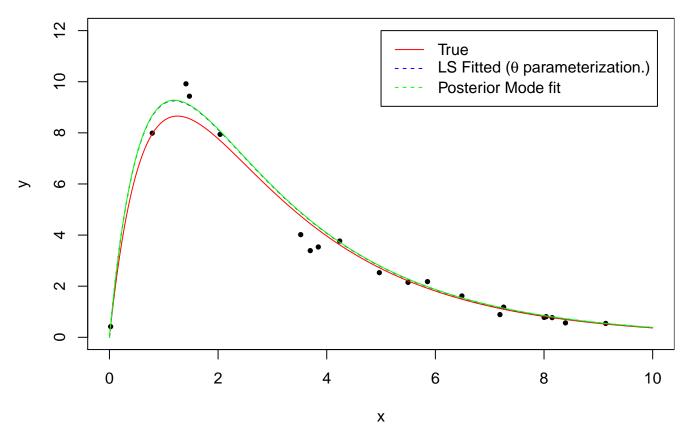
$$\propto \left(\frac{1}{\sigma^{2}}\right)^{(n+a+3)/2+1} \exp\left\{-\frac{1}{2\sigma^{2}}\left[S(\mathbf{y}, \mathbf{x}, D, \theta_{0}, \theta_{1}, \theta_{2}) + \theta^{\top}\mathbf{L}\theta + b\right]\right\}.$$

To compute with this posterior distribution, we may first integrate out σ^2 to leave the marginal posterior for $(\theta_0, \theta_1, \theta_2)$. To integrate out σ^2 from $\pi_n(\theta_0, \theta_1, \theta_2, \sigma^2)$, we note that the integrand is proportional to an Inverse Gamma pdf, so therefore

$$\pi_n(\theta_0, \theta_1, \theta_2) \propto \left\{ S(\mathbf{y}, \mathbf{x}, D, \theta_0, \theta_1, \theta_2) + \theta^\top \mathbf{L} \theta + b \right\}^{-(n+a+3)/2}.$$

This posterior is intractable. We may, however, perform maximization of the posterior again using optim.

```
pk.loglike.th<-function(th,Dv,xv,yv,Lm,av,bv){
    be<-exp(th)
    res<-log(yv) - log(Dv*be[1]*(exp(-be[2]*xv)-exp(-(be[2]+be[3])*xv)))
    Sval<-sum(res^2)
    pth<-t(th) %*% (Lm %*% th)
    llike<--(length(xv)+av+3)*log(Sval+pth[1,1]+b)
    return(-llike) #optim performs minimization - need to multiply log posterior by -1
}
a<-b<-8
L<-diag(rep(1/10,3))
th.start<-pk.fit.th$par
pk.post.th<-optim(th.start,fn=pk.loglike.th,Dv=D,xv=x,yv=y,Lm=L,av=a,bv=b,hessian=T)
pk.post.th$par #par gives parameter estimates on theta scale
+ [1] 0.6138207 -0.9297518 0.1293539
exp(pk.post.th$par) #on the beta scale - identical to previous analysis</pre>
```



As for the earlier GLM examples, we may attempt to approximate the posterior using a Normal approximation

$$\pi_n(\theta) \approx Normal_3(\widehat{\theta}_n, \widehat{M}_n^{-1})$$

where M_n is computed as the Hessian matrix (matrix of second partial derivatives of the negative log-likelihood evaluated at $\widehat{\theta}_n$).

```
Mn<-pk.post.th$hessian

(pk.post.var<-solve(Mn))

+ [,1] [,2] [,3]

+ [1,] 0.07977347 0.02960331 -0.10211777

+ [2,] 0.02960331 0.01232891 -0.03696588

+ [3,] -0.10211777 -0.03696588 0.20235534
```

For an exact analysis using Monte Carlo methods, we aim to use rejection sampling to produce a sample from the exact posterior. To do this we need an easy to sample distribution, $\widetilde{\pi}_n(\theta)$ say, that resembles the true posterior: from the above analysis, that $\widetilde{\pi}_n(\theta) \equiv Normal_3(\widehat{\theta}_n, \widehat{M}_n^{-1})$ distribution seems a sensible place to start. However,

recall that rejection sampling requires us first to bound the ratio of the target to the proposal density

$$\frac{\pi_n(\theta)}{\widetilde{\pi}_n(\theta)} < M.$$

In this case, due to the prior assumptions, the posterior itself is approximately Normal in its tails. Therefore, choosing a Normal proposal density may not be feasible as the ratio $\pi_n(\theta)/\widetilde{\pi}_n(\theta)$ may not be bounded in the tails. Instead, we choose a multivariate Student(5) distribution with the same location and scale – this forces the tail behaviour of the proposal density to be heavier than the target. The multivariate Student-t distribution density and random number generation may be implemented via the montast library, and using the dmvt and rmvt functions.

```
library(mvnfast)
pk.rejection.th<-function(th,Dv,xv,yv,Lm,av,bv,muv,Sigv){
    be <-exp(th)
    res < -log(yv) - log(Dv*be[1]*(exp(-be[2]*xv)-exp(-(be[2]+be[3])*xv)))
    Sval<-sum(res^2)</pre>
    pth<-t(th) %*% (Lm %*% th)
    llike < --(length(xv)+av+3)*log(Sval+pth[1,1]+bv)
    lprop<-dmvt(th,muv,Sigv,5,log=T)</pre>
    return(-llike+lprop) #optim performs minimization - need to multiply log posterior by -1
a<-b<-8
L < -diag(rep(1/10,3))
th.start<-pk.post.th$par
post.mu<-pk.post.th$par
post.Sig<-pk.post.var</pre>
pk.rej.th<-optim(th.start,fn=pk.rejection.th,
                 Dv=D,xv=x,vv=y,Lm=L,av=a,bv=b,muv=post.mu,Sigv=post.Sig)
pk.rej.th
+ $par
+ [1] 0.1074398 -1.2440940 0.6723525
+ $value
+ [1] 67.83072
+ $counts
+ function gradient
      175
+ $convergence
+ [1] 0
+ $message
+ NULL
```

This analysis gives that

$$\log\left(\frac{\pi_n(\theta)}{c\widetilde{\pi}_n(\theta)}\right) < -67.830716$$

– recall that we only have $\pi_n(\theta)$ up to proportionality, so there is an indeterminate constant c; however, we do not need the constant to implement rejection sampling. We aim to produce a sample of size N=10000 from the posterior.

```
set.seed(94)
N<-10000
nsamp<-0
ico<-0
Mval<--pk.rej.th$val
theta.rej<-matrix(0,nrow=N,ncol=3)
while(nsamp < N){</pre>
```

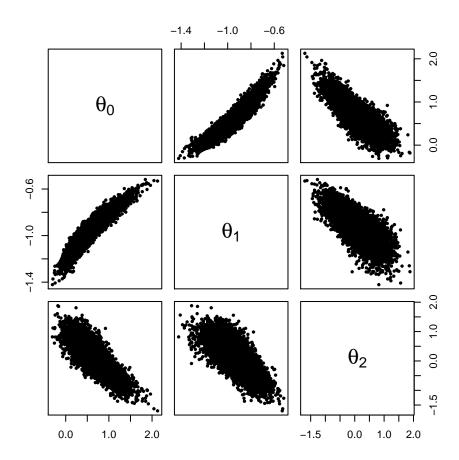
```
ico<-ico+1
th<-(rmvt(1,post.mu,post.Sig,5))
be<-exp(th)
res<-log(y) - log(D*be[1]*(exp(-be[2]*x)-exp(-(be[2]+be[3])*x)))
Sval<-sum(res^2)
pth<-(th) %*% (L %*% t(th))
llike<--(length(x)+a+3)*log(Sval+pth[1,1]+b)
lprop<-dmvt(th,post.mu,post.Sig,5,log=T)
U<-runif(1)
if(log(U) < llike-lprop-Mval){
    nsamp<-nsamp+1
    theta.rej[nsamp,]<-th
}
print(ico)
+ [1] 34182</pre>
```

This analysis tells us that on this run, 34182 proposals were needed to generate the N=10000 samples from the posterior. Thus the acceptance rate is 0.292552, and therefore

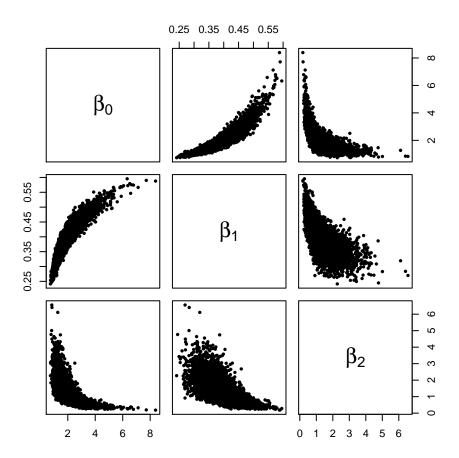
$$\max_{\theta} \frac{\pi_n(\theta)}{\widetilde{\pi}_n(\theta)} \simeq \frac{1}{0.292552} = 3.418200$$

which informs us that the normalizing constant c is given approximately by $c = 3.418200 \exp\{-67.830716\}$.

```
par(mar=c(4,4,2,0));pairs(theta.rej,pch=19,cex=0.5,
    labels=c(expression(theta[0]),expression(theta[1]),expression(theta[2])))
```

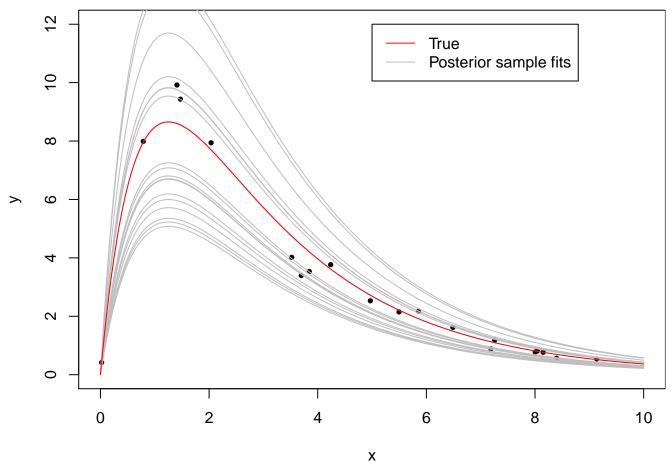


We can obtain samples of the posterior for $\beta_0, \beta_1, \beta_2$ by transformation.



Having obtained the posterior samples for $\beta_0, \beta_1, \beta_2$, we can compute sampled fitted curves.

```
par(mar=c(4,4,1,0))
plot(x,y,xlim=range(0,10),ylim=range(0,12),pch=19,cex=0.6)
for(i in 1:20){
    be0<-beta.rej[i,1];be1.post<-beta.rej[i,2];be2.post<-beta.rej[i,3]
    y.post<-pk.model(x0,be0,be1,be2,D)
    lines(x0,y.post,col='gray',lty=1)
}
legend(5,12,c('True','Posterior sample fits'),col=c('red','gray'),lty=c(1,1))
lines(x0,y0,col='red')</pre>
```



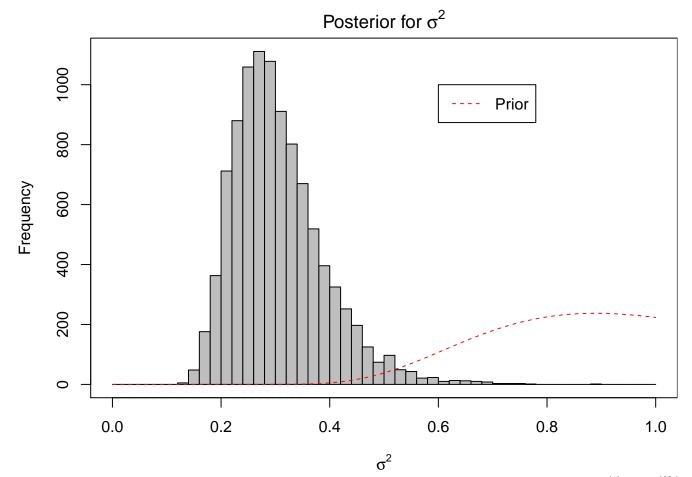
Finally, having sampled the θ values, we can produce a sample from the posterior for σ^2 by sampling the conditional posterior

$$\pi_n(\sigma^2|\theta_0, \theta_1, \theta_2) \propto \pi_n(\theta_0, \theta_1, \theta_2, \sigma^2)$$

$$\propto \left(\frac{1}{\sigma^2}\right)^{(n+a+3)/2+1} \exp\left\{-\frac{1}{2\sigma^2}\left[S(\mathbf{y}, \mathbf{x}, D, \theta_0, \theta_1, \theta_2) + \theta^\top \mathbf{L}\theta + b\right]\right\}$$

$$\equiv InvGamma\left(\frac{(n+a+3)}{2}, \frac{\left(S(\mathbf{y}, \mathbf{x}, D, \theta_0, \theta_1, \theta_2) + \theta^\top \mathbf{L}\theta + b\right)}{2}\right)$$

```
be.rej<-exp(theta.rej)
sigsq.rej<-rep(0,N)
for(i in 1:N){
    res<-log(y) - log(D*be.rej[i,1]*(exp(-be.rej[i,2]*x)-exp(-(be.rej[i,2]+be.rej[i,3])*x)))
    Sval<-sum(res^2)
    pth<-t(theta.rej[i,]) %*% (L %*% (theta.rej[i,]))
    sigsq.rej[i]<-1/rgamma(1,(length(x)+a+3)/2,(Sval+pth[1,1]+b)/2)
}
par(mar=c(4,4,2,0))
hist(sigsq.rej,breaks=seq(0,1,by=0.02),xlab=expression(sigma^2),
    main=expression(paste('Posterior for ',sigma^2)),col='gray');box()
xv<-seq(0,1,by=0.001)
dinvgamma<-function(x,al,be){return(exp(al*log(be)-lgamma(al)-(al+1)*log(x)-be/x))}
yv<-dinvgamma(xv,8,8)
lines(xv,yv*N*0.02,col='red',lty=2)
legend(0.6,1000,c('Prior'),lty=2,col='red')</pre>
```

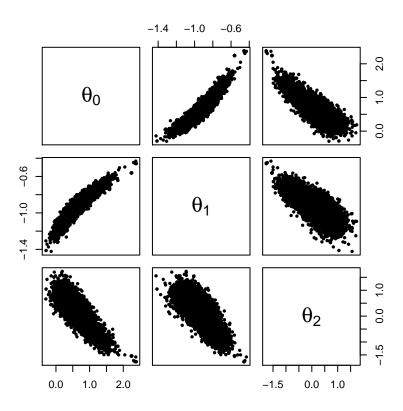


Sampling Importance Resampling: In sampling importance resampling, we generate a large sample $\theta^{(1)}, \dots, \theta^{(N_0)}$ from a proposal distribution $\widetilde{\pi}_n(\theta)$ and the produce a sample of size N from the target $\pi_n(\theta)$ by resampling from the generated sample with replacement with weights

$$w_{i} = \frac{\pi_{n}(\theta^{(i)})/\widetilde{\pi}_{n}(\theta^{(i)})}{\sum_{j=1}^{N_{0}} \{\pi_{n}(\theta^{(j)})/\widetilde{\pi}_{n}(\theta^{(j)})\}} \qquad i = 1, \dots, N$$

In the following simulation, we choose the Student(5) proposal above, and set $N_0 = 50000$ and N = 10000

```
set.seed(94)
NO<-50000
N<-10000
th0<-rmvt(N0,post.mu,post.Sig,5)
lprop<-dmvt(th0,post.mu,post.Sig,5,log=T)</pre>
llike<-rep(0,N0)</pre>
be0<-exp(th0)
for(i in 1:N0){
    res < -log(y) - log(D*be0[i,1]*(exp(-be0[i,2]*x)-exp(-(be0[i,2]+be0[i,3])*x)))
    Sval<-sum(res^2)</pre>
    pth<-t(th0[i,]) %*% (L %*% (th0[i,]))
    llike[i] \leftarrow -(length(x)+a+3)*log(Sval+pth[1,1]+b)
w<-exp(llike-lprop)</pre>
W < -W/sum(W)
th.sir<-th0[sample(1:N0,prob=w,rep=T,size=N),]
par(mar=c(4,4,2,0)); pairs(th.sir,pch=19,cex=0.5,
    labels=c(expression(theta[0]),expression(theta[1]),expression(theta[2])))
```



The rejection and SIR samples have very similar statistical summaries:

```
apply(theta.rej,2,mean); apply(th.sir,2,mean) #Means
+ [1] 0.6380792 -0.9315390
                            0.1204690
+ [1] 0.6684064 -0.9248542
                            0.0767214
cov(theta.rej);cov(th.sir)
                                              #Covariances
              [,1]
                          [,2]
+ [1,] 0.09190180 0.03291669 -0.11467162
+ [2,] 0.03291669 0.01348374 -0.03970165
 [3,] -0.11467162 -0.03970165 0.22106960
              [,1]
                          [,2]
                                      [,3]
                   0.03991121 -0.15006692
+ [1,] 0.11882249
                   0.01523303 -0.04909684
       0.03991121
+ [3,] -0.15006692 -0.04909684 0.26581996
```

We can measure the efficiency of the Importance Sampling proposal by computing the effective sample size (ESS)

$$ESS = \left(\sum_{i=1}^{N_0} w_i^2\right)^{-1}$$

which is to be compared against the largest possible value – N_0 – which is obtained when $w_i = 1/N_0$ for all i. Here

```
ESS<-1/sum(w^2)
ESS
+ [1] 19874.68
```