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Part 2

Bayesian Computation



Monte Carlo: basic principles

§ Monte Carlo methods
§ Importance sampling
§ Rejection sampling
§ Sampling importance resampling
§ Variance reduction techniques
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Monte Carlo: basic principles

The basic principles of Monte Carlo are based on simple ideas
from frequentist statistics:

§ Laws of large numbers: Suppose X1, . . . ,Xn , . . . are iid
random variables. Then, usually,

1

n

n
ÿ

i“1

gpXi q
a.s.
ÝÝÑ

p
ErgpXqs

as n ÝÑ 8.

§ Ergodic Theorems: For sequence X1, . . . ,Xn , . . ., and un-
der mild conditions on the joint distribution of random
variables,

1

n

n
ÿ

i“1

gpXi q
a.s.
ÝÝÑ

p
ErgpXqs

as n ÝÑ 8.
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Monte Carlo: basic principles

§ Central Limit Theorems: Under mild conditions on the
joint distribution of random variables X1, . . . ,Xn , . . ., as
n ÝÑ 8,

an

˜

1

n

n
ÿ

i“1

gpXi q ´ bn

¸

d
ÝÑ N pµ, σ2q

for suitable choices of the sequences tanu and tbnu.
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Monte Carlo: basic principles

Essentially, standardized sums of random variables have sta-
ble long-run behaviour. For example, for a distribution with
finite second moment

X
p
ÝÑ ErX s

1

n

n
ÿ

i“1

X2
i

p
ÝÑ ErX2s

as n ÝÑ 8, and so on.
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Monte Carlo: basic principles

More explicitly, in the i.i.d. case,

1

n

n
ÿ

i“1

Xi
p
ÝÑ

ż

x dFpxq “

ż

xfpxq dx

where fpxq is the density of the X variables. Recall that

1

n

n
ÿ

i“1

xi “

ż

x d pFnpxq

where pFn is the empirical cdf.
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Monte Carlo: basic principles

Note

In essence, Monte Carlo methods replace integrals with re-
spect to F by integrals with respect to pFn , and then rely on
the convergence of the latter to the former.
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Monte Carlo: basic principles

We consider approximating the integral

ż

gpxqfpxq dx

for probability density fpxq by the sum

1

N

N
ÿ

i“1

gpxi q

where x1, . . . , xN are an i.i.d sample from f .

We need to establish

§ whether this approximation works
§ the accuracy of the approximation
§ how the samples from fpxq are obtained.
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Monte Carlo: Validity

The strong law of large numbers ensures that

1

N

N
ÿ

i“1

gpXi q
a.s.
ÝÑ ErgpXqs “

ż

gpxqfpxq dx

provided the expectation ErgpXqs exists. Does this ever go
wrong ?
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Monte Carlo: Validity

Consider computing

ż 1

0

1

x
sinp2π{xq dx

by sampling Xi „ Uniformp0,1q, and then computing

1

N

N
ÿ

i“1

1

Xi
sinp2π{Xi q
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Monte Carlo: Validity

The integral can be computed as

ż 1

0

1

x
sinp2π{xq dx “

ż 8

1

sinp2πtq

t
dt

“

ż 8

0

sinptq

t
dt ´

ż 2π

0

sinptq

t
dt

“ Sip8q ´ Sip2πq

where Sip.q is a special function (the sine integral ).

We have that Sip8q “ π{2; the numerical value of the integral
is 0.1526.
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Monte Carlo: Validity

Run 1:
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Monte Carlo: Validity

Run 2:
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Monte Carlo: Validity

Occasional large values of

Yi “
1

Xi
sinp2π{Xi q

cause the Monte Carlo average to not converge as N gets
large.

A sufficient condition for strong convergence is

ż

|gpxq|fpxq dx ă 8

which does not hold here.
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Monte Carlo Estimation: Statistical Properties

In situations where the Monte Carlo estimator

pIN pgq “
1

N

N
ÿ

i“1

gpXi q

of µpgq “ ErgpXqs does converge satisfactorily, and a central
limit theorem applies, we have that

?
NppIN pgq ´ µpgqq

d
ÝÑ N p0,Vpgqq

where

Vpgq “ VarrgpXqs “

ż

pgpxq ´ µpgqq2 fpxq dx

The Monte Carlo estimator exhibits oP p
?

Nq convergence.
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Monte Carlo Estimation: Example

Example: Normal Interval Probabilities

Consider fpxq “ φpxq (standard Normal pdf), the function

gpxq “

#

0 x ď x0

1 x ą x0

for some fixed x0 ą 0, and the integral

ż 8

´8

gpxqfpxq dx “ 1´ Φpx0q.

The integral is the tail probability from ordinate x0.
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Monte Carlo Estimation: Example

Example: Normal Interval Probabilities

The Monte Carlo estimator is this case is

pIN pgq “
1

N

N
ÿ

i“1

gpXi q “
1

N

N
ÿ

i“1

1px0,8qpXi q

where X1, . . . ,XN „ N p0,1q, which has ErpIN pgqs “ 1 ´ Φpx0q,
and variance

Φpx0qp1´ Φpx0qq

N

which decreases with increasing x0. The variance estimate is

pIN pgqp1´ pIN pgqq

N
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Monte Carlo Estimation: Example

Example: Normal Interval Probabilities

A problem that occurs when x0 is large is finite sample bias;
the probability of obtaining no Xi ą x0, and thus an estimate
pIN pgq “ 0, is

p0 “ tΦpx0qu
N

which can remain large even for large N if x0 is large enough.

In the following table, N0 is N such that p0 “ 10´6:

x0 2 4 6 8 10 12

N0 6.00 ˆ 102 4.36 ˆ 105 1.40 ˆ 1010 2.21 ˆ 1016 1.81 ˆ 1024 7.77 ˆ 1033
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Monte Carlo Estimation: Example

Example: Mixture Integrand

Consider

gpxq “ exp

"

´
1

2
px ` 2.5q2

*

` 3 exp

"

´
1

2
px ´ 2q2

*
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Monte Carlo Estimation: Example

Example: Mixture Integrand

Plot of integrand gpxq (solid) and fpxq (dashed):
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Monte Carlo Estimation: Example

Example: Mixture Integrand

Plot of integrand gpxqfpxq (solid) and fpxq (dashed):
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Monte Carlo Estimation: Example

Example: Mixture Integrand

Convergence of estimator for N “ up to 10000.

0 2000 4000 6000 8000 10000

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

N
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Monte Carlo Estimation

Motivated by the deterministic approximation

ż

gpxqfpxq dx l
k
ÿ

j“0

wj gpxj q

where weights are determined by fpxq, to minimize the error
in the approximation, it should be advantageous to choose
design points x0, . . . , xk where g is largest.

In a Monte Carlo setting, it seems clear that the estimator will
converge more quickly and have lower variance for finite N
when fpxq generates points in regions where gpxq is large in
magnitude.
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Monte Carlo Estimation

Example:

See knitr 4

25



Importance sampling

The identity

ż

gpxqfpxq dx “

ż

gpxqfpxq
f0pxq

f0pxq
dx “

ż

gpxqfpxq

f0pxq
f0pxq dx

where f0 is a probability density with support including the
support of f , demonstrates that

Ef rgpXqs “ Ef0

„

gpXqfpXq

f0pXq



so that an estimator of the LHS is

pI
pf0q
N pgq “

1

N

N
ÿ

i“1

gpXi qfpXi q

f0pXi q

where X1, . . . ,XN „ f0p.q.
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Importance sampling

pI
pf0q
N is termed the importance sampling estimator.

f0 is termed the importance sampling density. By careful
choice of f0, the estimator can have better performance than
the Monte Carlo estimator in finite samples.

Note that

pI
pf0q
N pgq “

1

N

N
ÿ

i“1

fpXi q

f0pXi q
gpXi q “

1

N

N
ÿ

i“1

w0pXi qgpXi q

say, where

w0pXi q “
fpXi q

f0pXi q

is the importance sampling weight .
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Importance sampling

Note that

Ef0

„

fpXq

f0pXq



“

ż

fpxq dx “ 1

so

Ef0

«

1

N

N
ÿ

i“1

w0pXi q

ff

“ 1

although for any realization

1

N

N
ÿ

i“1

w0pxi q ‰ 1

in general.
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Importance sampling: Example

Example: Normal tail probability

Consider the Monte Carlo estimation of
ż 8

x0

φpxq dx “ 1´ Φpx0q

For x0 large, the Monte Carlo estimator is prone to finite sam-
ple bias.

For x0 “ 4, 1 ´ Φpx0q “ 3.167 ˆ 10´5, and the probability of
getting pIN “ 0 for N “ 100000 is

tΦpx0qu
100000 “ 0.0421
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Importance sampling: Example

Example: Normal tail probability

Monte Carlo estimate pIN pgq of 1´ Φpx0q, with x0 “ 4:
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Importance sampling: Example

Example: Normal tail probability

Consider using the importance sampling density

f0pxq “ λ expt´λpx ´ x0qu x ą x0

This density has support identical to the tail region of interest,
so in the importance sampling estimator, we have

pI
pf0q
N “

1

N

N
ÿ

i“1

gpXi qfpXi q

f0pXi q
“

1

Nλ

N
ÿ

i“1

φpXi q exptλpXi ´ x0qu

as gpXi q “ 1 for all variates sampled from f0.
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Importance sampling: Example

Example: Normal tail probability

IS estimate pI
pf0q
N pgq (dotted) for λ “ 10
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Importance sampling: Example

Example: Normal tail probability

IS estimate pI
pf0q
N pgq (dotted) for λ “ 100
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Importance sampling: Example

Example: Normal tail probability

Consider using the importance sampling density f0pxq ” tp5q,
the Student-t density with five degrees of freedom.

A similar importance sampling estimator can be defined for
this density; in this case, the tail-region indicator function

gpxq “

#

0 x ď x0

1 x ą x0

must be included in the computation of pI
pf0q
N pgq.
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Importance sampling: Example

Example: Normal tail probability

IS estimate pI
pf0q
N pgq (dotted) for f0 ” tp5q
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Optimal Importance Sampling

There are many possible choices for the importance sampling
density f0. We now seek guidelines for choosing f0 optimally.

Note first that the variance of pI
pf0q
N pgq is finite if and only if

gpXqfpXq

f0pXq

has finite variance, that is, if and only if

Ef0

«

"

gpXqfpXq

f0pXq

*2
ff

“

ż 8

´8

"

gpxqfpxq

f0pxq

*2

f0pxq dx

is finite.
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Optimal Importance Sampling

This equates to
ż 8

´8

tgpxqfpxqu2

f0pxq
dx

being finite. Note also that

Ef0

«

"

gpXqfpXq

f0pXq

*2
ff

“ Ef

„

tgpXqu2
fpXq

f0pXq



Now, if fpxq{f0pxq is unbounded on the support of f , then these

expectations, and the variance of pI
pf0q
N pgq, are not finite.

Therefore, for f with unbounded support, we must ensure that
fpxq{f0pxq stays bounded on R, particularly in the tails.
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Optimal Importance Sampling

To optimize the importance sampling procedure, we inspect
the variance of the IS estimator.

Varf0

„

gpXqfpXq

f0pXq



“ Ef0

«

"

gpXqfpXq

f0pXq

*2
ff

´

"

Ef0

„

gpXqfpXq

f0pXq

*2

.

But

Ef0

„

gpXqfpXq

f0pXq



“ Ef rgpXqs

does not depend on f0, so we must minimize the first term.
Note that

Ef0

«

"

gpXqfpXq

f0pXq

*2
ff

ě

"

Ef0

„

|gpXq|fpXq

f0pXq

*2

“

"
ż

|gpxq|fpxq dx

*2

by Jensen’s inequality.
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Optimal Importance Sampling

This is a lower bound on the variance of the estimator which
is independent of f0. By the logic of Jensen’s inequality, the
inequality becomes an equality when

|gpxq|fpxq

f0pxq

is a constant, that is, when

f0pxq9|gpxq|fpxq 6 f0pxq “
|gpxq|fpxq

ż

|gpuq|fpuq du
.

However, this is an infeasible choice, as we do not know the
denominator.
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Optimal Importance Sampling

Note that, in general, if X1, . . . ,XN , . . . „ f0, then

1

N

N
ÿ

i“1

fpXi q

f0pXi q

a.s.
ÝÑ

ż 8

´8

fpxq

f0pxq
f0pxq dx “ 1

so therefore

rI
pf0q
N pgq “

N
ř

i“1

gpXi qfpXi q

f0pXi q

N
ř

i“1

fpXi q

f0pXi q

a.s.
ÝÑ ErgpXqs

also, if the expectation exists. For finite N , this estimator
rI
pf0q
N pgq is biased, but asymptotically unbiased. It may have

smaller variance than pI
pf0q
N pgq
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Optimal Importance Sampling

It seems appealing to combine this with the optimality result.
The estimator

rI
pf0q
N pgq “

N
ř

i“1

gpXi qfpXi q

f0pXi q

N
ř

i“1

fpXi q

f0pXi q

“

N
ř

i“1

gpXi q

|gpXi q|

N
ř

i“1

1

|gpXi q|

is feasible. When gp.q is positive

rI
pf0q
N pgq “

N
N
ř

i“1

1

gpXi q

that is, the harmonic mean estimator. Unfortunately, this es-
timator often has poor properties.
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Optimal Importance Sampling

However, to get as close to the variance bound as possible, a
sensible objective is to choose f0 so that

|gpxq|fpxq

f0pxq

is almost constant, such that the variance is finite.

This suggests designing f0 to have high density whenever the
original integrand |gpxq|fpxq is large, subject to the constraint

fpxq

f0pxq
ă M or Ef

„

fpXq

f0pXq



ă M

for some finite bound M .
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Importance Sampling in Higher Dimensions

All of the previous results carry across to the case where the
target integral is an integral in dimension higher than one.

§ gpxq is a scalar function of vector argument x,
§ fpxq and f0pxq are multivariate densities.

In higher dimensions, in general, many more random samples
are needed to obtain sufficient accuracy than in the univariate
case.
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Random number generation

Monte Carlo and Importance sampling both require ready ac-
cess to random samples from univariate or multivariate dis-
tributions.

There are many straightforward techniques available to ob-
tain random samples from standard distributions once a ran-
dom sample of Uniform random variables is available:

§ CDF inversion: If U „ Uniformp0,1q, and FX is a cdf with
inverse F´1

X , then

X “ F´1
X pUq „ FX

(the probability integral transform). If FX is discrete, de-
fine

F´1
X puq “ maxtx : FX pxq ď uu
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Random number generation

§ Transformation:
§ Exponential, Gamma, Beta
§ Normal

§ Box-Müller
§ Polar Marsaglia

§ Student, Fisher, Multivariate Normal

§ Summation: It is possible to generate using sums of in-
dependent identically distributed random variables.

R has many random number generation tools for standard dis-
tributions.
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Uniform random number generation

Generation of truly random uniform variates mechanically is
challenging; statistical packages rely on pseudo-random uni-
form generation:

§ sequences tunu that are generated by some deterministic
mechanism, but that appear to be random even under
severe statistical testing.

Pseudo-random number generators are typically built on de-
terministic equations of the form

un`1 “ hpu1, . . . ,unq

constructed to that un`1 is apparently not predictable from
previous elements.
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Congruential Generators

A (linear) congruential generator takes the form

un`1 “ aun ` b mod c

for integers a,b , c, where 0 ă a ă c and 0 ď b ă c. The ini-
tialization of the sequence is achieved by setting the seed u0,
0 ď u0 ă c. The recursion generates integers on t0,1, . . . , c´
1u, which can be transformed into uniform random variates
by rescaling.

Care is needed in the choice of the constants, but provided

§ a and b are coprime,
§ a ´ 1 is divisible by all prime factors of c
§ a ´ 1 is a multiple of 4 if c is a multiple of 4.

the generator has full cycle length c. Typically c “ 232 is
chosen.
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Congruential Generators: defects

Congruential generators can perform adequately, but have
known defects. They are principally favoured because of sim-
plicity of computation.

Most obviously, the generated points can be shown to exhibit
specific forms of serial dependence. For examples, certain
subsequences of points can be demonstrated to lie on a hy-
perplanes (and hence be predictable).

Predictability is an undesirable property for randomness, but
may not be too problematic in Monte Carlo for certain inte-
grals.
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Recursion/shift Generators

More recently, vector recursion generators have superseded
congruential generators. These algorithms take linear (ma-
trix) combinations of current vectors to produce new vectors
in the sequence.

A favoured shift generator is the Mersenne Twister, which is
the default in R, which has a cycle length of

219937 ´ 1.

This generator produces very reliable uniform variates that
are virtually indistinguishable from truly random numbers.
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Rejection sampling

Suppose that we wish to sample from an arbitrary density
fpxq, but this is not straightforward directly. Suppose instead
we have easy access to variates from the density f0pxq, where

fpxq

f0pxq
ă M for all x
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Rejection sampling

Then the following algorithm produces variates from f :

1. generate x from f0

2. generate u from Uniformp0,1q
3. if

u ď
fpxq

Mf0pxq

accept x as a variate from f ; if this inequality is not met,
return to 1.
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Rejection sampling

This is the rejection sampling (or accept-reject) algorithm.
The density f0 is the proposal density.

It works for any bound M , but is most efficient (has fewest
rejections) when M is as small as possible, for example, if

M “ sup
x

fpxq

f0pxq

If fpxq is bounded, and has support which is a bounded subset
X of R, then f0 can be chosen to be the Uniform density on X ,
although this is not necessarily the optimal choice.
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Rejection sampling: Efficiency

Note that

PrrX is accepteds “ Pr

„

U ď
fpXq

Mf0pXq



“

ż 8

´8

#

ż fpxq{pMf0pxqq

0
du

+

f0pxq dx

“

ż 8

´8

fpxq

Mf0pxq
f0pxq dx

“
1

M

ż 8

´8

fpxq dx “
1

M

so ideally M should be as small as possible.
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Rejection sampling: Efficiency

Note also neither f nor f0 need to be normalized for this algo-
rithm to be valid:

§ If fpxq “ mgpxq and f0pxq “ m0g0pxq, then

fpxq

f0pxq
“

m

m0

gpxq

g0pxq
ă M

or
gpxq

g0pxq
ă M 1 “

mM

m0

is the rejection sampling bound.
§ We proceed by bounding gpxq{g0pxq.
§ The acceptance probability is now indeterminate, how-

ever, by monitoring the empirical acceptance rate, an es-
timate of m{m0 can be obtained.
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Rejection sampling

Example: Normal mixture

Consider sampling from the normal mixture

fpxq “
1

4
φpx ` 2q `

3

4
φpx ´ 1q

where φp.q is the standard normal pdf. Consider rejection
sampling from this density using

f0pxq “
1

σ
φ

ˆ

x ´ 1

σ

˙

for some variance σ2.
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Rejection sampling

Example: Normal mixture

Target fpxq (solid) and f0pxq (dashed) with σ “ 2.5.
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Rejection sampling

Example: Normal mixture

fpxq{f0pxq maximized at x “ 0.9863, yielding M “ 1.8821:
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Rejection sampling

Example: Normal mixture

fpxq bounded by Mf0pxq:
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Rejection sampling

If x is a variate from f0, then f0pxq is the value of the density
at that variate, and Mf0pxq is the scaled version. Consider a
vertical slice at x which is the line segment

px,0q ÝÑ px,Mf0pxqq

By assumption fpxq ď Mf0pxq. Them, if u is simulated from
Uniformp0,1q, then uMf0pxq is the random portion of the ver-
tical slice, and if

fpxq ď uMf0pxq

then fpxq is below the random point on the line segment, and
hence is rejected.
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Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture

−2 −1 0 1 2

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

D
en

si
ty

62



Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture

53078 out of 100000 points accepted (1{M “ 0.5313).
Accepted Points
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Rejection sampling

§ The acceptance rate is 1 if f0pxq ” fpxq.
§ If f0pxq resembles fpxq, then the acceptance rate will be

high.
§ The maximization of fpxq{f0pxq can be done numerically.
§ The extension to the multivariate case is straightforward
§ The proposal density can be constructed adaptively;

§ whenever a point is rejected, it is used to update the
proposal function.
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Adaptive Rejection sampling

If fpxq is log-concave (that is log fpxq is concave), then adap-
tive rejection sampling constructs an adaptive proposal den-
sity using rejected points.

Even when a point x is rejected, fpxq is computed, and this
information is useful improving f0.

For example, consider sampling from Gammapα,1q for nonin-
teger α ą 1. We have

log fpxq “ const.` pα´ 1q log x ´ x

which is concave, as the second derivative is negative.
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Adaptive Rejection sampling

The proposal function f0pxq can be taken as Exponentialp1{2q;
in this case

fpxq

f0pxq
“

2

Γpαq
xα´1e´x{2

which achieves its unique maximum at

xmax “ 2pα´ 1q

Thus rejection sampling can be carried out using this f0.
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Adaptive Rejection sampling

However, the Exponentialp1{2q distribution is potentially in-
efficient
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Adaptive Rejection sampling

However, the Exponentialp1{2q distribution is potentially in-
efficient
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Adaptive Rejection sampling

In this problem

M “
2

Γpαq
xα´1
max e´xmax{2

so acceptance rate is the reciprocal of this

α 1 2 3 4 5 6 7 8

1{M 0.5000 0.6796 0.4618 0.2790 0.1600 0.0890 0.0486 0.0262

For large α, the acceptance rate becomes very small.
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Adaptive Rejection sampling

Adaptive rejection sampling proceeds by adapting the squeez-
ing method. Suppose that there exists a function lpxq such
that

lpxq ď fpxq ď Mf0pxq.

Then the following algorithm generates a variate from fpxq:

1. Generate x from f0, and u from Uniformp0,1q
2. Accept x if u ď lpxq{pMf0pxqq and stop.
3. Accept x if u ď fpxq{pMf0pxqq and stop.
4. Return to 1.

The function lp.q provides a screening mechanism.
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Adaptive Rejection sampling

For an adaptive version for log-concave densities, suppose
that px0, . . . , xn`1q is an ordered set of points at which yi “

log fpxi q has been evaluated for each i . For a log-concave den-
sity, the line segment

Li ,i`1pxq : pxi , yi q ÝÑ pxi`1, yi`1q

for xi ď x ď xi`1 is below log fpxq on pxi , xi`1q, and above
log fpxq on the rest of the range.
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Adaptive Rejection sampling
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Adaptive Rejection sampling

Therefore, consider the squeezing envelope defined piece-
wise on the support of fpxq. For xi ď x ď xi`1

Lower : lnpxq “ Li ,i`1pxq

Upper : unpxq “ mintLi´1,i pxq,Li`1,i`2pxqu

where, for each i

Li ,i`1pxq “ yi `

ˆ

yi`1 ´ yi

xi`1 ´ xi

˙

px ´ xi q

Take

lnpxq “ ´8 unpxq “ mintL0,1pxq,Ln,n`1pxqu

for x outside of px0, xn`1q.
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Adaptive Rejection sampling

The scheme needs initialization; usually two function evalua-
tions at x values either side of the mode are sufficient.

The lower bound lnpxq and upper bound unpxq yield the fol-
lowing bounds on exponentiation

exptlnpxqu ď fpxq ď exptunpxqu “ Mn f0npxq

say, where Mn is a scaling constant such that f0npxq is a den-
sity function

f0npxq “

n
ř

i“1
exptmi x ` ciu1rxi´1,xi s

pxq

n
ř

i“1

ż 8

´8

exptmi t ` ciu1rxi´1,xi s
ptq dt
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Adaptive Rejection sampling

Log-density:
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Adaptive Rejection sampling

Lower Envelope
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Adaptive Rejection sampling

Upper envelope (part 1):
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Adaptive Rejection sampling

Upper envelope (part 2):
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Adaptive Rejection sampling

Lower and Upper envelopes:
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Adaptive Rejection sampling

Lower and Upper envelopes: original scale:
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Adaptive Rejection sampling

This f0npxq can be sampled directly by cdf inversion. The al-
gorithm is therefore

1. Generate x from fn0, and u from Uniformp0,1q
2. Accept x if u ď exptlnpxqu{pMn f0npxqq, and go to 4.
3. Accept x if u ď fpxq{pMn f0npxqq and go to 4.
4. Update fn0 by updating the lower and upper envelopes

taking into account the x and the function value fpxq, and
return to 1.

Every time a point is accepted or rejected, the envelopes are
potentially updated; the updating only changes the envelopes
locally, the intervals surrounding the location of the rejected
points.
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Rejection sampling and Importance sampling

There is obviously a clear connection between rejection sam-
pling and importance sampling

§ both rely on choosing a suitable f0pxq
§ the boundedness of the ratio fpxq{f0pxq is crucial in the

construction of the procedure

The difference is that rejection sampling produces i.i.d. sam-
ples from fpxq, whereas importance sampling approximates
numerical integration with respect to fpxq.
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Sampling Importance Resampling

Sampling Importance Resampling (SIR) can be used to sam-
ple (approximately) from density fpxq by re-weighting and
then resampling samples from f0pxq:

1. Generate variates x1, . . . , xN from f0.
2. Compute renormalized weights w1, . . . ,wN given by

wi “
fpxi q{f0pxi q

N
ř

j“1
pfpxj q{f0pxj qq

i “ 1, . . . ,N .

3. Resample yi from the discrete distribution on tx1, . . . , xNu

with masses tw1, . . . ,wNu.

85



Sampling Importance Resampling

Example: Normal mixture

fpxq “
1

4
φ px ` 2.5q `

3

4
φ px ´ 1q

f0pxq “
1

σ
φ px{σq

for some σ ą 0.

Choosing σ poorly can disrupt the performance of the SIR
algorithm.

‚ need to ensure there are samples in the tails of fpxq.
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Sampling Importance Resampling

Example: Normal mixture

SIR with σ “ 2 (N “ 100000, 2000 resampled points):
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Sampling Importance Resampling

Example: Normal mixture

SIR with σ “ 1 (N “ 100000, 2000 resampled points):
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Sampling Importance Resampling

Example: Normal mixture

SIR with σ “ 0.5 (N “ 100000, 2000 resampled points):
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Variance Reduction: Antithetic Variables

Suppose that the integral

I “

ż

gpxqfpxq dx

is to be estimated via Monte Carlo. The usual estimator

pIN pgq “
1

N

N
ÿ

i“1

gpXi q,

with X1, . . . ,XN i.i.d. from f , has variance

VarrgpXqs

N

We aim to reduce this variance.
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Variance Reduction: Antithetic Variables

Consider the estimator

qINA pgq “
1

2NA

NA
ÿ

i“1

rgpXi q ` gpYi qs ,

where pairs pX1,Y1q, . . . , pXNA ,YNA q are i.i.d. from some bi-
variate distribution with identical marginal distribution f , and
2NA “ N .
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Variance Reduction: Antithetic Variables

The variance of this estimator is

VarrgpXqs

2NA
`

CovrgpXq,gpYqs

2NA

Therefore if CovrgpXq,gpYqs is negative, then this variance is
smaller than the usual Monte Carlo variance. This is termed
the method of antithetic variables.
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Variance Reduction: Antithetic Variables

Example: Bivariate Normal

Suppose pX ,YqJ „ N2pµ1J,Σq, with variances 1 and

CovrX ,Y s “ ρ

In the estimation of µ by Monte Carlo, the relative variances
of the Monte Carlo and Antithetic Variable estimators is

VarrX s

VarrX s ` CovrX ,Y s
“

1

1´ ρ

Thus there is automatic variance reduction for the same total
simulation size.

There is a slight computation overhead in computing qINA pgq.
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Variance Reduction: Control Variates

Suppose

Ipgq “

ż

gpxqfpxq dx

with Monte Carlo estimator pIN pgq.

Consider an adjusted Monte Carlo estimator of Ipgq

pIN pg; g0, λq “ pIN pgq ` λppIN pg0q ´ Ipg0qq

for some function g0, where pIN pg0q is an unbiased estimator
of Ipg0q, and λ is some real constant.

94



Variance Reduction: Control Variates

This estimator is unbiased for Ipgq, and has variance

VarrpIN pgqs ` λ
2VarrpIN pg0qs ` 2λCovrpIN pgq,pIN pg0qs

Therefore, choosing

λ “ ´
CovrpIN pgq,pIN pg0qs

VarrpIN pg0qs

yields the variance of pIN pg; g0, λq as

p1´ CorrrpIN pgq,pIN pg0qs
2qVarrpIN pgqs ď VarrpIN pgqs
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Variance Reduction: Control Variates

This optimal choice of λ yields the maximum possible reduc-
tion for a given g0, but requires knowledge of the sign of the
covariance value.

In practice, the sign of λ can be assessed by regressing gpxi q

on g0pxi q.

96



Variance Reduction: Control Variates

Example: Normal tail probability

Consider

Ipgq “

ż 8

´8

gpxqfpxq dx “

ż 8

x0

φpxq dx “ PrrX ą x0s

Consider
g0pxq “ 1p0,8qpxq

so that Ipg0q “ 1{2. We examine the variance of the estimator

1

N

N
ÿ

i“1

1px0,8qpXi q ` λ

˜

1

N

N
ÿ

i“1

1p0,8qpXi q ´
1

2

¸

relative to the Monte Carlo estimator pIN pgq.
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Variance Reduction: Control Variates

Example: Normal tail probability

Relative variance for varying λ: x0 “ 2.5, N “ 20000.
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Variance Reduction: Control Variates

Example: Normal tail probability

The best choice seems to be λ « ´0.008.

In this case, finite sample bias might be exhibited. Therefore
we also examine mean-square error (MSE)

MSEpλq “ ErpIpgq ´ pIN pg; g0, λqq
2s

We see that the MSE is also lowest when λ « ´0.008, indicat-
ing that if there is finite sample bias, it is relatively insignifi-
cant.
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Variance Reduction: Control Variates

Example: Normal tail probability

MSE for varying λ: x0 “ 2.5, N “ 20000.
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Variance Reduction: Control Variates

Example:

See knitr 5
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Markov chain Monte Carlo

Generating variates from a probability distribution fpxq is not
straightforward when

§ x is high-dimensional (but not Gaussian),
§ fpxq is of non-standard form.

These difficulties occur often (but not exclusively) in Bayesian
inference.

We seek a way of simulating from fpxq in this situation.
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A brief introduction to Markov chains

A Markov chain is a countable sequence of random variables,
tXtu, for which

PrrXt P B |X1 “ x1, . . . ,Xt´1 “ xt´1s “ PrrXt P B |Xt´1 “ xt´1s

that is, Xt is conditionally independent of X0, . . . ,Xt´2 given
Xt´1.

In the simplest case, the tXtu takes values on the finite (dis-
crete) state space

SX “ ts1, . . . , sdu

and the chain is homogeneous, that is, the stochastic proper-
ties of tXtu do not change with time.
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A brief introduction to Markov chains

A homogeneous, discrete state-space Markov chain is charac-
terized by its initial state X0 or its initial distribution pp0q, and
its transition matrix P , a d ˆ d stochastic matrix whose rows
sum to one, such that

Pij “ PrrXt “ sj |Xt´1 “ si s

describes the entire set of one-step ahead conditional proba-
bilities. Denote by

pij pkq “ PrrXt0`k “ sj |Xt0 “ si s

the k -step ahead probabilities.
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A brief introduction to Markov chains

Note that if Ppkq is the matrix of k -step ahead transition prob-
abilities, then

Ppkq “ Pk

and then the k -step distribution is

ppkq “ pp0qPk
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A brief introduction to Markov chains

The properties of the chain depend on P . The chain is

§ irreducible if pij pkq ą 0, for all i , j , and at least one k .
§ aperiodic if all states have period 1: that is, for each i ,

returns to state i can occur after any number of steps.

The period of state i is defined as the greatest common
divisor of the set of possible return times, R,

R “ tr : PrrXr “ si |X0 “ si s ą 0u
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A brief introduction to Markov chains

§ recurrent if all states are recurrent, that is, the probabil-
ity of returning to each state in a finite number of steps
is positive. Let Ti “ inftk : Xk “ i |X0 “ iu. State i is
recurrent if and only if

PrrTi “ 8s “ 0

and transient otherwise. If ErTi s ă 8, state i is termed
positive recurrent , otherwise it is termed null recurrent .
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A brief introduction to Markov chains

A stationary or invariant distribution, π˚, of a homogeneous
Markov chain is the 1ˆ d vector of probabilities such that

π˚ “ π˚P

that is, for each i ,

π˚i “
ÿ

j

π˚j Pji
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A brief introduction to Markov chains

The equilibrium distribution of the chain, π, is defined by

π “ lim
kÝÑ8

ppkq “ pp0q lim
kÝÑ8

Pk

when this limit exists and is independent of pp0q. That is, we
may compute π as

1π “ lim
kÝÑ8

Pk

if the limit exists. The equilibrium distribution is a stationary
distribution.
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A brief introduction to Markov chains

An irreducible chain has a stationary distribution if and only
if all of its states are positive recurrent, in which case π is
unique. Given P , π can be computed as

lim
kÝÑ8

Pk “ 1π.

where 1 is the d ˆ 1 vector of 1s. A matrix P with the station-
ary distribution π can be computed by solving the system of
equations π “ πP .
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A brief introduction to Markov chains

Key aspects of the stationary distribution are that

(a) As the k -step ahead probability matrix Pk converges to a
matrix with d identical rows, the Markov chain can even-
tually “forget" its initial value X0.

(b) Realized values of tXtu have statistical properties that
demonstrate (strong) convergence to the stationary dis-
tribution, that is, for i “ 1, . . . ,d ,

lim
nÝÑ8

n
ř

k“1
1tsi u

pXk q

n
“ πi
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A brief introduction to Markov chains

A Markov chain is reversible if, for every n ě 1,

X0,X1, . . . ,Xn´1,Xn

and

Xn ,Xn´1, . . . ,X1,X0

have the same joint distribution.
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A brief introduction to Markov chains

It follows that the reverse chain is also Markov and that the
individual Xk have the same marginal distribution: for arbi-
trary state sequence plk`2, . . . , lnq,

PrrXk “ i |Xk`1 “ j ,Xk`2 “ lk`2, . . . ,Xn “ ln s

“
PrrXk “ i ,Xk`1 “ j ,Xk`2 “ lk`2, . . . ,Xn “ ln s

PrrXk`1 “ j ,Xk`2 “ lk`2, . . . ,Xn “ ln s

“
πi Pij Pj ,lk`2 ¨ ¨ ¨Pln´1,ln

πj Pj ,lk`2 ¨ ¨ ¨Pln´1,ln

“
πi Pij

πj

which only depends on i and j .
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A brief introduction to Markov chains

A homogeneous Markov chain with stationary distribution π

is reversible if

πi Pij “ πj Pji

for all states i and j . This is also termed the detailed balance
condition.

Note that if this equation holds for a specified π, then this
implies that the P has been specified so as to have stationary
distribution π.

114



Discrete Markov chains

Note that the tXtu are dependent random variables, so the
standard frequentist asymptotic laws do not directly apply.

However, the ergodic theorem applies for irreducible, aperi-
odic and positive recurrent Markov chains, in particular

1

N

N
ÿ

t“1

gpXt q
a.s.
ÝÑ EπrgpXqs

for all bounded functions g, provided

Eπr|gpXq|s ă 8
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Discrete Markov chains

A Central Limit Theorem result also holds under mild regular-
ity conditions, specifically,

?
N

˜

1

N

N
ÿ

t“1

gpXt q ´ EπrgpXqs

¸

d
ÝÑ N p0, σ2pgqq

where

σ2pgq “ VarπrgpX0qs ` 2
8
ÿ

t“1

CovπrgpX0q,gpXt qs.
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Discrete Markov chain: example

Example: d “ 2

Consider d “ 2, with

P “

„

0.3 0.7
0.9 0.1



Then π “ p9{16,7{16q. Here

π1P12 “
9

16
ˆ

7

10
“

63

160
π2P21 “

7

16
ˆ

9

10
“

63

160

so this chain is reversible.
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Discrete Markov chain: example

Example: d “ 2

Relative frequency of being in state 2 over 10000 steps.
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Constructing reversible chains

In the 2ˆ 2, for a reversible chain, we require

π1P12 “ p1´ π1qP21

or
π1

p1´ π1q
“

P21

P12
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Constructing reversible chains

Suppose

P12 “ min

"

1,
1´ π1

π1

*

P21 “ min

"

1,
π1

1´ π1

*

Then

π1P12 “ π1 min

"

1,
1´ π1

π1

*

“ min tπ1,1´ π1u

“ min t1´ π1, π1u

“ p1´ π1qmin

"

1,
π1

1´ π1

*

“ p1´ π1qP21
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Constructing reversible chains

The above Markov chain we can think of as acting as follows:

§ If Xt “ 1: propose setting Xt`1 “ 2, but only accept this
move with probability

min

"

1,
1´ π1

π1

*

otherwise set Xt`1 “ 1.
§ If Xt “ 2: propose setting Xt`1 “ 1, but only accept this

move with probability

min

"

1,
π1

1´ π1

*

otherwise set Xt`1 “ 2.

121



Constructing reversible chains

A generalization of this approach is as follows:

§ If Xt “ 1: simulate Zt on the set t1,2u with probabilities
pq11,q12q.

§ If Xt “ 2: simulate Zt on the set t1,2u with probabilities
pq21,q22q.
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Constructing reversible chains

§ If Xt “ 1: if Zt “ 2, set Xt`1 “ Zt “ 2 with probability

α12 “ min

"

1,
π2

π1

q21

q12

*

otherwise set Xt`1 “ Xt “ 1.

§ If Xt “ 2: if Zt “ 1, set Xt`1 “ Zt “ 1 with probability

α21 “ min

"

1,
π1

π2

q12

q21

*

otherwise set Xt`1 “ Xt “ 2.
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Constructing reversible chains

The transition probabilities are then

P12 “ PrrXt`1 “ 2|Xt “ 1s “ q12α12

P21 “ PrrXt`1 “ 1|Xt “ 2s “ q21α21

so therefore

π1P12 “ π1q12α12 “ π1q12 min

"

1,
π2

π1

q21

q12

*

“ min tπ1q12, π2q21u

π2P21 “ π2q21α21 “ π2q21 min

"

1,
π1

π2

q12

q21

*

“ min tπ2q21, π1q12u

and
π1P12 “ π2P21.
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Constructing reversible chains

This allows the generalization to the more general discrete
state space t1,2, . . . ,d , . . .u. Suppose that π is an arbitrary
discrete distribution. Let matrix Q define the proposal prob-
abilities

rQ sij “ PrrZt “ j |Xt “ i s

Define the acceptance probabilities

αij “ min

"

1,
πj

πi

qji

qij

*

If Xt “ i , set Xt`1 “ Zt “ j with probability αij . Otherwise set
Xt`1 “ Xt “ i .
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Constructing reversible chains

This Markov chain satisfies detailed balance

πi Pij “ πj Pji for all i , j

provided it is irreducible, aperiodic and positive recurrent.

Note that the rows of Q must sum to 1 as

8
ÿ

j“1

PrrZt “ j |Xt “ i s “ 1

so Q defines a stochastic proposal (or transition) matrix.
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Constructing reversible chains: example

Example: Poisson distribution

Suppose, for λ ą 0,

πi “
e´λλi

i !
i “ 0,1,2, . . . .

Suppose

qij “

$

’

’

&

’

’

%

1 i “ 0, j “ 1

1
2 i ě 1, j “ i ´ 1, i ` 1

0 otherwise

That is, Zt is proposed uniformly on the finite set txt ´ 1, xt `

1u, unless Xt “ 0, in which case Zt “ 1 is proposed.
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Constructing reversible chains: example

Example: Poisson distribution

First 200 steps of the chain starting at X0 “ 0 with λ “ 2.5.
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Constructing reversible chains: example

Example: Poisson distribution

Histogram of states visited over N “ 10000 steps (with true
values (+))  
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Constructing reversible chains: example

Example: Poisson distribution

Relative frequencies (pπi ) of states visited over N “ 10000
steps, with true Poisson probabilities (πi ).

i 0 1 2 3 4 5

pπi 0.0830 0.2005 0.2491 0.2140 0.1351 0.0703
πi 0.0821 0.2052 0.2565 0.2138 0.1336 0.0668

i 6 7 8 9 10 11

pπi 0.0319 0.0119 0.0027 0.0008 0.0005 0.0002
πi 0.0278 0.0099 0.0031 0.0009 0.0002 0.0000
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Constructing reversible chains: example

Example: Poisson distribution

To measure convergence, we can use the Total Variation dis-
tance. For two mass functions f1pxq and f2pxq, we compute

dTV pf1, f2q “
1

2

ÿ

x

|f1pxq ´ f2pxq|

Here we take f1 to be the true Poisson mass function π, and f2

to be the estimated mass function pπ.

We monitor this distance as N increases.
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Constructing reversible chains: example

Example: Poisson distribution

dTV pπ, pπq as N increases.
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Measuring convergence

Note: For continuous densities the total variation distance is
given by

dTV pf1, f2q “
1

2

ż

|f1pxq ´ f2pxq| dx

In general, the total variation distance dTV pf1, f2q can be hard
to compute.
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Measuring convergence

Recall the relationship between dTV pf1, f2q and the Hellinger
distance dH pf1, f2q

dH pf1, f2q “

d

ÿ

x

´

a

f1pxq ´
a

f2pxq
¯2

that is,
1

2
d2

H pf1, f2q ď dTV pf1, f2q ď dH pf1, f2q

These inequalities also hold in the continuous case. Note that

dTV pf1, f2q ÝÑ 0 ðñ dH pf1, f2q ÝÑ 0.

The Hellinger distance is sometimes easier to compute.
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Discrete Markov chains: Recap

For an arbitrary discrete distribution, π, we can now con-
struct a Markov chain that has π as its stationary distribution,
and can produce dependent samples from the π by running
the Markov chain and collecting the generated states.

§ specify the stochastic matrix Q
§ initialize the chain by setting X0

§ for each t , if Xt “ i , use the i th row of Q as a discrete
distribution for proposing Zt

§ If Zt “ j , accept Xt`1 “ j with probability αij

αij “ min

"

1,
πj

πi

qji

qij

*

otherwise set Xt`1 “ Xt “ i .
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Discrete Markov chains: Recap

Example:

See knitr 6

136



Continuous State Space Markov Chains

The theory above extends (reasonably straightforwardly) to
continuous state spaces, that is, the countable state set

ts1, ..., sdu

is replaced by a continuum of possible values, X.
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Continuous State Space Markov Chains

In this case, instead of having a transition matrix, we have a
transition kernel

Ppx,Bq “

ż

B
Ppx, zq dz

Ppx,Bq determines the probability of making the transition
from current value x into the set B Ă X in any given step.
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Continuous State Space Markov Chains

We retain the discrete time nature of the Markov chain, and
again consider outcome sequences tx1, x2, ..., xn , ...uq.

Transitions are implemented using a transition density

P px, zq ” P px Ñ zq

which specifies a conditional probability density in z, given
the current value x, for x, z P X.
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Continuous State Space Markov Chains

By analogy with the discrete case, the stationary distribution
π for the continuous state space chain must satisfy

πpxq “

ż

Ppz, xqπpzq dz

A reversible chain must satisfy detailed balance

πpxqPpx, zq “ πpzqPpz, xq

for all x and z. Given P , we can in theory solve for π.

In the context of sampling from probability distributions, we
wish to specify π, and then find a P such that its equilibrium
distribution is π.
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Harris recurrence

Suppose tXnu is a homogeneous Markov chain on a general
state space X with transition kernel Ppx, .q which represents
the one-step transition probability

PrrXn`1 P B |Xn “ xs “ Ppx,Bq @x P X,B P X.
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Harris recurrence

Then tXnu is a Harris chain if there exists A Ď X, ε ą 0, and
probability measure νp.q with νpXq “ 1 such that

(i) If τA “ inftn ě 0 : Xn P Au, then

PrrτA ă 8|X0 “ xs “ 1 @x P X;

(ii) If x P X and B Ď X, then

Ppx,Bq ě ενpBq.
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Harris recurrence

(i) ensures that the chain returns to the A with probability 1,
regardless of where it starts, so that it visits A infinitely
often (with probability 1).

(ii) implies that once the chain is in A , its next state can be
generated with the help of a Bernoulli draw:

§ (ii) ensures that 0 ď ε ď 1: simply set B “ X;
§ suppose x P A and set Xn “ x;
§ to generate Xn`1, draw Z „ Bernoullipεq: if Z “ 1, gen-

erate Xn`1 according to ν on X, otherwise generate Xn`1

according to the distribution

PrrXn`1 P B |Xn “ xs “
pPpx,Bq ´ ενpBqq

1´ ε
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Harris recurrence

Suppose that X0 „ pp0q and define for arbitary A

τA “ inftn ě 1 : Xn P Au

that is, τA is the first ‘entry time’ for A .

The chain is Harris recurrent if, for all pp0q,

PrrτA ă 8|X0 P A s “ 1

and aperiodic if there exists nA such that for all n ě nA

PrrXn P A |X0 P A s ą 0.
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Harris recurrence

If tXnu is an aperiodic, Harris recurrent chain with stationary
distribution π, then provided

PrrτA ă 8|X0 “ xs “ 1

for x P X we have that

dTV pp
pnq, πq ÝÑ 0

as n ÝÑ 8, where for B Ď X,

ppnqpBq “ PrrXn P B |X0 “ xs.
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The Metropolis-Hastings Algorithm

We attempt to mimic the construction of a Markov chain with
stationary distribution π used in the discrete case.

Let Q be any proposal (transition) kernel suitable for moving
(exhaustively) around X, with associated transition density q
such that

q pz, xq “ qpz ÝÑ xq ą 0

for all x, z.

In fact, this can be relaxed to the condition that requires
Qn px, zq ą 0 for all x, z P X, separated by n steps in the
chain).
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The Metropolis-Hastings Algorithm

Then, for z ‰ x, define

P px, zq “ q px, zqα px, zq

where

α px, zq “ min

"

1,
π pzq

π pxq

q pz, xq

q px, zq

*

defines an acceptance probability for the move from x to z.
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The Metropolis-Hastings Algorithm

Under this transition kernel or density P with transition den-
sity if the current state of the chain at step n is Xn “ x, then
the next value of the chain is either

§ a new value Xn`1 “ z, generated from the conditional
density q px, zq,

§ or the current value Xn`1 “ x.

The value z the proposed or candidate state.

Thus, starting from the n th step when xn “ x, we have the fol-
lowing algorithm for implementing the continuous state space
Markov chain:
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The Metropolis-Hastings Algorithm

1. Generate candidate z from the conditional density q p., .q
given x

2. Compute α px, zq

3. Generate u from Uniform p0,1q
§ if u ď α px, zq, accept the move to z and set Xn`1 “ z
§ if u ą α px, zq, reject the move to z and set Xn`1 “ x

4. Return to 1 to generate Xn`2

and so on.

This is the Metropolis-Hastings algorithm
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The Metropolis Algorithm

The general algorithm above has some special cases of inter-
est. If q is chosen such that

q px, zq “ q pz, xq

so that q is symmetric in its arguments, then

α px, zq “ min

"

1,
π pzq

π pxq

*

and the move to z is accepted with certainty if the target prob-
ability density at z is higher than at x.
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The Metropolis Algorithm

A simple symmetric transition density has

Z |Xn “ x „ N
`

x, σ2
q

˘

Choosing σ2
q small encourages many small moves.

This is the original Markov chain simulation algorithm, known
as the Metropolis Algorithm.

Many such “local" moves can be proposed. Note that it is im-
portant to respect any parameter constraints in the proposal.
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Independence Metropolis-Hastings

The independence Metropolis-Hastings algorithm uses

q px, zq “ q pzq

that is, independent of the current value of the chain. This
still defines a Markov chain as

p px, zq “ q pzqα px, zq

still depends on x through α px, zq.

A good independence Markov chain (that traverses X quickly)
is more difficult to construct without knowledge of π.

However, if π can be well-approximated by a density q (as in
rejection sampling), then this method can work well.
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Metropolis-Hastings algorithm

Example: Gamma density

Suppose, for γ ą 0

πpxq “
1

Γpγq
xγ´1e´x x ą 0.

Suppose, first that qpx, zq is specified as a reflected normal
density, that is, we propose z by simulating

Y |Xt “ x „ N px, σ2
qq,

and setting Z “ |Y |.
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Metropolis-Hastings algorithm

Example: Gamma density

Note that

PrrZ ď z|X “ xs “ Prr|Y | ď z|X “ xs “ Prr´z ď Y ď z|X “ xs

so therefore

PrrZ ď z|X “ xs “ Φppz ´ xq{σqq ´ Φpp´z ´ xq{σqq

and, on differentiation wrt z,

qpx, zq “
1

σq
pφppz ´ xq{σqq ` φpp´z ´ xq{σqqq “ qpz, xq

as φ is an even function.
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Metropolis-Hastings algorithm

Example: Gamma density

First 200 steps of the chain starting at X0 “ 0 with γ “ 2.5,
σq “ 1.
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Metropolis-Hastings algorithm

Example: Gamma density

Histogram of states visited over N “ 10000 steps (with
Gamma density (solid))  
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Metropolis-Hastings algorithm

Example: Gamma density

First 200 steps of the chain starting at X0 “ 0 with γ “ 2.5,
σq “ 0.1.
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Metropolis-Hastings algorithm

Example: Gamma density

Histogram of states visited over N “ 10000 steps (with
Gamma density (solid))  
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Metropolis-Hastings algorithm

Example: Gamma density

First 200 steps of the chain starting at X0 “ 0 with γ “ 2.5,
σq “ 3.
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Metropolis-Hastings algorithm

Example: Gamma density

Histogram of states visited over N “ 10000 steps (with
Gamma density (solid))  
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Metropolis-Hastings algorithm

The states generated by the Markov chain are correlated; we
can assess the performance of the Markov chain by examining
the sample autocorrelation function

rpkq “

ˆ

N ´ 1

N ´ k ´ 1

˙

N
ř

t“k`1
pxt ´ xqpxt´k ´ xq

N
ř

t“1
pxt ´ xq2

for k “ 0,1,2 . . ..

A chain with high autocorrelation for large k is typically slow
to converge.
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Metropolis-Hastings algorithm

Example: Gamma density

Autocorrelation function for σq “ 1.
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Metropolis-Hastings algorithm

Example: Gamma density

Autocorrelation function for σq “ 0.1: inferior performance.
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Metropolis-Hastings algorithm

Example: Gamma density

Autocorrelation function for σq “ 3: superior performance.
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Metropolis-Hastings algorithm

If the chain is started away from the high-probability region
of π, then the it can take many steps to return there.

In the following trace plots, the red dashed lines give the
0.025 and 0.975 quantiles of the Gammap2.5,1q distribution
from the example. The chain is initialized at X0 “ 20, and
then run for 20000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: first 1000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: first 10000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: first 20000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: steps 15000 to 20000.

15000 16000 17000 18000 19000 20000

0
2

4
6

8
10

t

X

169



Metropolis-Hastings algorithm

In this final section of the chain, the generated values appear
to oscillate, despite the fact that the chain has apparently
reached the stationary phase. This oscillation is a result of
the high autocorrelation present in the chain.

It is often difficult to distinguish such high autocorrelation
from the case where a chain has not converged.

The high autocorrelation results here from the choice σq “

0.1; this value is smaller than is optimal.
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Metropolis-Hastings algorithm

Example:

See knitr 7
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Gibbs Sampler

The Metropolis-Hastings algorithm above is valid for both uni-
variate and multivariate probability distributions, but is more
complicated in high dimensions.

The objective is to choose a transition density q that moves
around the space X quickly, which means that we wish to have
the acceptance probability reasonably large.

In high dimensions, this is often difficult to achieve. The Gibbs
Sampler algorithm attempts to solve this problem by break-
ing down a high-dimensional problem into several lower di-
mensional problems that are solved iteratively and simultane-
ously.

172



Gibbs Sampler

Suppose that π is a probability density in K dimensions, and
let the variables be denoted pX1, ...,XK q. Define the condi-
tional density πk p.|.q for

Xk |X1, ...,Xk´1,Xk`1, ...XK

by

πk

`

xk ; xpkq
˘

“
π px1, ..., xK q

π px1, ..., xk´1, xk`1, ...xK q
∝ π px1, ..., xK q

where the denominator is the marginal distribution of Xpkq,
the K ´ 1 variables excluding Xk .

The Gibbs Sampler utilizes this set of K full conditional dis-
tributions to construct a Markov chain on the support of the
joint distribution.
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Gibbs Sampler

It is implemented using the following algorithm:

1. Set a vector of starting values for the K variables
px10, ..., xK0q .

2. Sample in turn from the conditional distributions as
follows:

(a) sample x11 from π1 px1; x20, x30, ..., xK0q

(b) sample x21 from π2 px2; x11, x30, ..., xK0q

(c) sample x31 from π3 px3; x11, x21, ..., xK0q

...
(K) sample xK1 from πK pxK ; x11, x21, ..., xK´1 1q

This completes one step of the Gibbs sampler.

3. Return to 2 (a), and repeat to obtain, at step t , the
sampled variates px1t , x2t , ..., xKt q
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Gibbs Sampler

This Markov chain defines, in steps 2(a)-2(K), a means of up-
dating the vector xt to vector xt`1. Each of the steps can
be achieved using direct sampling from the conditional dis-
tribution if that is possible, but can also involve individual
Metropolis-Hastings steps, with acceptance probabilities

αk px, zq “ min

#

1,
πk

`

z; xpkq
˘

πk

`

x; xpkq
˘

qk pz, xq

qk px, zq

+

for k “ 1, ...,K . In 2., the steps can also be completed in
random order

Finally, these steps can be achieved with the scalar variables
X1,...,XK or with these components as vector variables; decid-
ing on which blocks of variables to update simultaneously is
often a key issue.
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Gibbs Sampler as Metropolis-Hastings

The Gibbs sampler is in fact a special case of the Metropolis-
Hastings algorithm: we can regard the individual updates in
2. as implementing K separate transition kernels P1, . . . ,PK

that act on the components of the vector X; note that these
kernels in isolation yield reducible Markov chains.

A more general form of MH algorithm is based on a mixture
transition kernel

Ppx,Bq “
ÿ

j

ωj Pj px,Bq

where 0 ď ωj ď 1 and
ř

j
ωj “ 1, and the Pj are themselves

transition kernels. This allows for the possibility of choosing
several proposal densities qj .
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Gibbs Sampler: example

Example: Bivariate Normal

Suppose X “ pX1,X2q
J „ N2p0,Σq where

Σ “

„

1 ρ

ρ 1



The general result for multivariate normal distribution condi-
tional distributions is that if X “ pX1,X2q

J „ Nd pµ,Σq, where
X1 is pd1 ˆ 1q, and

Σ “

„

Σ11 Σ12

Σ21 Σ22



then

X1|X2 “ x2Nd1 „
`

µ1 ` Σ12Σ´1
22 px2 ´ µ2q,Σ11 ´ Σ12Σ´1

22 Σ21

˘
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Gibbs Sampler: example

Example: Bivariate Normal

Therefore, here d “ 2, and

X1|X2 “ x2 „ N pρx2, p1´ ρ
2qq

X2|X1 “ x1 „ N pρx1, p1´ ρ
2qq

These distributions are sampled repeatedly with updating of
the conditioning value after each sampling.

Suppose we start at px10, x20q “ p0,0q.
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Gibbs Sampler: example

Example: Bivariate Normal

Initial point: px10, x20q
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Gibbs Sampler: example

Example: Bivariate Normal

After one update: px11, x21q
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Gibbs Sampler: example

Example: Bivariate Normal

After two updates: px12, x22q
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Gibbs Sampler: example

Example: Bivariate Normal

After three updates: px13, x23q
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Gibbs Sampler: example

Example: Bivariate Normal

After four updates: px14, x24q
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Gibbs Sampler: example

Example: Bivariate Normal

After 2000 updates: entire collected sample
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Gibbs Sampler: example

Example: Bivariate Normal

Histogram for X1 with true marginal density (solid): 
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Gibbs Sampler: example

Example: Bivariate Normal

Trace for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

ACF for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

We note that

‚ the Gibbs sampler makes one-step moves along the coor-
dinate axes

‚ the moves can traverse the support of the joint density
fairly well

‚ there is no “tuning" of a proposal parameter (like σq)
‚ the samples of x1 that are collected across steps are (de-

pendent) samples from the correct marginal distribution
for X1; the same result holds for X2

We can re-run the Gibbs sampler from the same starting
value, but now with ρ “ 0.95.
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Gibbs Sampler: example

Example: Bivariate Normal

Initial point: px10, x20q
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Gibbs Sampler: example

Example: Bivariate Normal

After one update: px11, x21q
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Gibbs Sampler: example

Example: Bivariate Normal

After two updates: px12, x22q
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Gibbs Sampler: example

Example: Bivariate Normal

After three updates: px13, x23q
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Gibbs Sampler: example

Example: Bivariate Normal

After four updates: px14, x24q
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Gibbs Sampler: example

Example: Bivariate Normal

After 2000 updates: entire collected sample
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Gibbs Sampler: example

Example: Bivariate Normal

Histogram for X1 with true marginal density (solid):
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Gibbs Sampler: example

Example: Bivariate Normal

Trace for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

ACF for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

With ρ “ 0.95, the Gibbs sampler still performs adequately,
but the moves made are smaller, and exploring the distribu-
tion is much more difficult.

This illustrates a potential general problem with the Gibbs
sampler: although it is straightforward to implement as it in-
volves only sampling variates from univariate densities, the
restriction to moves along the coordinate axes can cause
problems if the variables are highly correlated .
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Gibbs Sampler: example

Example: Weibull posterior distribution

Suppose that Y1, . . . ,Yn are conditionally iid from the Weibull
distribution with density

fY py; γ, λq “ γλyγ´1 expt´λyγu y ą 0

and zero otherwise, for parameters γ, λ ą 0. We seek to per-
form Bayesian inference for the two unknown parameters.

The likelihood function for observed data y1, . . . , yn takes the
form

Lnpγ, λq “ γnλn

˜

n
ź

i“1

yi

¸γ´1

exp

#

´λ
n
ÿ

i“1

yγi

+
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Gibbs Sampler: example

Example: Weibull posterior distribution

We assume independent Exponentialp0.1q priors for γ and λ

π0pγ, λq “ 0.01e´0.1pγ`λq γ, λ ą 0.

This yields the posterior distribution up to proportionality as

πnpγ, λq ∝ Lnpγ, λqπ0pγ, λq γ, λ ą 0

which is a non-standard distribution.
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Gibbs Sampler: example

Example: Weibull posterior distribution

We seek to produce a sample from this joint posterior distri-
bution for data pn “ 15q.

10.3959 6.2281 6.5331 10.7086 7.6138
8.9423 8.8254 6.1461 7.2988 8.8081
7.5316 8.2238 8.9831 6.4174 9.7648
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Gibbs Sampler: example

Example: Weibull example

Joint posterior (up to proportionality)
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Gibbs Sampler: example

Example: Weibull example

In this case, neither full conditional posterior

πnpγ|λq πnpλ|γq

is a standard distribution, and cannot be sampled from easily.

We adopt a Metropolis-within-Gibbs strategy; this uses MH
accept-reject steps for each parameter and its full conditional.

Specifically, as both parameters are positive, we use the re-
flected normal proposal distribution from the previous exam-
ple with σq “ 1 for γ and σq “ 10´3 for λ proposals.
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Gibbs Sampler: example

Example: Weibull example

First 2000 Gibbs sampler steps.
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Gibbs Sampler: example

Example: Weibull example

Trace plots:
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Gibbs Sampler: example

Example: Weibull example

Acf:
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Gibbs Sampler: example

Example: Weibull example

The posterior correlation here is approximately 0.86; this
severely affects the performance of the Gibbs sampler.

A reparameterization partially solves this problem. Define φ
by

φ “

ˆ

1

λ

˙1{γ

6 λ “

ˆ

1

φ

˙γ

For this new parameterization, we must remember to include
the Jacobian in the prior for the new parameters

π0pγ, φq “ π0pγ, λpγ, φqq|Jpγ, φq|

We again must use Metropolis-within-Gibbs.
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Gibbs Sampler: example

Example: Weibull example

Joint posterior for new parameterization
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Gibbs Sampler: example

Example: Weibull example

Sample from joint posterior for new parameterization
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Gibbs Sampler: example

Example: Weibull example

Trace plots: new parameterization

0 500 1000 1500 2000

2
3

4
5

6
7

Iteration

γ

0 500 1000 1500 2000

7
8

9
10

Iteration

φ

210



Gibbs Sampler: example

Example: Weibull example

Acf: new parameterization

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

γ

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

φ

211



Gibbs Sampler: example

Example: Weibull example

The posterior correlation here is approximately 0.25, and the
Gibbs sampler can effectively traverse the parameter space.

Parameter estimates for the new parameters can be obtained
from the posterior samples: the mean and 95% credible inter-
val for each parameter is

γ : 4.079 p2.455,6.038q

φ : 8.446 p7.310,9.593q

It is also possible to obtain posterior summaries for other
functions of the posterior parameters.
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Gibbs Sampler: example

Example: Weibull example

For example, the survivor function, Spyq, is defined by

Spyq “ PrrY ą ys “ expt´py{φqγu.

For each y P R`, we can compute this function for each pair
of generated points pγ, φq obtained from the Gibbs sampler.
We can then compute the pointwise credible intervals.
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Gibbs Sampler: example

Example: Weibull example

Posterior survivor function: Bayes estimate and 95 % credible
interval (shaded). Solid line is empirical survivor function.
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Effective sample size

We seek to measure the adequacy of the collected samples
for estimating parameters, in particular, we wish to assess
the variance of the estimators.

For an iid sample of size N , the variance of the Monte Carlo
estimator pIN pgq is

VarrgpXqs

N
.

However, for a dependent sample, the variance is

VarrgpXqs

Neff

where Neff is the effective sample size.
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Effective sample size

We have that, for a series of N observations from a dependent
stochastic process, the effective sample size is given by

Neff “
N

1` 2
8
ř

k“1
ρpkq

where ρpkq is the true lag-k autocorrelation for the Markov
chain. The denominator is termed the integrated autocorre-
lation time.

The true autocorrelations are typically not known, so must be
estimated from the data. Most typically this is achieved using
spectral methods. The calculation is available in R from the
library coda, in the function

effectiveSize.
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Effective sample size

For the Weibull example, with N “ 2000 in runs shown above

Neff

γ λ

pγ, λq parameterization 8.46 4.14
pγ, φq parameterization 217.20 393.69

From this we can tell that the second MCMC run, in the pγ, φq
parameterization, has produced much larger effective sample
sizes.
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Rejection sampling for the Weibull example

Note that we could attempt to address the problem of sam-
pling from the posterior distribution in the Weibull problem
above by rejection sampling. In the pγ, φq parameterization,
we have

πnpγ, φq ∝ Lnpγ, φqπ0pγ, λpγ, φqq|Jpγ, φq|

where π0p., .q is the product of independent Exponentialp0.01q
priors.
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Rejection sampling for the Weibull example

We use proposal function f0 which is the product of Gamma
densities; we choose

Gammap2,1{2q Gammap4,2q

for proposing pγ, φq, and then use numerical maximization to
find the bound M .
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Rejection sampling for the Weibull example

Example: Weibull example

Rejection sampling: acceptance rate is approximately 0.116.
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Examples

Example: Weibull

See knitr 8

Example: Non-linear regression

See knitr 9
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Metropolis-Hastings in higher dimensions

The Metropolis-Hastings algorithm can be used for probabil-
ity distributions in arbitrary dimension. Note that it is always
the case that, for the full conditional distributions, if

§ x1 is a sub-vector of the entire vector x of variables, and
§ xp1q is x with the components x1 removed,

then
πpx1|xp1qq ∝ πpxq

as the normalizing constant is πpxp1qq, which does not depend
on x1.

For Metropolis-within-Gibbs, knowing πpx1|xp1qq up to propor-
tionality is sufficient, as the normalizing constant cancels out
in the calculation of the acceptance probability.
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Gibbs sampler: example

Example: Ising model

Recall the Ising model: this is a joint distribution for the col-
lection of binary random variables tXiu placed on a rectangu-
lar (N ˆM ) lattice, with joint mass function

πXpx;βq “

exp

#

β
NM
ř

i“1

ř

j‰i
1txi u

pxj q

+

Zpβq

where Zpβq is the normalizing constant. The support of this
mass function has

2NM

elements.
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Gibbs sampler: example

Example: Ising model

The full conditional distribution for the Xi is a discrete distri-
bution on t0,1u, with

πi pxi |xpiqq ∝ exp

$

&

%

β
ÿ

j P Bi

1xj pxi q

,

.

-

where Bi is the neighbourhood of i . This distribution reduces
to

PrrXi “ 0|Xpiq “ xpiqs “
eβni0

eβni0 ` eβni1

where ni0 and ni1 are the numbers of neighbours of i that
take the values 0 and 1 respectively. This distribution can be
sampled easily as part of a Gibbs sampler.
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Examples

Example: Auxiliary variable methods

See knitr 10

Example: Missing data problems

See knitr 11
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Examples

Example: Multi-level models

See knitr 12

Example: Hierarchical linear regression

See knitr 13

Example: Hierarchical non-linear regression

See knitr 14
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Multiple chain MCMC

The principal problems the MH algorithm encounters in ap-
plications relate to

§ Choice of starting values: Poorly chosen starting val-
ues can result in slow convergence;

§ Posterior correlation: High posterior correlation leads
to inefficiency of Gibbs sampler moves, and slow conver-
gence; this can sometimes be overcome by reparameter-
ization.

§ Failure to explore the state space: Algorithm can get
trapped in localized regions of high probability density;
this can sometimes be overcome by using multiple chain
MCMC.
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Multi-Mode Distributions

Example: Mixture of Bivariate Normals

Suppose

πpxq ” ωN2pµ1,Σ1q ` p1´ ωqN2pµ2,Σ2q

where µ1 and µ2 are relatively well separated.

MCMC algorithms to sample from this bivariate density often
encounter problems because they get stuck in the modes at
µ1 and µ2, and cannot jump between them.
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Multi-Mode Distributions

Example: Mixture of Bivariate Normals

Mixture of Bivariate Normal densities.
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Dominant-Mode Distribution

Example: The Witch’s Hat

In d dimensions, suppose

πpxq “ ω

ˆ

1

σ

˙d d
ź

j“1

φ

ˆ

xj ´ θj

σ

˙

` p1´ ωq
d
ź

j“1

1p0,1qpxj q

This density has a single mode at θ, but also a diffuse prob-
ability on the d -dimensional hypercube given by the second
term.

MCMC algorithms can find it difficult to explore the “diffuse"
region, because they get stuck in the mode, or vice versa.
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Multiple chain MCMC

It is possible to use multiple Markov chain algorithms to pro-
duce variates from a target distribution π.

§ Replicate chains: we run m chains with the same tran-
sition kernel P from different starting values, and then
combine the chain as independent samples.

§ Parallel chains: we run M chains each with its own
transition kernel P1, . . . ,PM , such that the chain is re-
versible with respect to π: for m “ 1, . . . ,M

πpxqPmpx, yq “ πpyqPmpy, xq

and then the variates from the different chains are com-
bined as independent samples.

231



Multiple chain MCMC

§ Different chains: we run M chains each with its own
transition kernel P1, . . . ,PM , such that each chain is re-
versible with respect to its own target πm where, say
π1 ” π. We then allow exchange of information between
chains to facilitate sampling from π.

In this case it is not so straightforward to guarantee that
the exchange of information does produce samples from π.
This does need verification, once the exchange mechanism
has been defined.

Such methods are called multiple chain or population MCMC.
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Multiple chain MCMC

The simplest way to think about multiple chain methods in
the case of different chains is via auxiliary variables, and an
augmentation of the state space. For m “ 1, . . . ,M , consider

§ variable Xm

§ (posterior) distribution πmpxq
§ irreducible transition kernel Pm , defined so that Pm and
πm exhibit detailed balance, and Pm defines a recurrent
Markov chain

where, without loss of generality, π1 is the distribution of in-
terest, so that X2, . . . ,Xm are auxiliary variables.
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Multiple chain MCMC

For X “ pX1, . . . ,XM q, define

πM pxq 9
M
ź

m“1

πmpxmq.

By construction, the marginal distributions are π1, . . . , πM .

Consider constructing a Markov chain on the extended state
space, with πM as the target distribution. The usual rules
of Metropolis-Hastings apply - we propose a candidate new
value, and accept it with some acceptance probability, other-
wise we remain at the current value.

The values of x1 that we collect across iterations are (depen-
dent) samples from the marginal distribution, π1.

Move Types
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Parallel Tempering

Parallel Tempering is a multiple chain method that gives a
specific construction of the distributions π1, . . . , πM . Write
density π as

πpxq 9 expt´Hpxqu

and define

πmpxq 9 exp

"

´
Hpxq

Tm

*

“ tπpxqu1{Tm

where
1 “ T1 ă T2 ă ¨ ¨ ¨ ă TM

represent a series of “temperatures". The densities π2, . . . , πM

are tempered versions of π1.
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Parallel Tempering

Note that

πmpxq “
exp

!

´
Hpxq
Tm

)

ZpTmq

where

ZpTmq “

ż

exp

"

´
Hpxq

Tm

*

dx

may not be available analytically.

This integral needs to be finite for πm to be a proper distribu-
tion.
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Parallel Tempering

Example: Two component Normal mixture

For the two component mixture

πpxq “
1

4
φpx ` 4q `

3

4
φpx ´ 2q

the tempered distributions have modes that become increas-
ingly flat.
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Parallel Tempering

Example: Two component Normal mixture

T1 “ 1:
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Parallel Tempering

Example: Two component Normal mixture

T2 “ 2:
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Parallel Tempering

Example: Two component Normal mixture

T3 “ 5:
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Parallel Tempering

Example: Two component Normal mixture

T4 “ 10:
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Parallel Tempering

Example: Two component Normal mixture

T5 “ 20:
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Parallel Tempering

Example: Two component Normal mixture

T6 “ 50:
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Parallel Tempering

When Tm is large

πmpxq 9 exp

"

´
Hpxq

Tm

*

is relatively “flat", that is, changes in x do not lead to large
changes in πmpxq.

Parallel tempering utilizes within chain and between chain
updates. In the classical version, each iteration consists of

1. Within: an update for each chain using the MH kernels
P1, . . . ,PM , then

2. Between: an update that attempts to swap xm (from the
chain for πm at temperature Tm) with one of its tempera-
ture neighbours.
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Parallel Tempering

Define the between-chain exchange probabilities

qB pl ,mq “ PrrSwap chain l with chain ms

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

2
2 ď l ď M ,m “ l ´ 1, l ` 1

1 l “ 1 and m “ 2, or l “ 1 and m “ 2

0 otherwise

Then the between-chain exchange that proposes to swap xl

with xm is accepted with probability

α “ min

"

1,
πl pxmqπmpxl qqB pm, lq

πl pxl qπmpxmqqB pl ,mq

*
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Parallel Tempering

For the tempered distributions

πl pxmqπmpxl q

πl pxl qπmpxmq
“ exp

"

´
Hpxmq

Tl
´

Hpxl q

Tm
`

Hpxl q

Tl
`

Hpxmq

Tm

*

or equivalently

exp

"

pHpxl q ´Hpxmqq

ˆ

1

Tl
´

1

Tm

˙*

Temperatures T2, . . . ,TM should be chosen such that moves
are accepted at neither too high nor too low a rate.

The samples collected for x1 across iterations represent a
sample from the marginal π1 ” π, the target distribution.
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Parallel Tempering

Tempered moves can be proposed in an “up-down” fashion.
An update for x1 (in the target chain for π1 ” π) can be pro-
posed as follows.

For the “up phase":
Propose y1 from kernel q1px1, yq in chain 1
Propose y2 from kernel q2py1, yq in chain 2
Propose y3 from kernel q3py2, yq in chain 3
. . .
Propose yM´1 from kernel qM´1pyM´2, yq in chain M ´ 1
Propose yM from kernel qM pyM´1, yq in chain M
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Parallel Tempering

For the “down phase":
Propose zM from kernel qM pyM , zq in chain M
Propose zM´1 from kernel qM´1pzM , zq in chain M ´ 1
Propose zM´2 from kernel qM´2pzM´1, zq in chain M ´ 2
. . .
Propose z2 from kernel q2pz3, zq in chain 2
Propose z1 from kernel q1pz2, zq in chain 1

This up and down sequence has proposed a move in the π1

chain x1 ÝÑ z1 via the intermediate steps through the other
tempered chains.
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Parallel Tempering

The acceptance probability for the move is the minimum of 1
and

π1pz1q

π1px1q

qU pz1, . . . , zM , yM qqD pyM , . . . , y1, x1q

qU px1, y1, . . . , yM qqD pyM , zM , . . . , z1q

where

qU pz1, . . . , zM , yM q “ q1pz1, z2qq2pz2, z3q ¨ ¨ ¨qM pzM , yM q

qD pyM , . . . , y1, x1q “ qM pyM , yM´1qqM´1pyM´1, yM´2q ¨ ¨ ¨q1py1, x1q

qU px1, y1, . . . , yM q “ q1px1, y1qq2py1, y2q ¨ ¨ ¨qM pyM´1, yM q

qD pyM , zM , . . . , z1q “ qM pyM , zM qqM´1pzM , zM´1q ¨ ¨ ¨q1pz2, z1q

If all of the proposals are symmetric qmpx, yq “ qmpy, xq, then
the ratio simplifies to

π1pz1q

π1px1q
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Evolutionary Monte Carlo

Evolutionary Monte Carlo combines multi-chain moves with
tempered distributions in order to make exploration of the
state space more effective.

For a “crossover” move, two chains exchange their values.
For two “parent" chains that participate in the crossover se-
lect the first parent to be chain l with probability pl propor-
tional to

expt´βHpxl qu

where β ą 0, and the second parent uniformly from the re-
maining chains.
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Evolutionary Monte Carlo

The acceptance probability is computed by considering the
various probabilities and densities in the proposal steps. For
the crossover move

§ Pick parent 1, xl , with probability pl

§ Pick parent 2, xm , uniformly, with probability 1{pM ´ 1q
§ Pick the location of the crossover j , uniformly, with prob-

ability 1{pd ´ 1q
§ Perform the crossover to obtain xnew

l and xnew
m .

This yields the numerator in the Hastings ratio

pm ˆ
1

M ´ 1
ˆ

1

d ´ 1
ˆ πl px

new
l q ˆ πmpx

new
m q

Considering the reverse move yields the denominator.
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Simulated Tempering

In simulated tempering, the temperatures are also treated as
quantities that are updated during the MCMC updates. Sup-
pose

πmpx, τmq 9
expt´Hpxq{τmu

Zpτmq

where Zpτmq is the normalizing constant for the mth tem-
pered (conditional) distribution. A Metropolis-Hastings algo-
rithm is constructed on the augmented state space

px1, τ1q, px2, τ2q, . . . , pxM , τM q

and the sampled collected from chain 1 are samples from the
target π1 ” π.
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Simulated Tempering

For a mutation move, chain m is selected uniformly from col-
lection of chains, and then the pair pxm , τmq is updated using
a transition proposal

qmppxm , τmq, px
new
m , τnew

m qq

with the usual acceptance probability.

For the exchange move between l and m, the proposed ex-
change is accepted with probability

α “ min

"

1,
πl pxmqπmpxl q

πl pxl qπmpxmq

*

where the probabilities of choosing pairs of chains l and m to
attempt the exchange are equal.

253



Simulated Tempering

A Gibbs sampler update, involving proposals for x, and then
for τl , can also be carried out. Specifically, we may propose
an exchange for τl whilst holding xl constant.

If l is selected uniformly from t1, . . . ,Mu, then another index
m is selected with probability qlm , and a temperature swap
τl ÐÑ τm is proposed. In this case, the acceptance probability
is

α “ min

"

1,
πmpxl q

πl pxl q

qml

qlm

*

Here
πmpxl q

πl pxl q
“

Zpτmq

Zpτl q
exp

"

´Hpxl q

ˆ

1

τm
´

1

τl

˙*
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Simulated Tempering

In this formula, the normalizing constant ratio

Zpτmq

Zpτl q

must be computed. Here

Zpτq “

ż

expt´Hpxq{τu dx

which, in the multivariate case is a d -dimensional integral
that needs to be finite for each possible τ .

In some cases, analytical expressions can be obtained, but
more generally an estimate pZpτq must be used.
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Simulated Annealing

Simulated annealing is a related optimization technique that
utilizes MCMC and a temperature ladder. Suppose that the
function Hpxq is to be minimized, let

πT pxq 9 expt´Hpxq{Tu

and consider the sequence of decreasing temperatures

T1 ą T2 ą ¨ ¨ ¨

Simulated annealing proceeds by running MCMC at the high-
est temperature T1 for a fixed number N1 of iterations, then
changing temperatures to T2 and running MCMC for N2 iter-
ations, and so on.
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Simulated Annealing

As i ÝÑ 8 with Ti ÝÑ 0, the MCMC samples become fo-
cussed at the mode(s) of πpxq, that is, the minima of Hpxq.
Theoretically, the logarithmic rate, where

Ti “
K

logpMi q
with Mi “

i
ÿ

j“1

Ni

ensures convergence to the global maximum of π.

This rate is extremely slow, and typically geometric or linear
cooling schedules are used; they generally have reasonable
performance.

Simulated annealing is an option in the optim function in R.
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Examples

Example: Tempering methods

See knitr 15
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Sequential Monte Carlo

Consider a sequence of probability distributions

π1, π2, . . . ,

defined on a sequence of state spaces X1,X2, . . . where, for
each n, we may, for some X, either have

Xn “ Xˆ X ¨ ¨ ¨ ˆ X ” Xn

that is, dimension increasing, or Xn ” X (i.e. dimension
fixed ). Let

πnpx1:nq “
gnpx1:nq

Zn

where x1:n “ px1, . . . , xnq, gn is an integrable non-negative
function, and Zn is a normalizing constant.
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Sequential Monte Carlo: Two cases

1. Dynamic problems: where data are collected sequen-
tially though time, as in state-space models

yt “ Hpxt ; θq ` εt

xt “ µ` φpxt´1 ´ µq ` εt

where the observed data ty1, . . . , ynu are related to the
unobserved states tx1, . . . , xnu.

Here the parameters θ, µ, φ, σ2
ε , σ

2
ε are also of interest.

Here πt is the posterior distribution derived from the data
ty1, . . . , ytu.
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Sequential Monte Carlo: Two cases

2. Static problems: where data are collected together, but
used sequentially.

For example, in a Bayesian inference problem, we may
have

§ π1 being the posterior computed from y1

§ π2 being the posterior computed from y1, y2

and so on.

In both cases, we may wish to perform a Monte Carlo calcu-
lation with respect to πn , such as an expectation of the form

Eπn rhpX1:nqs “

ż

hpx1:nqπnpx1:nq dx1:n
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Sequential Monte Carlo

Recall: importance sampling uses the identity

ż

hpxqfpxq dx “

ż

hpxqfpxq
f0pxq

f0pxq
dx “

ż
"

hpxqfpxq

f0pxq

*

f0pxq dx

which demonstrates that

Ef rhpXqs “ Ef0

„

hpXqfpXq

f0pXq



so that an estimator of the LHS is

pI
pf0q
N phq “

1

N

N
ÿ

i“1

hpXi qfpXi q

f0pXi q

where X1, . . . ,XN „ f0p.q.
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Sequential Monte Carlo

Let

πnpx1:nq “
gnpx1:nq

Zn
”

gnpx1:nq
ż

gpx1:nq dx1:n

“
wnpx1:nqpnpx1:nq

ż

wnpx1:nqpnpx1:nq dx1:n

where pn is a chosen importance distribution, and

wnpx1:nq “
gnpx1:nq

pnpx1:nq

is the importance weight.
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Sequential Monte Carlo

If an i.i.d. sample of size N x
p1q
1:n , . . . , x

pNq
1:n can be obtained from

pn , then the empirical pmf

ppnpxq “
1

N

N
ÿ

i“1

δ
x
piq
1:n
pxq

can be used to construct an estimate of πn :

pπnpxq “
N
ÿ

i“1

W
piq
n δ

x
piq
1:n
pxq

where

W
piq
n “

wnpx
piq
1:nq

N pZn

pZn “
1

N

N
ÿ

i“1

wnpx
piq
1:nq
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Sequential Monte Carlo

In a static Bayesian calculation, the full posterior is

πnpθq “
Lnpθqπ0pθq

ż

Lnptqπ0ptq dt

so we could consider setting

pnpθq “ π0pθq

for all n. The problem with this is that Lnpθq is likely to be
very peaked compared to π0pθq once n gets moderately large.
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Sequential Importance Sampling

Using the chain-rule factorization

πnpx1:nq “ π1px1q

n
ź

j“2

rπj pxj |x1:pj´1qq

where

rπj pxj |x1:pj´1qq “
πj px1:j q

πj´1px1:pj´1qq

is the conditional distribution of element xj , given

x1:pj´1q “ px1, . . . , xj´1q.
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Sequential Importance Sampling

We then can construct a Sequential Importance Sampling (SIS)
density

pnpx1:nq “ p1px1q

n
ź

j“2

rpj pxj |x1:pj´1qq

where rpj pxj |x1:pj´1qq is again a conditional distribution.
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Sequential Importance Sampling

The importance sampling weight then takes the form

wnpx1:nq “
πnpx1:nq

pnpx1:nq
“
π1px1q

p1px1q

n
ź

j“2

rπj pxj |x1:pj´1qq

rpj pxj |x1:pj´1qq

so therefore

wnpx1:nq “ wn´1px1:pn´1qq
rπnpxn |x1:pn´1qq

rpnpxn |x1:pn´1qq

wn´1px1:pn´1qq “ wn´2px1:pn´2qq
rπn´1pxn´1|x1:pn´2qq

rpn´1pxn´1|x1:pn´2qq

and so on, so there is a recursive weight calculation,

wj px1:j q “ wj´1px1:pj´1qq
rπj pxj |x1:pj´1qq

rpj pxj |x1:pj´1qq
.
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Sequential Importance Sampling

However: in the numerator of the weights, we have

rπj pxj |x1:pj´1qq “
πj px1:j q

πj´1px1:pj´1qq

but to compute this we need the marginal distributions πj and
πj´1, which may not be available analytically.
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Sequential Importance Sampling

A strategy for the static Monte Carlo case involves, for each
j , defining the auxiliary distributions

p0j px1:j q j “ 1, . . . ,n

such that p0npx1:nq ” πnpx1:nq, and where p0j resembles πj ,
but is directly available.
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Combining Importance Sampling and MCMC

Recall that
ż

hpxqπpxq dx “

ż

hpxq
πpxq

f0pxq
f0pxq dx “

ż

hpxqwpxqf0pxq dx

If P is a Markov transition kernel with stationary (invariant)
distribution π, that is, for all x

ż

πpzqPpz, xq dz “ πpxq.
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Combining Importance Sampling and MCMC

Then
ż

πpzq

f0pzq
Ppz, xqf0pzq dz “ πpxq

or
ż

wpzqPpz, xqf0pzq dz “ πpxq.

and so substituting in for πpxq

ż

hpxqπpxq dx “

ż

hpxq

"
ż

wpzqPpz, xqf0pzq dz

*

dx

“

ĳ

hpxqwpzqPpz, xqf0pzq dz dx.
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Combining Importance Sampling and MCMC

Hence, from the importance sampling identity

EπrhpXqs “ Ep0rwpXqhpXqs “

ż ż

hpxqwpzqPpz, xqf0pzq dzdx

and the estimator
1

N

N
ÿ

i“1

hpXi qwpZi q

can be constructed, where

Z1, . . . ,ZN „ f0 Xi „ fX |Z px|zi q, i “ 1, . . . ,N

where fX |Z px|zq is the conditional density for X given Z .
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Annealed Importance Sampling

Annealed Importance Sampling (AIS) uses a SIS approach,
but with auxiliary densities of the same dimension defined by

p0j pxq “ cj g0j pxq “ cjtg0pxqu
1´ξj tgnpxqu

ξj

where p0 is a “diffuse" distribution, and

0 “ ξ0 ă ξ1 ă ¨ ¨ ¨ ă ξn “ 1.
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Annealed Importance Sampling

We have a “path" from p00pxq ” p0pxq to the target distribu-
tion

p0npxq ” πnpxq “ cngnpxq.

For j “ 1, . . . ,n ´ 1, let Pj be a Markov kernel with invariant
distribution p0j .
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Annealed Importance Sampling

The AIS algorithm proceeds as follows:

1. Sample x1 from p00, set w0 “ 1{g0px1q.

2. For j “ 1,2, . . . ,n ´ 1,

(i) Sample xj`1 from Pj pxj , ¨q;

(ii) Set

wj “ wj´1
p0j pxj q

p0j pxj`1q
“ wj´1

g0j pxj q

g0j pxj`1q
.

3. Return to 1., repeat to produce N samples and weights

x
p1q
n , . . . , x

pNq
n w

p1q
n , . . . ,w

pNq
n

where

wn “
1

g0px1q
ˆ

g01px1q

g01px2q
ˆ

g02px2q

g02px3q
ˆ ¨ ¨ ¨ ˆ

g0 n´1pxn´1q

g0 n´1pxnq
ˆ gnpxnq.
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Annealed Importance Sampling

Consider the reverse kernel PR
j defined using Bayes Theorem

as

PR
j pxj`1, xj q “

Pj pxj , xj`1qp0j pxj q

p0j pxj`1q
“

Pj pxj , xj`1qg0j pxj q

g0j pxj`1q
,

and let

g‹px1:nq “ gnpxnq

n´1
ź

j“1

PR
j pxj`1, xj q

g‹0px1:nq “ g0px1q

n´1
ź

j“1

Pj pxj , xj`1q

where g‹0pxq is proportional to the AIS proposal joint density
p‹0pxq.
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Annealed Importance Sampling

Define

w‹px1:nq “
g‹px1:nq

g‹0px1:nq

as the importance sampling weight for the augmented sample

x1:n “ px1, . . . , xnq

generated from p‹0 .
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Annealed Importance Sampling

We have that

w‹px1:nq “

gnpxnq
n´1
ś

j“1
PR

j pxj`1, xj q

g0px1q
n´1
ś

j“1
Pj pxj , xj`1q

“

gnpxnq
n´1
ś

j“1

Pj pxj , xj`1qg0j pxj q

g0j pxj`1q

g0px1q
n´1
ś

j“1
Pj pxj , xj`1q
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Annealed Importance Sampling

That is, all the terms in Pj p¨, ¨q cancel, and

w‹pxq “
1

g0pxq
ˆ

g01px1q

g01px2q
ˆ

g02px2q

g02px3q
ˆ¨ ¨ ¨ˆ

g0 n´1pxn´1q

g0 n´1pxnq
ˆgnpxnq

This is the identical weight to the one computed recursively
above.

280



Annealed Importance Sampling

Note that for each j “ 1, . . . ,n ´ 1,

ż

PR
j pxj`1, xj q dxj “ 1

so the marginal distribution of xn from

π‹px1:nq “ c‹g‹px1:nq

obtained by integrating g‹px1:nq with respect to

x1, x2, . . . , xn´1

is precisely the true target πnpxnq.
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SMC for State-Space Models

Recall the state-space model: for t “ 1, . . . ,T

yt “ gpxt ; θq ` εt

xt`1 “ hpxt ; θq ` εt

where only the series y1, . . . , yT , is observed. Sequences tεtu
and tεtu are independent zero mean random variables.

If y1:t “ py1, . . . , yt q, x1:t “ px1, . . . , xt q. we must carry out

§ Filtering: Compute ppxt |y1:t q

§ Prediction: Compute ppxt`1|y1:t q

§ Smoothing: Compute ppxt |y1:T q
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SMC for State-Space Models

Filtering: By Bayes theorem

ppxt |y1:t q “
ppyt |xt qppxt |y1:pt´1qq

ppyt |y1:pt´1qq
9 ppyt |xt qppxt |y1:pt´1qq

where the function ppyt |xt q is usually a straightforward con-
ditional density, but the function ppxt |y1:pt´1qq is the density
computed at the previous time point prediction step.

Prediction:

ppxt`1|y1:t q “

ż

ppxt`1|xt qppxt |y1:t q dxt

where ppxt`1|xt q is again a conditional density derived from
the state equation, and ppxt |y1:t q is the posterior density com-
puted at the time point filtering step.
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State-Space Models

We consider simulation-based versions of these calculations.

For example, in the filtering step, suppose we have a sample

z
p1q
t , . . . , z

pNq
t

from ppxt |y1:pt´1qq obtained at the previous prediction step.
Then we can obtain a particle approximation to ppxt |y1:t q as

pppxt |y1:t q “
1

N

N
ÿ

i“1

ppyt |z
piq
t qδz

piq
t
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State-Space Models

Note also that the denominator ppyt |y1:pt´1qq can be approxi-
mated by the sum of the weights

pppyt |y1:pt´1qq “
1

N

N
ÿ

i“1

ppyt |z
piq
t q

which is useful in approximating the likelihood by

pLpy1:t q “ pppy1q

T
ź

t“2

pppyt |y1:pt´1qq
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State-Space Models

We can produce a sample from the particle approximation

pppxt |y1:t q

by performing a weighted resampling from

pz
p1q
t , . . . , z

pNq
t q

with weights proportional to ppyt |z
piq
t q.

Denote this resampled vector

v
p1q
t , . . . , v

pNq
t
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State-Space Models

For the prediction step, the particle approximation to

ppxt`1|y1:t q

is obtained using a similar Monte Carlo strategy

pppxt`1|y1:t q “
1

N

N
ÿ

i“1

ppxt`1|v
piq
t q
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State-Space Models

A sample from this approximation can be obtained by prop-
agating the samples v

p1q
t , . . . , v

pNq
t forward by sampling the

transition densities ppxt`1|v
piq
t q for each i .

This yields the sample

z
p1q
t`1, . . . , z

pNq
t`1

and the recursion continues.
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State-Space Models

To perform SIS for πnpx1:nq “ gnpx1:nq{Zn , use the IS density

pnpx1:nq “ p1px1q

n
ź

j“2

rpj pxj |x1:pj´1qq

with weights given by w1pbx1q “ π1px1q{p1px1q and

wj px1:j q “ wj´1px1:pj´1qq
rπj pxj |x1:pj´1qq

rpj pxj |x1:pj´1qq

“ wj´1px1:pj´1qq
πj px1:j q

πj´1px1:pj´1qqrpj pxj |x1:pj´1qq
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State-Space Models

If the normalizing constants Zj for j “ 1, . . . ,n are unknown,
the weights can be replaced by w1px1q “ g1px1q{p1px1q and

wj px1:j q “ wj´1px1:pj´1qq
gj px1:j q

gj´1px1:pj´1qqrpj pxj |x1:pj´1qq

“ wj´1px1:pj´1qqαj px1:j q

say.
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State-Space Models

The Monte Carlo computation is carried out by sampling

x
p1q
1 , . . . , x

pNq
1

from p1, then at step j ě 2 sampling for i “ 1, . . . ,N

x
p1q
j , . . . , x

pNq
j from rpj p.|x

piq
1:pj´1qq

The importance sampling weights are w1px
piq
1 q and, for j ě 2,

wj px
piq
1:j q “ wj´1px

piq
1:pj´1qqαj px

piq
1:j q
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State-Space Models

We then have

pπnpxq “
N
ÿ

i“1

W
piq
n δ

x
piq
1:n
pxq

where

W
piq
n “

wnpx
piq
1:nq

N pZn

pZn “
1

N

N
ÿ

i“1

wnpx
piq
1:nq

in the usual way.
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State-Space Models

In a simple state-space model, write

Observation equation : pY |X pyj |xj q

State equation : pX pxj |xj´1q

with X1 „ pX1 .

In light of the observed data y1:n “ py1, . . . , ynq, the posterior
of interest is

πnpx1:nq “ ppx1:n |y1:nq “
ppx1:n , y1:nq

ppy1:nq
“

gnpx1:n , y1:nq

Znpy1:nq
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State-Space Models

We have

gnpx1:n , y1:nq “ pX1px1q

#

n
ź

j“2

pX pxj |xj´1q

+#

n
ź

j“1

pY |X pyj |xj q

+

and

Znpy1:nq “

ż

gnpx1:n , y1:nq dx1:n
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State-Space Models

For SMC, the optimal choice of IS density rpj pxj |x1:pj´1qq is

rπj pxj |x1:pj´1qq

which in the simple state-space model is given by

rπj pxj |x1:pj´1qq ” rπj pxj |y1:j , x1:pj´1qq “
pY |X pyj |xj qpX pxj |xj´1q

ppyj |xj´1q

“
pY |X pyj |xj qpX pxj |xj´1q

ż

pY |X pyj |xqpX px|xj´1q dx

as, conditional on x1:pj´1q, xj is independent of y1:pj´1q.
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State-Space Models

In most cases (specifically, outside of the Gaussian case), the
optimal choice is not feasible: recall that we need successive
samples from the IS densities

rpj pxj |x1:pj´1qq “ rπj pxj |y1:j , x1:pj´1qq “ rπj pxj |yj , xpj´1qq.

We might choose instead

rpj pxj |x1:pj´1qq “ pX pxj |x1:pj´1qq

which typically is straightforward to sample from, and yields
the recursive weight calculation

wj px1:j q “ wj´1px1:pj´1qqpY |X pyj |xj q
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State-Space Models

Example: Stochastic volatility model

Suppose

Observation equation : pY |X pyj |xj q ” N p0, expt2xjuq

State equation : pX pxj |xj´1q ” N pµ` φpxj´1 ´ µq, σ
2q

with pX1pxq ” N pµ, σ2{p1 ´ φ2qq. We regard µ, φ and σ as
known constants.

This model is used in the analysis of financial time series: it is
a non-linear state-space model, due to the non-linear depen-
dence of the distribution of yj on xj .
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State-Space Models

Example: Stochastic volatility model

n “ 500 realizations from the stochastic volatility model.
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State-Space Models

Example: Stochastic volatility model

Here, for j ě 2,

pY |X pyj |xj q “

ˆ

e´2xj

2π

˙1{2

expt´e´2xj y2
j {2u

and the recursive weight calculation is based on

wj px1:j q “

j
ź

k“1

rπk pxk |x1:pk´1qq

rpk pxk |x1:pk´1qq
“

j
ź

k“1

pY |X pyk |xk q

that is, the likelihood up to observation j .
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State-Space Models

Example: Stochastic volatility model

N “ 100 particles and weights at j “ 1
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State-Space Models

Example: Stochastic volatility model

N “ 100 particles and weights at j “ 2
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State-Space Models

Example: Stochastic volatility model

N “ 100 particles and weights at j “ 3
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State-Space Models

Example: Stochastic volatility model

N “ 100 particles and weights at j “ 4
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State-Space Models

Example: Stochastic volatility model

N “ 100 particles and weights at j “ 5
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State-Space Models

Example: Stochastic volatility model

N “ 100 particles and weights at j “ 20
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Particle Degeneracy

A problem with this strategy is that the weights start to de-
generate as j increases;

§ the weights that define the Monte Carlo estimate pπnpxq
are very small for most i , with only a few large weights.

§ the empirical variance of the collection of unnormalized
weights twj px

piq
j qu for i “ 1, . . . ,N increases

§ this is mitigated, but not resolved by a better choice of
rpj pxj |x1:pj´1qq
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Particle Degeneracy

§ could try a normal approximation of

ppxj |y1:j , x1:pj´1qq9 pY |X pyj |xj qpX pxj |xj´1q

“ exp

#

´xj ´
y2

j

2e2xj
´

1

2σ2
pxj ´ µj q

2

+

where µj “ µ` φpxj´1 ´ µq.
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Particle Degeneracy

Example: Stochastic volatility model

Here the mode of

ppx|yj , xj´1q “ exp

#

´x ´
y2

j

2e2x
´

1

2σ2
px ´ µj q

2

+

can be computed numerically, and the variance of the normal
approximation can be computed by inspecting the curvature
at the mode, given by

„

´
B2 log ppx|yj , xj´1q

Bx2

´1

“
“

2y2
j e´2x ` 1{σ2

‰´1
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Particle Degeneracy

Example: Stochastic volatility model

Normal approximation to ppxj |yj , xj´1q for xj´1 “ 0, yj “ 2:
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Particle Degeneracy

The main reason for particle degeneracy is that particles with
low weight at step j ´ 1 tend to have low weight at step j .

Particle degeneracy can be overcome by resampling that re-
moves the particles with low weights. The commonest form of
resampling is to use a non-parametric bootstrap, with multi-
nomial sampling.
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Particle Degeneracy

At step j , the Monte Carlo estimate of πj is

pπj pxq “
N
ÿ

i“1

Wj px
piq
1:j qδx

piq
1:j
pxq

This discrete distribution on

x
p1q
1:j , . . . , x

pNq
1:j

is resampled N times according to the weights

Wj px
p1q
1:j q, . . . ,Wj px

pNq
1:j q.
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Particle Degeneracy

After resampling, the new resampled values replace the

x
p1q
1:j , . . . , x

pNq
1:j

collection, and each resampled point carries with it its nor-
malized resampling weight Wj px

piq
1:j q.

Each original value x
piq
1:j may appear in the resampled collec-

tion more than once.
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Particle Degeneracy

Let nj1, . . . ,njN denote the numbers of times that each of the
N particles are resampled during multinomial sampling. Let

rπj pxq “
N
ÿ

i“1

nji

N
δ

x
piq
1:j
pxq

Resampling does not disrupt the particle approximation in ex-
pectation (that is, it does not introduce bias)

Errπj pXq|pπj px1:j qs “ pπj px1:j q

but it does introduce “noise" - for any suitable h ,

Var
rπj
rhpx1:j qs ě Var

pπj
rhpx1:j qs

This follows by the law of iterated variance.
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Particle Degeneracy

The message from this result is that although you should per-
form resampling to preserve particle diversity, you should not
resample too often, as that introduces variability.

A common strategy is to resample only when the observed
variance of the weights exceeds some threshold. A statistic to
track is the effective sample size (ESS) where

ESS “

˜

N
ÿ

i“1

!

W
piq
j

)2
¸´1

We have 1 ď ESS ď N :

ESS “ 1 if W
piq
j “ 1 for some i

ESS “ N if W
piq
j “

1

N
for each i
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Particle Degeneracy

Can also use entropy as a measure

Entropy “ ´
N
ÿ

i“1

W
piq
j log W

piq
j

where 0 ď Entropy ď log2 N

Entropy “ 0 if W
piq
j “ 1 for some i

Entropy “ log2 N if W
piq
j “

1

N
for each i
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Particle Degeneracy

Example: Stochastic volatility model

N “ 100 resampled particles and weights at j “ 1

−0.1 0.0 0.1 0.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xj

w
j(x

j)

316



Particle Degeneracy

Example: Stochastic volatility model

N “ 100 resampled particles and weights at j “ 2
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Particle Degeneracy

Example: Stochastic volatility model

N “ 100 resampled particles and weights at j “ 3
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Particle Degeneracy

Example: Stochastic volatility model

N “ 100 resampled particles and weights at j “ 4
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Particle Degeneracy

Example: Stochastic volatility model

N “ 100 resampled particles and weights at j “ 5
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Particle Degeneracy

Example: Stochastic volatility model

Effective sample size (ESS) with resampling when ESS ă 10
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Examples

Example: SMC for the stochastic volatility model

See knitr 16
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Model-selection via trans-dimensional MCMC

Model selection via MCMC exploits trans-dimensional moves

§ Discrete time chains
§ Carlin and Chib (1995): extend the state space to consider

all possible models simultaneously

§ Continuous time chains
§ Grenander and Miller (1994), Phillips and Smith (1995):

jump diffusions.
§ Geyer and Moller (1994), Stephens (M) (2000): birth and

death in continuous time
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Model-selection via trans-dimensional MCMC

In the contributed Discussion of Grenander and Miller (1994),
Green laid out the basic construction of

Reversible Jump MCMC .

§ Green pointed out that whereas their Gibbs sampler con-
struction might only be rarely of use, their MH algorithm
they also suggested could provide a general mechanism
for jumping between subspaces of different dimension.

§ The suggested general algorithm retained the reversibil-
ity and detailed balance properties of the usual MH al-
gorithm, but required “dimension-matching" terms to ac-
count for the differences in dimension of different sub-
spaces.
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Reversible Jump MCMC

§ target distribution π
§ parameter vector θ P Θ Ď Rd ;
§ proposal kernel Qpθ,dθ1q “ Prpθ1 P dθ1|θq,
§ transition kernel Ppθ,dθ1q with π as its unique stationary

distribution.

Let π and q denote the densities of π and Q wrt to Lebesgue
measure.
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Reversible Jump MCMC

By the usual arguments, the acceptance probability for values
generated from q is

αpθ, θ1q “ min

"

1,
πnpθ

1q

πnpθq

qpθ1, θq

qpθ, θ1q

*

Under mild conditions on Qp., .q, variates generated from this
Markov chain with transition kernel Pp., .q form a dependent
sample from π, and the ergodicity of the chain permits Monte
Carlo estimation of functionals of π.

326



Reversible Jump MCMC

Consider a countable collection of Bayesian models, tMk , k “
1,2, . . .u, where model Mk is parameterized via parameter θk

with parameter space Θk Ă Rdk . We formulate a joint prior
on the parameters and the unknown model M by setting a
discrete prior

π0pMk q “ PrpM “ Mk q

say, and then the conditional prior

π0pθk |Mk q

so that the full joint posterior can be written

πnpMk , θk q “
LMk

n pθk qπ0pθk |Mk qπ0pMk q

ř

j

"
ż

LMj
n ptj qπ0ptj |Mj q dtj

*

π0pMj q
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Reversible Jump MCMC

Our objective is to construct a Metropolis-Hastings chain to
that is aperiodic and irreducible on the union of parameter
spaces

Θ “
ď

k

Θk .

This requires the specification of a proposal transition density,
qp., .q, but, in contrast to the usual fixed-dimension case, we
face the difficulty that the arguments of q are potentially of
different dimensions, rendering the reversibility requirement
difficult to meet.
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Reversible Jump MCMC

At a specific iteration, suppose that

§ the chain is in model M with parameter θ having dimen-
sion d ,

§ the proposal is to move to model M 1 with parameter θ1

having dimension d 1.

We envisage this move as first selecting a move between mod-
els, M ÝÑ M 1, and then the proposal of a θ1 possibly depen-
dent on the current θ.
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Reversible Jump MCMC

For a reversible proposal mechanism, we need equally dimen-
sioned arguments to qp., .q: consider the introduction of col-
lections of latent variables u and v of dimension du and dv

respectively, so that d ` du “ d 1 ` dv .

The proposal density q is then considered for the extended
parameter vectors pθ,uq and pθ1, vq such that qppθ,uq, pθ1, vqq
is reversible; this is most easily constructed using a 1-1 dif-
ferentiable mapping, that is

pθ1, vq “ gpθ,uq ðñ pθ,uq “ hpθ1, vq.
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Reversible Jump MCMC

Standard (fixed-dimension) moves are special cases of this
general proposal procedure; for example, for a Metropolis
move, we might set

θ1 “ θ ` u u „ Normald p0,Σq

and for Metropolis-Hastings moves, we typically use a condi-
tional generation qpθ1|θq taking the conditioning variable as a
constant parameter in a suitably chosen density; the stochas-
tic elements u in the MH move can be thought of as the uni-
form variates used to perform basic random number genera-
tion from this conditional density.
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Reversible Jump MCMC

To establish the acceptance probability for jump move, con-
sider a “hybrid” MH algorithm comprising a mixture of move
types, with

§ move m
§ transition proposal Qm

§ move m selected with probability rm

for a finite collection of move types, some of which may be
trans-dimensional, but each of which retains the detailed bal-
ance property.

If ψ and ψ1 represent the latent-augmented parameter vec-
tors, and let the augmented posterior density be denoted

rπmpψq “ rπmpM , θ,uq “ πnpM , θqpU puq
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Reversible Jump MCMC

Let αmpψ,ψ
1q denote the acceptance probability for move type

m, so that for arbitrary sets A and B

ż

A
rπm pdψq

ż

B
αm pψ, ψ

1
qQm pψ, dψ1q “

ż

B
rπm pdψ

1
q

ż

A
αm pψ

1
, ψqQm pψ

1
, dψq

which implies as usual that

αmpψ,ψ
1qrπmpψqqmpψ,ψ

1q “ αmpψ
1, ψqrπmpψ

1qqmpψ
1, ψq

or,

αmpψ,ψ
1qfmpψ,ψ

1q “ αmpψ
1, ψqfmpψ

1, ψq

say where fm is defined with respect to a common, symmetric
measure on the product space.
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Reversible Jump MCMC

Consider the forward move; in this case fmpψ,ψ
1q is given by

fmpψ,ψ
1q “ rπmpψqqmpψ,ψ

1q “ πnpM , θqpU puqÝÑr m .

For the reverse move, to preserve symmetry, we must set

fmpψ
1, ψq “ rπmpψ

1qqmpψ
1, ψq “ πnpM

1, θ1qpV pvq

ˇ

ˇ

ˇ

ˇ

Bpθ1, vq

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

ÐÝr m

where the term
ˇ

ˇ

ˇ

ˇ

Bpθ1, vq

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bgpt1, t2q

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

t1“θ1,t2“v

is the Jacobian for the 1-1 mapping g : pθ,uq ÞÑ pθ1, vq.
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Reversible Jump MCMC

This term arises as in the augmented posterior, we have

rπpM 1, θ1, vq “ rπpM ,hpθ1, vqq|Jpθ1, vq| “ rπpM , θ,uqq|Jpθ,uq|´1

under the bijection; here

|Jpθ1, vq| “

ˇ

ˇ

ˇ

ˇ

Bpθ,uq

Bpθ1, vq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bpθ1, vq

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

´1

“ |Jpθ,uq|´1

is the Jacobian.
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Reversible Jump MCMC

In the expressions above, the two terms ÝÑr m and ÐÝr m repre-
sent the probabilities of choosing to make move m (from M to
M 1) and the probability of the reverse move (from M 1 to M ).

Thus, the acceptance probability for move type m is

αmppM , θq, pM 1, θ1qq “ min

"

1,
πnpM 1, θ1qpV pvqÐÝr m

πnpM , θqpU puqÝÑr m

ˇ

ˇ

ˇ

ˇ

Bpθ1, vq

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

*

.
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Reversible Jump MCMC

These general calculations simplify if one of u or v is a null
vector. If dimpθq ă dimpθ1q, and the proposed move attempts
to increase the dimension of the current model, then only the
augmenting variables u are needed to match dimension, that
is, the bijection can be constructed by setting θ1 “ gpθ, vq. In
this case

αmppM , θq, pM 1, θ1qq “ min

"

1,
πnpM 1, θ1qÐÝr m

πnpM , θqpU puqÝÑr m

ˇ

ˇ

ˇ

ˇ

Bpθ1q

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

*

.

Conversely, if dimpθq ą dimpθ1q, then only the augmenting
variables v are needed, and

αmppM , θq, pM 1, θ1qq “ min

"

1,
πnpM 1, θ1qpV pvqÐÝr m

πnpM , θqÝÑr m

ˇ

ˇ

ˇ

ˇ

Bpθ1, vq

Bpθq

ˇ

ˇ

ˇ

ˇ

*

.
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Reversible Jump MCMC

Notes:

1. The proposal mechanisms can be generalized by allowing
the generation for u or v to depend on the values of θ or θ1

respectively. Under this generalization, pU puq and pV pvq
are replaced by pU pu|θq and pV pv|θ1q in the acceptance
probabilities. This merely corresponds to an alternative
construction of the augmented posterior rπ.
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Reversible Jump MCMC

2. Each move type m comprises a pair of moves operating
in each direction between models M and M 1.

§ if move m is a move from M to M 1, constructed by genera-
tion of augmenting variables u and transformation, there
should exist in our collection of potential moves the re-
verse move, indexed m 1, say, which utilizes the augment-
ing variables v, the two moves being selected with proba-
bilities ÝÑr m and ÐÝr m
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Reversible Jump MCMC

3. In some situations, the reversible jump acceptance prob-
ability simplifies even further.

§ In a move that increases dimension by dU through the
variables u, it may be feasible to set the new parameters
precisely equal to u, that is, the proposed parameter vec-
tor θ1 is formed by concatenating θ and u. In this case, the
Jacobian of the transformation is 1.

4. It may be possible to generate u from a prior distribution,
which facilitates cancellation in the Hastings ratio.
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Prior specification

Let k “ 1,2, . . . index models M1,M2, . . . under consideration,
where k represents the dimension of θk “ pθk1, . . . , θkk q. Sup-
pose that the model specification is such that identical, inde-
pendent priors are used for the components of the parameter
vector

π0pθk q “

k
ź

l“1

π0pθkl q.

For a proposed move from Mj to Mk with j ă k , suppose that
the elements of u are generated independently from p0, with

pU puq “
k´j
ź

l“1

π0pul q,

say, and suppose that θk “ pθj ,uq.
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Prior specification

Then the acceptance probability αj ” αj ppMj , θj q, pMk , θk qq is

αj “ min

"

1,
πnpMk , θk q

ÐÝr j

πnpMj , θj qpU puqÝÑr j

ˇ

ˇ

ˇ

ˇ

Bpθk q

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

*

“ min

#

1,
LMk

n pθk qπ0pθk |Mk qπ0pMk q
ÐÝr j

LMj
n pθj qπ0pθj |Mj qπ0pMj qpU puqÝÑr j

ˇ

ˇ

ˇ

ˇ

Bpθk q

Bpθ,uq

ˇ

ˇ

ˇ

ˇ

+

“ min

#

1,
LMk

n pθk qπ0pMk q
ÐÝr j

LMj
n pθj qπ0pMj q

ÝÑr j

+

as π0pθk |Mk q can be written

k
ź

l“1

π0pθkl q “

#

j
ź

l“1

π0pθjl q

+#

k´j
ź

l“1

π0pul q

+

“ π0pθj |Mj qpU puq
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Prior specification

For the reverse move that attempts to decrease the model
complexity by moving from model k to model j , the determin-
istic proposal that sets the last k ´ j components of θk to zero
is used.
The approach described in this example can be useful in some
applications, but can also lead to low acceptance rates.

343



Example

Consider two models M1 and M2 with parameters θp1q “ θ1

and θp2q “ pθ21, θ22q, with all parameters taking values on R.
We consider four move types:

1. m “ 1: move within Model M1,

2. m “ 2: move within Model M2,

3. m “ 3: move from Model M1 to Model M2,

4. m “ 4: move from Model M2 to Model M1.

For the within model moves, standard MH acceptance calcu-
lations proceed as usual; Moves 3 and 4 are a forward/reverse
move pair.

Clearly, if the current state of the chain is in M1, only moves
1 or 3 can be selected, and similarly for M2.
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Example

We only need to consider the relative magnitudes of the re-
versible jump moves selection probabilities; for example, if
the probability of selecting move 3 is 0.3 and the probability
of selecting move 4 is 0.1, then

ÐÝr 3
ÝÑr 3

“
0.1

0.3

ÐÝr 4
ÝÑr 4

“
0.3

0.1

are the ratios that enter into the acceptance probability cal-
culations for move types 3 and 4 respectively.
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Example

When the current state of the chain is in M1, to propose a
move to M2 after selecting move 3, we must introduce a single
random variate u; suppose that u „ Normalp0,1q, and let

θ21 “ θ1 ` u θ22 “ θ1 ´ u ðñ θ1 “
θ21 ` θ22

2
.

In this case the acceptance probability takes the form

α3 “ min

"

1,
πnpM2, pθ21, θ22qq

πnpM1, θ1qφpuq

ÐÝr 3
ÝÑr 3

ˇ

ˇ

ˇ

ˇ

Bpθ21, θ22q

Bpθ1,uq

ˇ

ˇ

ˇ

ˇ

*

.

where φp.q is the standard normal pdf, and

ˇ

ˇ

ˇ

ˇ

Bpθ21, θ22q

Bpθ1,uq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bθ21

Bθ1

Bθ21

Bu
Bθ22

Bθ1

Bθ22

Bu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1 1

1 ´1

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2.
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Example

For the reverse move 4, we have

α4 “ min

"

1,
πnpM1, θ1qφpuq

πnpM2, pθ21, θ22qq

ÐÝr 4
ÝÑr 4

ˇ

ˇ

ˇ

ˇ

Bpθ1,uq

Bpθ21, θ22q

ˇ

ˇ

ˇ

ˇ

*

.

where
ˇ

ˇ

ˇ

ˇ

Bpθ1,uq

Bpθ21, θ22q

ˇ

ˇ

ˇ

ˇ

“
1

2
.
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Pharmacokinetic example

Consider two competing pharmacokinetic (PK) models for re-
sponse data yptq measured at different time points t1, . . . , tn :

1. Model M1: One compartment, elimination only;

ErYptqs “ A1 expt´λ1tu t ě 0

2. Model M2: One compartment, absorption and elimina-
tion;

ErYptqs “ A2 pexpt´λ21tu ´ expt´pλ21 ` λ22qtuq t ě 0

where pA1, λ1q and pA2, λ21, λ22q are positive parameters. Un-
der an assumption of additive, heteroscedastic Normal errors,
we have two competing explanations for the observed data;
both models can be fitted using ordinary least-square
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Pharmacokinetic example
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Pharmacokinetic example

These models are nested, but the nesting structure is compli-
cated, as we require λ22 ÝÑ 8, that is, a boundary point in
the parameter space, which leads to non-regular frequentist
asymptotic theory.

Bayes factors can be used:

BFpM1,M2q “

ż

LM1
n pθ1qπ0pθ1|M1q dθ1

ż

LM2
n pθ2qπ0pθ2|M2q dθ2

but this requires numerical integration.
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Pharmacokinetic example

We consider a reversible jump MCMC solution. First, we use
a log-scale parameterization and set

θ1 “ plog A1, log λ1q θ2 “ plog A2, log λ21, log λ22q.

We place equal prior probabilities on M1 and M2, and then
place independent Np0, τ2q priors on the components of θ1

and θ2.

The prior on the residual error variance σ2 is Inverse Gamma
with parameters 20 and 8.
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Pharmacokinetic example

The ML estimates pθ1 and pθ2 can be computed easily, as can
the Hessian matrices pI1 and pI2; these likelihood-based results
yield reasonable approximations to the posterior distributions
to produce independence MH algorithms.

Specifically, at the ML estimates for σ under the two models,
we may approximate the conditional posterior for θ by the
Normal density

ppθk |pσ, yq l Normalppθk ,n
´1

pσ2
k
pIk
´1
q (1)

On fitting using ML, the estimates of σ under the two models
are found to be quite similar (M1 : pσ1 “ 0.252,M2 : pσ2 “

0.329).
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Pharmacokinetic example

A reversible jump MCMC algorithm can be constructed as fol-
lows: we again consider four move types:

1. m “ 1: move within M1; update θ1 from πnpθ1|M1, σq

2. m “ 2: move within M1; update θ2 from πnpθ2|M2, σq

3. m “ 3: move from M1 to M2; propose a new θ2, and
carry out an accept/reject step.

4. m “ 4: move from Model M2 to Model M1; propose a
new θ1, and carry out an accept/reject step.

with the remaining parameter σ2 being updated in a Gibbs
sampler algorithm at each iteration.
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Pharmacokinetic example

Moves m “ 3,4 are a forward/reverse move pair. For move
3, several options are available; for example, we could adopt
the earlier strategy, and generate a new variate u from the
prior for the additional parameter, and then merely use the
mapping

pθ11, θ12,uq ÞÝÑ pθ21 “ θ11, θ22 “ θ12, θ23 “ uq

with reverse move setting θ23 “ 0.

This approach may be adequate, but more probably would not
facilitate good mixing across the models.
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Pharmacokinetic example

A perhaps better strategy is to consider a different augmen-
tation, where we generate u “ pu1,u2,u3q from the model in
(1) for k “ 2, and map pθ11, θ12,u1,u2,u3q to

pθ21 “ u1, θ22 “ u2, θ23 “ u3, v1 “ θ11, v2 “ θ12q

with the paired reverse move being to generate v “ pv1, v2q

from the model in (1) for k “ 1.

This guarantees that the proposed value θ2 lies in a region
with reasonably high posterior support under model M2, al-
though it does not guarantee that the move will be accepted
with high probability.
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Pharmacokinetic example

In the Hastings ratio, the Jacobian of the transformation is 1,
and under equal probabilities of forward/reverse moves, we
have that

πnpM2, θ2qpV pv1, v2q

πnpM1, θ1qpU pu1,u2,u3q

can be written

LM2
n pθ2q

#

3
ś

j“1
φpθ2j{τq{τ

+

φ2pθ11, θ12; pθ1,pI1q

LM1
n pθ1q

#

2
ś

j“1
φpθ1j{τq{τ

+

φ3pθ21, θ22, θ23; pθ2,pI2q

where τ is the prior variance for the regression parameters.
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Pharmacokinetic example

The logic of this construction is that numerically

LM1
n pθ1q l Normal2ppθ1,pI

´1
1 q LM2

n pθ2q l Normal3ppθ2,pI
´1
2 q.

An approximation that incorporates the Normal asymptotic
likelihood in equation (1) as well as the Normal prior distribu-
tion for the parameters can be constructed.
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Pharmacokinetic example

The algorithm was run for 100000 iterations. In this run with
τ “ 4, the chain spent about 66 % of the time in model M1,
indicating the posterior probabilities are

πnpM1q l 0.66 πnpM2q l 0.34.

The model posterior probabilities vary with the choice of τ ;
this is as expected, as the model probabilities are closely re-
lated to the marginal likelihood, or prior predictive distribu-
tion, which is the expected value of the likelihood for the ob-
served data with respect to the prior distribution.
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Pharmacokinetic example

It is evident from the discussion that the prior specification
acts as a penalty for complexity. For illustration, if τ “ 1,
the model probabilities change to p0.43,0.57q; if τ “ 10, the
model probabilities are approximately p0.80,0.20q.
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Pharmacokinetic example

Conditional on M1 or M2 being true, we can perform inference
about the parameters of the two models, and also reconstruct
estimates and posterior credible intervals for ErY s.

The figure below displays the reconstructed posterior inter-
vals for the two models.
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Pharmacokinetic example
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Pharmacokinetic example

It is evident that both models are plausible explanations of
the observed data, but offer potentially different predictions
of future responses, especially near t “ 0. Note that the pos-
sible nesting structure, incorporated by the assumption that
λ22 ÝÑ 8, is not supported by the priors studied.

Finally, note that the BIC values for the two models, computed
as

BICk “ ´2 logLMk
n ppθk q ` dk log n

where dk is the total number of parameters fitted, are 21.2953
and 13.5964 for models 1 and 2, indicating strong support for
model 2.
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Appendix: Trans-dimensional examples
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Finite Mixture Model

The finite mixture model with K components has density

fpy|ω, θ,Kq “
K
ÿ

k“1

ωk fk py|θk q

where θk are the parameters for component density k , and

0 ă ωk ă 1,@k &
K
ÿ

k“1

ωk “ 1.
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Finite Mixture Model

Most typically the component densities are from the same
parametric location-scale family (say Gaussian) which differ
in location and scale.

For exchangeable data py1, . . . , ynq from this model, the like-
lihood arising from this model does not permit analytical cal-
culation of the posterior distribution, so MCMC is commonly
used.

365



Finite Mixture Model

If K is known, MCMC is typically implemented using auxiliary
variables z1, . . . , zn , and a completed data model

fpy, z;ω, θ,Kq “ ωz fzpy|θzq z P t1,2, . . . ,Ku

and a Gibbs sampler strategy updating the z and pω, θq from
their full conditional posterior distributions.

Conditional on pω, θq, the posterior distribution for each zi is a
discrete distribution on t1,2, . . . ,Ku, whereas conditional on
the z, the posterior for the mixture weights ω is a density on
the K dimensional simplex, and the posterior for the compo-
nents of θk proceeds using only those yi for which zi “ k , for
k “ 1, . . . ,K .
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Finite Mixture Model

If K is also treated as an unknown parameter, then transdi-
mensional MCMC is also needed. A discrete prior on K , typi-
cally on some finite set, completes the posterior specification,
and yields a posterior distribution πnpK , θpKq, ωpKqq.
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Finite Mixture Model

Here, dimension changing moves correspond to changing the
value of K , and in order to construct an efficient and tunable
MCMC algorithm, moves which peturb K by ˘1 are typically
considered.

§ For example, moves of type K ÝÑ K ` 1 are termed
“birth" moves, and K ÝÑ K´1 are termed “death" moves.

§ The forward/reverse move pairs are then births from K
and deaths from K ` 1.
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Finite Mixture Model

We consider a Normal mixture model for simplicity.

§ If y is one dimensional, each component density has two
parameters, so a birth/death pair requires the introduc-
tion of three latent variables u, a new mean and vari-
ance, and also a parameter to introduce a new compo-
nent weight.

§ If y is d -dimensional, d ` dpd ` 1q{2 ` 1 new scalar pa-
rameters are needed, that is, a new mean and covariance
matrix, and a new component weight parameter.

369



Finite Mixture Model

§ New location/scale parameters: Either these new pa-
rameters are generated independently of the current pa-
rameters from proposal distribution, or a subset of the
current components are selected and used to generate a
new additional component.

§ New weight parameters: A random split or rescaling of
the currently existing weights is used.
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Finite Mixture Model

In typical mixture applications, inference about the parame-
ter K may be of primary interest in a given application; per-
haps more commonly the mixture model offers flexible mod-
elling in the presence of heterogeneity.

The Normal mixture case is the most commonly studied, but
other mixtures of other parametric models have also been
used.
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Regression

Suppose the regression relationship between a scalar covari-
ate x and scalar covariate y

y “ gpxq ` ε

is the focus of interest, for independent homoscedastic Nor-
mal errors tεu. Typically, we seek the prediction py “ pgpxq.
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Regression

Suppose we seek to approximate g locally on a finite domain
X by a series of step functions:

gK px;βK , κK q “

K
ÿ

k“1

βKk 1Bk pxq

where pB1, . . . ,BK q form a partition of X defined by a series
of knots κ0, κ1, . . . , κK´1, κK so that Bk ” rκk´1, κk q. Without
loss of generality, assume X ” r0,1q, with κ0 “ 0, κK “ 1.
In this step-function approximation, βK “ pβK1, . . . , βKK q are
the parameters defining the piecewise constant levels of the
function.
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Regression

The likelihood for data pxi , yi q, i “ 1, . . . ,n is

LMK
n pβK , σ, κK q “

n
ź

i“1

φ

ˆ

yi ´ gK pxi ;βK , κK q

σ

˙

Typically, within model MK , a conjugate prior specification on
pβK , σq is used so that the marginal likelihood LMK

n pκK q can be
computed analytically by integrating out pβK , σq. The conju-
gate prior takes the form

π0pβk , σq “ π0pβK |σqπ0pσq

and π0pβK |σq is some multivariate Normal density.
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Regression

A reversible jump MCMC algorithm can be constructed to ex-
plore the posterior πnpMK , κK q which, under the conjugate
specification for pβK , σq, depends on the marginal likelihood
and the prior π0pMK , κK q.

One approach to the specification of this prior is to assume
a Poisson process model for the change-in-level or jump loca-
tions of the step function.

§ π0pMK q to be a Poisson distribution with rate parameter
λ,

§ within model MK , κK are the order statistics derived from
a Uniform random sample on p0,1q, so that

π0pκK1, . . . , κK ,K´1|MK q “ pK ´ 1q!

for 0 ă κ1 ă ¨ ¨ ¨ ă κK ,K´1 ă 1.
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Regression

Dimension-changing moves in this model correspond to the
addition or removal of a knot or knots.

§ a new knot can be proposed uniformly on (0,1), or uni-
formly in an interval selected in light of the current knot
positions. In the former case, the reverse move corre-
sponds to removing a knot uniformly at random from the
current collection.

§ Model complexity in this model is controlled by the Pois-
son model hyperparameter λ, and the covariance struc-
ture in the prior model for βK .
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Examples

Example: Reversible jump MCMC

See knitr 17

Example: Galaxy data

See knitr 18

Example: Model selection in regression

See knitr 19
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Bayesian Non-Parametrics: Motivation

§ Parametric models are restrictive;
§ We often meet data sets that exhibit non-standard hetero-

geneity;
§ Likelihood-based inference is more straoghtforward than

moment based estimation (such as GEE, GMM)
§ Because we can report a more complete summary of the

inference results, and perform prediction.
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Bayesian Non-Parametrics: Motivation

§ Regression Problems
§ Survival Analysis
§ Clustering
§ Measurement Error/Errors-in-Variables Problems
§ Density Estimation

that is, Bayesian nonparametric methods can be used where
parametric models, or non-parametric maximum likelihood
are used.

Some applications in hypothesis testing.
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Hypothetical Example: Birthweight data
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Hypothetical Example: Birthweight data
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Hypothetical Example: Birthweight data
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Example: Old Faithful Data
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Example: Old Faithful Data
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Bayesian Inference

In Bayesian statistical inference, we compute and summarize
the posterior distribution of the unknown parameters in the
probability model, in light of observed data.

§ In Bayesian parametric inference, the parameter is the
usual θ, λ, µ say that appears in the presumed (condi-
tional) data generating model.

§ In Bayesian non-parametric inference, the parameter is
the distribution from which the data are drawn.

As part of Bayesian inference, we need to specify the prior
probability distribution for these parameters.
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Random Distributions

How do we construct a “random" distribution suitable for non-
parametric prior modelling ? In the univariate case:

(I) Choose some locations on the real line

x1, x2, x3, . . .

(II) Place a mass of probability at each location

p1,p2,p3, . . .

where the probabilities sum to 1.

Then the function

fpxq “
8
ÿ

i“1

piδxi pxq

is a discrete probability distribution on the set tx1, x2, x3, . . .u.
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Random Distributions

How do we make this random ?

(I) Choose the locations randomly (and independently) from
some distribution GX ; denote them x1, x2, x3, . . ..

(II) Choose the probabilities randomly in such a way such
that they sum to 1; denote them π1, π2, π3, . . ..

Then

rfpxq “
8
ÿ

i“1

πiδxi pxq

is a random mass function.
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Random Distributions

If the number of locations is finite, equal to K say, then we
can generate the probabilities π1, . . . , πK from a Dirichlet dis-
tribution

DirichletpK ;α1, . . . , αK`1q

where the αs are fixed constants.

In this case, the xi s are fixed, or the xi s simulated from GX .
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Random Distributions

If the number of locations is infinite, it is helpful to order the
πi in descending order

π1 ě π2 ě π3 ě ¨ ¨ ¨

so that eventually the terms in the infinite sum become effec-
tively zero, so that the truncation

rfpxq l rfN pxq “
N
ÿ

i“1

πiδxi pxq

can be computed.
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Random Distributions

For example, consider for α ą 0

V1,V2,V3, . . . „ Betap1, αq

independently distributed, and

π1 “ V1

π2 “ p1´ V1qV2

π3 “ p1´ V1qp1´ V2qV3

...
...

...

The πi sequence generated in this way are decreasing in ex-
pectation.
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Simulation: α “ 2
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Simulation: α “ 2, thresholded

−30 −20 −10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Xi1

π

23 points greater than 10−6

392



Simulation: α “ 2, thresholded

−30 −20 −10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Xi1

π

393



Simulation: α “ 2, thresholded
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Simulation: α “ 4
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Simulation: α “ 0.5
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Simulation: α “ 2 (CDF)
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Simulation: α “ 100 (CDF)
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Simulation: α “ 100 (CDF)
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Summary

§ Two hyperparameters α,GX .
§ α small gives a few large masses
§ α large gives many small masses
§ α large reproduces a distribution much like GX

Thus α is like a precision parameter, GX is like a location
parameter for the distribution.
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Dirichlet Process

The method described above is the stick-breaking construc-
tion of the Dirichlet Process with parameters pα,GX q.

rf „ DPpα,GX q

For any partition of R into disjoint subsets B1,B2, . . . ,BK ,BK`1

the Dirichlet process assigns random probabilities

p “ pp1,p2, . . . ,pK ,pK`1q
J

to the subsets, where

p „ DirichletpK ;α1, α2, . . . , αK , αK`1q

and αk “ αGX pBk q for each k
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Posterior Calculation

Suppose a priori rf „ DPpα,GX q. What is the posterior distri-
bution if data y1, y2, . . . , yn are observed and presumed inde-
pendent draws from rf?

We have a conjugate model: a posteriori

rf „ DPpα‹,G‹
X q

where

α‹ “ α` n

G‹
X “

αGX `
n
ř

j“1
δyj

α` n
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Dirichlet Process

For any partition of R into disjoint subsets B1,B2, . . . ,BK ,BK`1

with associated probabilities

p “ pp1,p2, . . . ,pK ,pK`1q
J

§ in the prior

p „ DirichletpK ;α1, α2, . . . , αK , αK`1q

and
αk “ αGX pBk q

§ in the posterior

p „ DirichletpK ;α‹1, α
‹
2, . . . , α

‹
K , α

‹
K`1q

and
α‹k “ α‹G‹

X pBk q 403



Dirichlet Process

It follows that

α‹k “ α‹G‹
X pBk q “ GX pBk q ` nk

where
nk “ Number of yj in the set Bk .

Therefore we have the usual kind of Bayesian updating rule.

Also

§ α small: posterior looks like empirical cdf
§ α large: posterior looks like GX .

So, overall, things proceed much like parametric inference !
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Example: Bayesian Survival Analysis

For possibly censored survival data, the usual approach is
to use non-parametric maximum likelihood and the Kaplan-
Meier curve.
Suppose we have

§ event times
t1 ď ... ď tn

with Nj events at time j .
§ censoring indicators zjk where

zjk “

"

1 Death
0 Censored

Can form likelihood in terms of discrete hazards; leads to
usual Kaplan-Meier formulation
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Example: Bayesian Survival Analysis

In the Bayesian version, we specify a non-parametric model
by considering the probability content for the disjoint inter-
vals

p0, t1s , pt1, t2s , ..., ptn´1, tn s , ptn ,8q .

We may use a Dirichlet distribution to specify the prior; how-
ever, need to specify the α parameters.

To do this in a coherent fashion, we use ideas from the Dirich-
let process; we specify

αk “ αGX pptk´1, tk sq k “ 1,2, . . .
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Example: Melanoma Data - Kaplan-Meier
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Example: Melanoma Data - Bayesian interval
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Dirichlet Process: Some issues

1. How do we report the inference ?
§ Which partition, that is, which sets B1,B2, . . . ,BK ,BK`1

should we choose to report the posterior ?

2. In this formulation, the posterior can only support
discrete distributions

§ that is, any estimate of the true f obtained from the
model is almost surely a discrete distribution.

We solve 1. by using simulation methods

We solve 2. by extending the model .
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Simulating from a Dirichlet Process Model

To obtain a sample (of data) of size M from a Dirichlet Process
DPpα,GX q:

STEP 1: Sample Z1 „ GX .
STEP 2: For j “ 2, . . . ,M , sample

Zj |Z1,Z2, . . . ,Zj´1 „
α

α` j ´ 1
GX `

1

α` j ´ 1

j´1
ÿ

l“1

δZl pZj q

that is, given Z1,Z2, . . . ,Zj´1, either sample
Zj from GX with probability α{pα` j ´ 1q.

or sample
Zj from tZ1, . . . ,Zj´1u with probability 1{pα` j ´ 1q each.
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The Dirichlet Process and Clustering

This algorithm is a Polya Urn scheme.

It demonstrates that the Dirichlet process model induces a
clustering mechanism: in the simulated Z sample, we have
many identical values due to the sampling of Zj uniformly on

tZ1, . . . ,Zj´1u

at each j .
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The Dirichlet Process and Clustering

In a sample of n items from a DPpα,GX qmodel, the probability
of having k clusters is

PrrK “ k s “
αk Bpn, kq

Anpαq

where Bpn, kq is the Stirling number of the first kind .

Anpxq “
n
ÿ

j“1

Bpn, jqx j
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The Dirichlet Process and Clustering

The expected number of clusters a priori is

n
ÿ

j“1

α

α` j ´ 1
“ Opα log nq

For n “ 200:

α ErK s

0.5 3.631
2.0 9.766
4.0 16.238

10.0 30.930
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Maximum Cluster size: α “ 2
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Maximum Cluster size: α “ 0.5

Histogram of Max.Size.0.5
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Maximum Cluster size: α “ 10

Histogram of Max.Size.10
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Extension to The Continuous Case

We need to model continuous distributions.
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Extension to The Continuous Case

We add another stage that brings in a continuous distribution.

For example, could treat each xi as the location of a normal
density, and consider generating a y for each

x1, x2, . . . „ GX

π1, π2, . . . generated by stick-breaking.

y „ φppy ´ xi q{σq i “ 1,2, . . .

Then,

rfpyq “
n
ÿ

i“1

πiφppy ´ xi q{σq

that is, an infinite mixture model .
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Example: α “ 2, σ “ 1

Simulation 1
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Example: α “ 2, σ “ 1

Simulation 2
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Example: α “ 2, σ “ 1

Simulation 3
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Example: α “ 2, σ “ 1

Simulation 4
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Example: α “ 2, σ “ 1

Simulation 5
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Dirichlet Process Mixture

This construction is called the

Dirichlet Process Mixture (DPM)

with a Normal kernel. Any continuous kernel gY can be used
in place of φ.

Under this model, rf is almost surely continuous.

§ α small implies less bumpy
§ α large implies more bumpy.
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Bayesian Inference

Suppose we have the usual de Finetti construction

§ a prior model for f that is DPMpα,GX ,gY ; θq where θ
represents the parameters that appear in GX and gy .

§ conditional on f , data y1, y2, . . . , yn „ f

We wish to compute the posterior for f . We use the hierarchi-
cal formulation

yj |xj
ind.
„ gY pyj |xj , θq j “ 1, . . . ,n

x1, . . . , xn „ DPpα,GX ; θq

θ „ ppθq.
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Bayesian Inference: Algorithm 1

The latent variables x1, . . . , xn are also treated as parameters.
They can be sampled using an MCMC Gibbs sampler scheme.

For j “ 1, . . . ,n, we sample

xj | xpjq, y „ w0ppxj |yj q `
ÿ

l‰j

wlδxl

where

§ y “ py1, . . . , ynq
J

§ xpjq “ px1, . . . , xj´1, xj`1, . . . , xnq
J.

§ w0 is proportional to α times the prior predictive of yj

§ wl is proportional to the likelihood of yj |xl

§ ppxj |yj q is the posterior for xj given yj .
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Bayesian Inference: Algorithm 2

To be more efficient, we can use the clustering property: sup-
pose that at a given iteration of the MCMC, there are K clus-
ters labelled 1 to K, where K ď n.

Label the K distinct x values

z1, . . . , zK

and for each j , define the corresponding cluster label cj where

cj “ k ðñ xj “ zk

We can update the cj s instead of the xj s which will be more
computationally efficient; we are clustering xs to the cluster
centres at the z values.
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Bayesian Inference: Algorithm 2

For i “ 1, . . . ,n, let

§ n1piq, . . . ,nK piq denote the number of items in clusters
1, . . . ,K

§ y1piq, . . . , yK piq denote the vectors of y values currently
allocated to the K clusters

if the i th data point is removed.

For i “ 1, . . . ,n, we sample the cluster labels in a Gibbs sam-
pler with conditional probabilities

Prrci “ k | cpiqs9
nk piq

n ´ 1` α
ppyi |yk piqq k “ 1, . . . ,K

and
Prrci “ K ` 1 | cpiqs9

α

n ´ 1` α
ppyi q
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Bayesian Inference: Algorithm 2

In this expression

§ ppyi |yk piqq is the posterior predictive density for yi in
the DPM model, assuming that yi comes from cluster k .

§ ppyi q is the prior predictive density for yi in the DPM
model, assuming that yi comes from a new cluster not
currently represented in the data.

In this formulation, we have integrated out the Dirichlet pro-
cess.

Thus we can simply sample the cluster labels in turn, and then
sample the z1, . . . , zk values; this will allow us to do density
estimation.
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Bayesian Inference: Algorithm 2

By the usual calculation

ppyi |yk piqq “

ż

gY pyi | xqppx | yk piqq dx

where

ppx | yk piqq 9 ppyk piq | xqppxq

“

#

ź

l‰i

gY pyl | xq

+

ppxq

gives the posterior distribution for the k th cluster centre.

Similarly

ppyi q “

ż

gY pyi | xqppxq dx

430



Bayesian Inference: Algorithm 2

In the earlier Gaussian model, suppose for simplicity that GX

is the Np0, λ2q density:

xi „ Np0, λ2q

yi | xi „ Npxi , σ
2q

Then

ppyi |yk piqq ” N

ˆ

nk piqyk piq

nk piq{σ2 ` 1{λ2
,
pnk piq ` 1q{σ2 ` 1{λ2

nk piq{σ2 ` 1{λ2
σ2

˙

and
ppyi q ” N

`

0, σ2 ` λ2
˘
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Extensions

Easy to extend to

§ unknown σ2

§ non-Gaussian conjugate models
§ blocked Gibbs sampler
§ Metropolis-Hastings MCMC for cluster labels
§ multivariate conjugate models

Not so easy to do non-conjugate models.
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Example: Galaxy Data
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Example: Galaxy Data
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Example: Galaxy Data
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Example: Galaxy Data
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Example: Galaxy Data
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Example: Galaxy Data
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Examples

Example: Galaxy data

See knitr 20
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Extensions & Open Problems

§ Extensions :
§ Polya Tree Models
§ Hypothesis Testing
§ Spatial Problems
§ Normalized Random Measures
§ Connections with Lévy Processes

§ Open Problems:
§ Properties of Estimators (consistency etc.)
§ Model Selection
§ Comparison with Bayesian Semi-Parametrics
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Resampling Approaches to Inference

Frequentist properties of statistical estimators are often diffi-
cult to study in a finite sample setting: for example, the finite
sample variance of the sample median can only be computed
via numerical integration.

Resampling methods allow the study of frequentist properties
of statistical quantities by producing pseudo-replicate data
sets of the same size as the observed data, and examining
the statistical variation across these replicate data sets.
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Notation: independence case

Suppose Y1, . . . ,Yn „ F are a random sample, and let θ “ θpFq
be the focus of inferential interest. For example

θpFq “

ż

y dFpyq or θpFq “ inf
y
tFpyq ě pu

etc. Let y1, . . . , yn be the observed data.

If pFn is the empirical cdf,

pFnpyq “
1

n

n
ÿ

i“1

1ryi ,8qpyq d pFnpyq “
1

n

n
ÿ

i“1

1tyi u
pyq

then a natural ’plug-in’ estimator of θpFq is Tn “ θppFnq,
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Notation: independence case

Recall that, for each y, under mild regularity conditions

pFnpyq
p
ÝÑ Fpyq

but also

sup
y
|pFnpyq ´ Fpyq|

p
ÝÑ 0

as n ÝÑ 8. Therefore

θppFnq
p
ÝÑ θpFq

which justifies (asymptotically) the use of the plug-in estima-
tor.
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Notation: independence case

The bias and variance of the estimator are

bTn pFq “ EF rTn s ´ θpFq

vTn pFq “ VarF rTn s

both of which depend on the true F .
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Notation: independence case

We wish to study these properties of the estimator. In some
cases, it is possible to study these quantities analytically. Sup-
pose, however, pθ is the solution of

n
ÿ

i“1

mpyi ; θq “ 0

for some m-estimating function.

The corresponding estimator is not analytically available, so
its finite sample properties are hard to study.

445



The Bootstrap

Suppose we wish to summarize an aspect of the sampling dis-
tribution of Tn “ θppFnq. Let

spFq ” spTn ; Fq

denote the statistical summary of interest; it is written as a
function of F as the statistical properties of Tn are entirely
dictated by F .

446



The Bootstrap

The quantity spFq can again usually be expressed in terms of
an integral with respect to F

spFq “

ż

sptpyqqdFpyq.

for function tp.q that defines the estimator. Occasionally, this
expression can be computed analytically.
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The Bootstrap

The key idea of the bootstrap is to replace calculations wrt F
by calculations wrt pFn , and to compute

sppFnq

numerically, that is

sppFnq “

ż

sptpyqqd pFnpyq.
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The Bootstrap

For a random sample, y1, . . . , yn , the bootstrap proceeds as
follows:

1. Set B (the number of bootstrap resamples)

2. For b “ 1, . . . ,B ,

(a) generate a sample of size n ypbq1 , . . . , ypbqn at random with
replacement from pFn

(b) form the statistic of interest t pbqn

3. Summarize the resampled estimates

t
p1q
n , . . . , t

pBq
n

using the desired statistical summary, sp.q.
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The Bootstrap

Example: Sample mean standard error

Consider data

-0.1568 0.4439 -0.7865 -1.6531 -0.6037
-0.6231 0.9061 -0.8215 -1.2829 -0.3538

with sample mean -0.4932 and standard deviation

S “

g

f

f

e

1

n

n
ÿ

i“1

pyi ´ yq2 “ 0.7184

yielding the estimated standard error of the mean (s.e.m.)

pseppθq “
0.7184
?

10
“ 0.2272.
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The Bootstrap

Example: Sample mean standard error

If the presumption of normality is made, then this is the plug-
in estimate of the standard error

‚ the true s.e.m. is seppθq “ σ{
?

n;
‚ we estimate σ by the standard deviation under pFn .

§ pFn is the discrete distribution that places mass 1{n at each
of y1, . . . , yn ;

§ we then compute the ‘theoretical’ variance of this discrete
distribution.

‚ this yields pseppθq “ S{
?

n
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The Bootstrap

Example: Sample mean standard error

The bootstrap version of this calculation replaces an ana-
lytic calculation by a numerical one. Proceed as follows: set
B “ 200. For b “ 1, . . . ,B , resample n values without re-
placement, and compute the appropriate summary. For ex-
ample, for b “ 1,

0.9061 0.4439 0.4439 -1.6531 -1.2829
-0.1568 -0.1568 -1.6531 0.4439 0.4439

with sample mean -0.2221 and standard deviation 0.9097.
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The Bootstrap

Example: Sample mean standard error

b Mean Std. Dev.

1 -0.2221 0.9097
2 -0.7630 0.1962
3 -0.1794 0.6869
4 -0.5606 0.2777
5 -0.8929 0.3883
6 -0.5359 0.5958
7 -0.6969 0.6149
8 -0.4056 0.9144
...

...
...
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The Bootstrap

Example: Sample mean standard error

We now have 200 (resampled) sample means, with standard
deviation 0.2327 l S{

?
n, where S is the original sample s.d..

Histogram of resampled means
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The Bootstrap

Example: Sample kurtosis standard error

The sample kurtosis

tn “

1
n

n
ř

i“1
pyi ´ yq4

ˆ

1
n

n
ř

i“1
pyi ´ yq2

˙2 ´ 3

is a statistic that records the heavy-tailed nature of a sample.

There is no simple formula for the standard error for this
statistic (although an asymptotic expression can be derived).
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The Bootstrap

Example: Sample kurtosis standard error

2000 (resampled) sample kurtosis values, with standard devi-
ation 0.9689.

Histogram of resampled kurtosis
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The Bootstrap: notation

Let Tn “ pθ be the statistic of interest, and let

sppθq psB ppθ
p˚qq

respectively denote the true and bootstrap estimated value of
summary quantity s of the sampling distribution of pθ.
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The Bootstrap: notation

For example, for the normal mean standard error, pθ “ y,

sppθq “ seppθq “
σ
?

n
pseppθq “

S
?

n

and

psB ppθ
p˚qq “ pseB ppθ

p˚qq “

g

f

f

e

1

B ´ 1

B
ÿ

b“1

pypbq ´ yp˚qq2

with

yp˚q “
1

B

B
ÿ

b“1

ypbq “ pθp˚q ypbq “
1

n

n
ÿ

i“1

y
pbq
i .
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The Bootstrap

Example: Sample mean standard error

For the data set above, the following bootstrap standard er-
rors were obtained for different values of B

B 50 100 200 500 1000 10000 20000
pθp˚q -0.5095 -0.5097 -0.4820 -0.4968 -0.5014 -0.4942 -0.4953

pseB p
pθp˚qq 0.2362 0.2353 0.2415 0.2263 0.2309 0.2283 0.2272

where recall that the exact standard error of the mean is

pseppθq “
S
?

n
“ 0.2272.

Further details and Examples
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The Bootstrap is a Bayesian procedure

Recall Bayesian nonparametric inference based on the Dirich-
let process:

§ Y1, . . . ,Yn „ rf (conditionally independent)
§ a priori rf „ DPpα,GY q.

§ α ą 0
§ GY p.q some distribution on R
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The Bootstrap is a Bayesian procedure

§ a posteriori
rf „ DPpα‹,G‹

Y q

where

α‹ “ α` n

G‹
Y “

αGY `
n
ř

j“1
δyj

α` n
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The Bootstrap is a Bayesian procedure

§ For K -partition of R, tB1,B2, . . . ,BK ,BK`1u, with associ-
ated probabilities

p “ pp1,p2, . . . ,pK ,pK`1q
J

§ in the prior

p „ DirichletpK ;α1, α2, . . . , αK , αK`1q

and
αk “ αGY pBk q

§ in the posterior

p „ DirichletpK ;α‹1, α
‹
2, . . . , α

‹
K , α

‹
K`1q

and
α‹k “ α‹G‹Y pBk q 462



The Bootstrap is a Bayesian procedure

The Dirichlet Process is a distribution on distributions that
are discrete (with probability 1), that is,

§ mass function of the form

rfpyq “
8
ÿ

i“1

πiδYi pyq

§ random locations Y1,Y2, . . . „ GY ;
§ random probabilities π1, π2, . . . constructed according to

the stick-breaking mechanism, that is, defined by the sin-
gle parameter α.
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The Bootstrap is a Bayesian procedure

We can easily produce a i.i.d sample Y1,Y2, . . . ,„ rfp.q as it is
merely a discrete distribution: this construction ensures that
tYnu is an exchangeable sequence by de Finetti’s theorem.

§ rf „ DPpα,GY q

§ Y1,Y2, . . . ,Yn | rf „ rf , independently.
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The Bootstrap is a Bayesian procedure

In light of observed data y1, . . . , yn , if the prior is DPpα,GY q,
then the posterior is

DP

¨

˚

˚

˝

α` n,

αGY `
n
ř

i“1
δyi p.q

α` n

˛

‹

‹

‚

.

Denote the posterior parameters where

α‹ “ α` n

G‹
Y “

αGY `
n
ř

j“1
δyj p.q

α` n
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The Bootstrap is a Bayesian procedure

Recall the predictive calculation given by de Finetti:

pnpypn`1q:pn`mqq “

ż n`m
ź

i“n`1

fpyi q πnpdfq.

To sample from pn , we

§ sample f „ πn ;
§ sample Yn`1, . . . ,Yn`m independently from f .

We sample a random f from πn , and then obtain a sample
Yn`1, . . . ,Yn`m from the predictive distribution using the ran-
domly drawn f .
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The Bootstrap is a Bayesian procedure

This may be achieved using the Polya urn.

STEP 1: Sample Yn`1 „ G‹
Y .

STEP 2: For j “ 2, . . . ,m, sample Yn`j from

α‹

α‹ ` j ´ 1
G‹

Y p.q `
1

α‹ ` j ´ 1

j´1
ÿ

l“1

δYn`l p.q

that is, given Yn`1,Yn`2, . . . ,Yn`j´1, sample

Yn`j „

#

G‹
Y w.p. α‹{pα‹ ` j ´ 1q

Yn`l w.p. 1{pα‹ ` j ´ 1q, l “ 1, . . . , j ´ 1.
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The Bootstrap is a Bayesian procedure

The posterior mean of the DP is the measure

αGY `
n
ř

i“1
δyi p.q

α` n
.

Instead of using the full Polya urn scheme, consider a plug-in
procedure that replaces a sample of f by this posterior mean.

Independently for j “ n ` 1, . . . ,n `m,

§ w.p. α{pα` nq: draw from GY ;
§ w.p. 1{pα` nq: draw yi , for each i “ 1, . . . ,n.
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The Bootstrap is a Bayesian procedure

In the limit as α ÝÑ 0, this procedure becomes

§ sample yi w.p. 1{n, i “ 1, . . . ,n

independently for j “ n `1, . . . ,n `m. This is identical to the
bootstrap.

Therefore we can consider bootstrap calculations as Monte
Carlo calculations made with respect to the predictive distri-
bution computed for a Dirichlet process prior and posterior,
in the limit as α ÝÑ 0, using a plug-in approach.
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Predictive distributions

In Bayesian inference the predictive distribution

pnpyn`1q ” ppyn`1|y1:nq

is the natural estimator of the true probability measure of a
single element of the infinitely exchangeable sequence.
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Predictive distributions

Recall the frequentist justification of maximum likelihood: in
a potentially mis-specified model fpy; θq, we identify the true
value of θ, θ0 as

θ0 “ arg min
θ

KLpf0, fp.; θqq “ arg min
θ

ż

log

"

f0pyq

fpy; θq

*

f0pyq dy
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Predictive distributions

The corresponding estimator is obtained when we replace the
integral by a ‘Monte Carlo’ version based on an i.i.d. sample

pθ “ arg max
θ

n
ÿ

i“1

log fpyi ; θq “ arg max
θ
`npθq

where the (Monte Carlo) sample is the data drawn (by defi-
nition) from f0. In alternative form, pθ is the solution to the
estimating equation

9̀
npθq “

n
ÿ

i“1

B log fpyi ; θq

Bθ
“ 0
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Predictive distributions

A Bayesian version of the calculation replaces the original
sample by a sample from the predictive distribution

pnpypn`1q:pn`mqq.

However, we are not restricted to use the ‘score’ function as
the basis of an estimation procedure

473



Predictive distributions

§ we may use any loss function Lpy, θq say, and define the
Bayesian estimator as

arg min
θ

ż

Lpy, θqpnpyq dy “ arg min
θ
Epn rLpY , θqs

§ this is a valid fully Bayesian estimator as it minimizes an
expected posterior loss;

§ via this route, we may achieve fully Bayesian inference in
a semi-parametric fashion.
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The Bayesian Bootstrap

The Bayesian bootstrap replaces the 1{n weights in the boot-
strap by repeated draws of W “ pW1, . . . ,Wnq

W „ Dirichletpn,1,1, . . . ,1q

where

ErWi s “
1

n

and uses this as representation of the predictive distribution
pnp.q.
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The Bayesian Bootstrap

That is, pnp.q is the predictive distribution derived from a
Dirichlet process model, in the limiting case with α ÝÑ 0,
so that, given that we have an observed draw

w “ pw1, . . . ,wnq

of W „ Dirichletpn,1,1, . . . ,1q, the predictive distribution
takes the form

pnpyq “
n
ÿ

i“1

wiδtyi u
pyq.
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The Bayesian Bootstrap

This yields the calculation

Epn rLpY , θqs “
n
ÿ

i“1

wi Lpyi , θq

and in the specific case of the log-density loss

Epn rLpY , θqs “ ´
n
ÿ

i“1

wi `pyi ; θq
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The Bayesian Bootstrap

Hence, we must perform the calculation of

θOPT “ arg max
θ

n
ÿ

i“1

wi `pyi ; θq

to minimize the loss.

The quantity θOPT is a functional of the Dirichlet process pos-
terior, and so we may build up a posterior distribution for it by
repeatedly sampling the Dirichlet weights, and recomputing
θOPT for each sample.
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Example

Example: Bayesian bootstrap

See knitr 21
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Langevin algorithm

The Langevin algorithm uses a diffusion approximation to
generate the a process that has the target posterior distri-
bution as its invariant measure.

§ new states are proposed using Langevin dynamics, based
on the gradient of the target pdf;

§ due to the necessary time discretization, proposed values
must be subjected to a Metropolis–Hastings accept/reject
step in order for the target to be preserved.
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Langevin algorithm

Denote the target pdf πpxq. In the notation of stochastic differ-
ential equations (SDEs), consider the diffusion process tXt , t ą
0u where

dXt “
1

2
SpXt qdt ` dWt

where tWtu is Brownian motion, and

Spxq “
d

dx
log πpxq “ O log πpxq.

This is the Langevin SDE , and it can be shown that the invari-
ant measure of this continuous time process is πpxq.

An initial condition X0 “ x0 is specified.
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Langevin algorithm

A standard scheme for simulating this diffusion is given by an
approximation based on the time-discretization

tXkδ, k “ 1,2, . . .u

for some time-step δ ą 0 where X0 “ x0, and then for k “

0,1,2, . . .

Xk`1 “ Xk `
δ

2
SpXk q `

?
δZk

where tZk , k “ 1,2, . . .u are an iid Normald p0, Id q sequence.
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Langevin algorithm

The approximation induced by time-discretization does not
quite preserve πpxq as the invariant distribution. However
this can be easily corrected using a Metropolis-Hastings step:
that is, the proposal

X‹k`1 „ Normald pXk ` δSpXk q{2, δId q

is accepted with probability

min

"

1,
πpX‹k`1q

πpXk q

qpX‹k`1,Xk q

qpXk ,X‹k`1q

*

where

qpx, yq ∝ exp

"

´
1

2δ
py´ x´ δSpxq{2qJpy´ x´ δSpxq{2q

*
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Langevin algorithm

In this algorithm, the time-step δ can be tuned to optimize the
effective sample size of the sampler:

§ as δ varies the acceptance rate of the Metropolis step
varies;

§ some theory suggests that the optimal acceptance rate is
around 0.5-0.6 in tractable problems, but this is problem-
dependent.
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Langevin algorithm

This algorithm is known as the Metropolis-adjusted Langevin
algorithm (MALA)

Example: MALA

See knitr 22
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Hamiltonian MCMC

Hamiltonian Monte Carlo is another method that appeals to
the dynamics of physical systems to perform sampling from a
target distribution.

Consider two d -dimensional vectors that describe the motion
of an object in Rd .

§ x “ px1, . . . , xd q denotes the position of the object
§ v “ pv1, . . . , vd q denotes the momentum (proportional to

the velocity) of the object.

Let z “ px, vq be the 2d concatenated vector.
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Hamiltonian MCMC

Hamiltonian dynamics is formulated via the Hamiltonian, de-
noted Hpzq ” Hpx, vq, which is a function of z “ px, vq but not
t , and which describes how z changes in time via the differ-
ential form

dz

dt
“

„

0d Id

´Id 0d



BHpzq

Bz
“ D

BHpzq

Bz

say, that is

dx

dt
“
BHpx, vq

Bv

dv

dt
“ ´

BHpx, vq

Bx
.

These are Hamilton’s Equations.
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Hamiltonian MCMC

Attention focusses on Hamiltonians that satisfy

Hpx, vq “ Hpx,´vq

and are assumed to be separable

Hpx, vq “ Upxq ` Kpvq

so that Kpvq “ Kp´vq.

488



Hamiltonian MCMC

Note that replacing v by ´v in the equations yields

dx

dt
“
BHpx,´vq

Bp´vq
“ ´

BHpx, vq

Bv

as Hpx,´vq “ Hpx, vq, by assumption, and

´
dv

dt
“

dp´vq

dt
“ ´

BHpx,´vq

Bx
“ ´

BHpx, vq

Bx
.

489



Hamiltonian MCMC

Thus after changing v ÝÑ ´v, we have

dx

dt
“ ´

BHpx, vq

Bv

and
dv

dt
“
BHpx, vq

Bx

which are identical to the original equations, but with the
signs changed on the right hand side.

Therefore changing v ÝÑ ´v is the same as running the dy-
namics with time reversed .
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Hamiltonian MCMC

§ Upxq is termed the potential energy
§ Kpvq is termed the kinetic energy, where typically

Kpvq “
1

2
vJM´1v

where M is a positive definite, symmetric matrix.
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Hamiltonian MCMC

The Hamiltonian, and Hamilton’s equations, define the evolu-
tion of the system in continuous time: the objective is to find
the solution zptq “ pxptq, vptqq to the equations for all t .

We consider the state of the system at times t and t ` s

zptq ÝÑ zpt ` sq

that is

pxptq, vptqq ÝÑ pxpt ` sq, vpt ` sqq.
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Hamiltonian MCMC

Denote by Hs the mapping taking zptq to zpt ` sq, that is

Hspzptqq “ zpt ` sq.

The mapping is 1-1 with inverse mapping H´s , say. That is

H´spzpt ` sqq “ zptq

which follows from the time reversibility established above.
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Hamiltonian MCMC

Conservation: Note that

dHpzq

dt
“ 0

as

dHpzq

dt
“

d
ÿ

j“1

BHpzq

Bxj

dxj

dt
`

d
ÿ

j“1

BHpzq

Bvj

dvj

dt

“

d
ÿ

j“1

BHpzq

Bxj

BHpzq

Bvj
´

d
ÿ

j“1

BHpzq

Bvj

BHpzq

Bxj
“ 0

This means that Hpzq “ Hpx, vq is constant over time.
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Hamiltonian MCMC

Preservation of volume: If B Ă R2d has volume VpBq, and for
all s

HspBq “ tHspzq : z P Bu

is the image of B, then the volume of HspBq is also VpBq. This
feature is a consequence of the symplectic property of Hamil-
tonian dynamics, specifically that

9HJs D´1 9Hs “ D´1

where 9Hs is the Jacobian associated with the map Hs .
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Hamiltonian MCMC

The preservation of volume under the mapping Hs will be im-
portant when it is utilized as a proposal mechanism in MCMC:

§ recall that a multivariate transformation that computes
the distribution of transforms of continuous random vari-
ables require ‘preservation of probability’ under the trans-
formation.

§ ‘preservation of volume’ corresponds to a transform that
has Jacobian 1.
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Discrete approximation

Hamiltonian dynamics can be approximated using a discrete
time approach as for Langevin dynamics. We consider

zk ” zpkδq, k “ 1,2, . . .

for time-step δ ą 0. Then the dynamics equation

dz

dt
“ D

BHpzq

Bz

becomes in an Euler approximation

zk`1 “ zk ` δD
BHpzq

Bz

ˇ

ˇ

ˇ

ˇ

z“zk

.
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Discrete approximation

That is, if Hpx, vq “ Upxq ` Kpvq

xk`1 “ xk ` δ
BHpx, vq

Bv

ˇ

ˇ

ˇ

ˇ

z“pxk ,vk q

“ xk ` δ 9Kpvk q

vk`1 “ vk ´ δ
BHpx, vq

Bx

ˇ

ˇ

ˇ

ˇ

z“pxk ,vk q

“ vk ´ δ 9Upxk q
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Discrete approximation

This method can be improved by amending the second equa-
tion and considering sequential updating:

xk`1 “ xk ` δ 9Kpvk q

vk`1 “ vk ´ δ 9Upxk`1q
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Discrete approximation

A further amendment using half-steps gives further improve-
ment: the leapfrog method uses the updates

v˚k “ vk ´
δ

2
9Upxk q

xk`1 “ xk ` δ 9Kpv˚k q

vk`1 “ v˚k ´
δ

2
9Upxk`1q

where we consider

v˚k ” vppk ` 1{2qδq.
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Discrete approximation

Note

These discrete time dynamics are also

‚ reversible,
‚ volume-preserving.

Error analysis shows that the leapfrog method provides the
closest approximation to the continuous time dynamics.
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Hamiltonian MCMC

Assuming the separable case, we consider joint pdf πX ,V px, vq

πX ,V px, vq ∝ exp t´Hpx, vqu “ exp t´Upxq ´ Kpvqu

corresponding to independence of corresponding random vari-
ables X and V

πX pxq ∝ exp t´Upxqu and πV pvq ∝ exp t´Kpvqu .

If the marginal πX pxq is our true target, then V is merely an
auxiliary variable.
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Hamiltonian MCMC

We are free to choose the distribution πV pvq, and a typical
choice is the multivariate Normal

πV pvq ∝ exp

"

´
1

2
vJM´1v

*

so that as before

Kpvq “
1

2
vJM´1v.
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Hamiltonian MCMC

If M “ diagpm1, . . . ,md q, then

Kpvq “
1

2

d
ÿ

j“1

v2
j

mj

which corresponds to an assumption that Vj „ Normalp0,mj q

for j “ 1, . . . ,d are independent. Here

9Kpvq “ M´1v “

»

—

—

—

—

–

v1

m2
...

vd

md

fi

ffi

ffi

ffi

ffi

fl
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Hamiltonian MCMC

The basic Hamiltonian MCMC algorithm proceeds using the
following Metropolis accept/reject approach: we construct an
MCMC move

pxk , vk q ÝÑ pxk`1, vk`1q

as follows:

(I) Generate v 11 „ Normald p0d ,Mq.

505



Hamiltonian MCMC

(II) Perform L dynamics updates with time-step δ: for
example, for the leapfrog updates,

(i) set v 11, x 11 “ xk ;

(ii) for l “ 1, . . . ,L ´ 1

v˚l “ v 1l ´
δ

2
9Upx 1l q

x 1l`1 “ x 1l ` δ 9Kpv˚l q

v 1l`1 “ v˚l ´
δ

2
9Upx 1l`1q;

(iii) set x˚k`1 “ x 1L and v˚k`1 “ ´v 1L .
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Hamiltonian MCMC

(III) Accept px˚k`1, v
˚
k`1q with probability

min

"

1,
πX ,V px˚k`1, v

˚
k`1q

πX ,V px, vq

*

where

πX ,V px˚k`1, v
˚
k`1q

πX ,V px, vq
“ expt´Hpx˚k`1, v

˚
k`1q `Hpxk , vk qu.

Note that the proposal in step (II) is reversible by construc-
tion, so the proposal mechanism does not appear in the accep-
tance probability as it cancels in numerator and denominator
of the ratio.

507



Hamiltonian MCMC

Note

‚ As for Langevin dynamics and MALA, the quantities L
and δ can be adjusted to obtain the optimal effective sam-
ple size.

‚ In step (II), due to conservation, we would anticipate that

Hpx˚k`1, v
˚
k`1q « Hpxk , vk q

as the exact dynamics would keep Hpx, vq constant .

However, the generation in step (I) prevents this by al-
lowing v to be changed independently according to πV pvq
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Hamiltonian MCMC

Example: Hamiltonian MCMC

See knitr 23
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Appendix: Multiple chain Moves

Back to slides
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Multiple chain MCMC: Types of move

1. Mutation: Select m P t1, . . . ,Mu, and perform a MH
move using proposal density qmpx, zq. If the current value
for xm is x, and the proposed value is z, accept the pro-
posed point with probability

α “ min

"

1,
πmpzqqmpz, xq

πmpxqqmpx, zq

*

In the context of the vector x, this move is essentially a
Gibbs sampler move, as the full conditional for Xm is πm .
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Multiple chain MCMC: Types of move

2. Exchange: Select l ,m P t1, . . . ,Mu, and propose the
swap

xl ÐÑ xm

Accept this proposal with probability

α “ min

"

1,
πl pxmqπmpxl q

πl pxl qπmpxmq

*

.
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Multiple chain MCMC: Types of move

In the case where all the πm are equal to the target π, we can
utilize the following move:

3. Snooker: Select l ,m P t1, . . . ,Mu, and, in an attempt to
update xl , make the proposal z

z “ xm ` upxl ´ xmq

where u is a random variate sampled from the density

fpuq 9 πpxm ` upxl ´ xmqq

and then update xl to z.

Back to slides
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Multiple chain MCMC: Types of move

This move can be utilized in the case of vector state spaces.
If each x is d -dimensional, then the move becomes

3‹. Snooker: Select l ,m P t1, . . . ,Mu, and, in an attempt to
update xl , make the proposal z

z “ xm ` upxl ´ xmq

where u is a scalar random variate sampled from the den-
sity

fpuq 9 |u|d´1πpxm ` upxl ´ xmqq

and then update xl to z.

Back to slides
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Multiple chain MCMC: Types of move

A related move returns to basic ideas from optimization:

4. Local optimum: Select l ,m P t1, . . . ,Mu, and, in an at-
tempt to update xl , proceed as follows: starting at xm ,
use conjugate gradient or steepest descent to find the lo-
cal mode of π, and denote this pxm .

Then make the proposal z

z “ pxm ` upxl ´ pxmq

where u is a scalar random variate sampled from the den-
sity

fpuq 9 |u|d´1πppxm ` upxl ´ pxmqq

and then update xl to z.

Back to slides
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Multiple chain MCMC: Types of move

Again in the d -vector case, we have the final move type, in-
spired by ideas from genetic algorithms:

5. Crossover: Select l ,m P t1, . . . ,Mu, and then select j
uniformly from t1, . . . ,d ´ 1u. Perform a crossover at po-
sition j , that is, attempt to replace xl and xm by

xnew
l “ pxl1, . . . , xlj , xmj`1, . . . , xmd q

xnew
m “ pxm1, . . . , xmj , xlj`1, . . . , xld q

that is, exchange the pj`1, . . . ,dq portions of each vector.

Accept this proposal with probability

α “ min

"

1,
πl pxnew

l qπmpxnew
m q

πl pxl qπmpxmq

*

.

Back to slides 517
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Appendix: Bootstrap examples and Extensions

Back to slides
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The Bootstrap: choosing B

For a sample of size n, there are

M “

ˆ

2n ´ 1

n

˙

possible distinct resampled data sets:

Number of
n distinct samples

10 9.238ˆ 104

20 6.892ˆ 1010

50 5.045ˆ 1028

100 4.527ˆ 1058

How the value of B is chosen depends on the type of calcula-
tion being done, and the nature of the underlying data gener-
ating mechanism.

520



The Bootstrap: choosing B

Note that B “ 8 returns the plug-in estimate.

§ For the s.e.m., at B “ 8

pse8ppθ
p˚qq “

g

f

f

e

M
ÿ

j“1

wj py j ´ y .q
2

where wj , j “ 1, . . . ,M represents the relative frequency
of the resampled data sets yielding mean y j , and y . de-
notes the weighted mean

y . “
1

M

M
ÿ

j“1

wj y j .

§ This quantity arises from the exact sampling distribution
of the pθ, given pFn .

§ Recall that there may not be a simple analytical formula
for the required statistic. 521



The Bootstrap: choosing B

Let seppθq denote the standard error functional for statistic pθ,
and, suppressing the dependence on pθ, let

§
pseB denote the estimate of the standard error from B
bootstrap resamples

§
pse8 denote the ideal estimated bootstrap standard error
at B “ 8. Recall that pse8 ” pseppθq is the plug-in estimated
standard error of pθ (that is, the standard deviation of the
sampling distribution of pθ under pFn).

It can be shown that

EF r pse2
B s “ EF r pse2

8s

and
VarF r pse2

B s ě VarF r pse2
8s
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The Bootstrap: choosing B

Example: N pµ, σ2q

The sample variance of pθ “ Y is

seppθq2 “
σ2

n

estimated by

pseppθq2 “

1
n

n
ř

i“1
pyi ´ yq2

n
“
pn ´ 1qs2

n2
“

S2

n
.

But, by standard theory, under distribution Fpyq ” N pµ, σ2q,

pn ´ 1qs2

σ2
„ χ2

n´1.
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The Bootstrap: choosing B

Example: N pµ, σ2q

Hence, as pse8 ” pse, we have

EF r pse2
8s “

pn ´ 1qσ2

n2
VarF r pse2

8s “
2pn ´ 1qσ4

n4

These results are not identical to those obtained taking ex-
pectations under pFn .

The larger B gets, we expect to see

VarF r pse2
B s ÝÑ VarF r pse2

8s

Note that we cannot compute the limiting value as B ÝÑ 8

in many cases.

524



The Bootstrap: choosing B

Example: Simulation study

Suppose F is N p0,1q, so that

EF r pse2
8s “

pn ´ 1q

n2
VarF r pse2

8s “
2pn ´ 1q

n4
.

For n “ 10, these values are 0.090 and 0.04242 respectively.

For different values of B , the following values were obtained
for the mean and standard deviation of pse2

B computed across
2000 simulated N p0,1q data sets:

B 50 100 200 500 1000 10000 20000 8

Mean 0.0910 0.0910 0.0907 0.0906 0.0907 0.0907 0.0907 0.0900
s.d. 0.0469 0.0450 0.0437 0.0432 0.0428 0.0427 0.0427 0.0424
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The Bootstrap: choosing B

Example: Simulation study

For n “ 50, these values are 0.0196 and 0.00402 respectively.

B 50 100 200 500 1000 10000 20000 8

Mean 0.0195 0.0196 0.0197 0.0197 0.0197 0.0197 0.0197 0.0196
s.d. 0.0056 0.0049 0.0044 0.0042 0.0041 0.0040 0.0040 0.0040
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The Bootstrap: choosing B

Note: the estimator used here for σ2 is

S2 “
1

n

n
ÿ

i“1

pYi ´ Yq2

that is, the ML estimator, not the unbiased estimator.

This estimator yields the “correct" variance for the bootstrap
estimator at B “ 8, as S2 is the correct plug-in estimator,
that is, it is the variance under pFn .

The unbiased estimator could be used in practice; the differ-
ence is negligible for large n.
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The Bootstrap: Further Examples

In the case of i.i.d. univariate sampling, the bootstrap extends
easily to more general settings. For example, extension to the
i.i.d. vector case is straightforward.

1. A two-sample problem.
2. The Pearson correlation coefficient.
3. Principal components analysis.
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The Bootstrap: Two-sample Estimation

Suppose that two random samples are available from differ-
ent distributions

F1 : y11, . . . , y1n1

F2 : y21, . . . , y2n2

and the parameter of interest is the difference in means

µ1 ´ µ2.

In the normal case, under equal variances for the two popula-
tions, the standard error of the estimator

y1 ´ y2

can be studied analytically; more generally, outside of the nor-
mal case and for other estimands, it cannot. 529



The Bootstrap: Two-sample Estimation

The bootstrap operates in this case by

§ resampling y
pbq
11 , . . . , y

pbq
1n1

(size n1) from the first sample,

§ resampling y
pbq
21 , . . . , y

pbq
2n2

(size n2) from the second sam-
ple,

§ forming the difference

y
pbq
1 ´ y

pbq
2

for b “ 1, . . . ,B . Other estimators can be studied in this way.
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The Bootstrap: Pearson correlation

Suppose that pairs of observations pxi , yi q, i “ 1, . . . ,n are
available. The Pearson product-moment correlation is

r “

1
n

n
ř

i“1
pxi yi ´ xyq

d

"

1
n

n
ř

i“1
pxi ´ xq2

*"

1
n

n
ř

i“1
pyi ´ yq2

*

which measures the linear correlation between the two vari-
ables in the sample.

r is the moment-based estimator of the population correlation
ρ.
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The Bootstrap: Pearson correlation

The bootstrap operates in this case by

§ resampling pairs ppx
pbq
1 , y

pbq
1 q, . . . , px

pbq
n , y

pbq
n qq (size n)

§ forming the resampled value of r

rpbq

for b “ 1, . . . ,B .

Note that again it is the i.i.d. units that are being resampled.
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The Bootstrap: Pearson correlation

Example: LSAT vs GPA
The relationship between GPA (x) and LSAT score (y) in n “
15 law school students is to be studied.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GPA 339 330 281 303 344 307 300 343 336 313 312 274 276 288 296
LSAT 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594

For these data r “ 0.776.
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The Bootstrap: Pearson correlation

Example: LSAT vs GPA

2000 (resampled) sample correlation values, with standard
deviation 0.1382.

Histogram of resampled r
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The Bootstrap: Pearson correlation

Example: LSAT vs GPA

A common transformation to approximate normality (for large
n) uses

Zn “
1

2
log

ˆ

1` r

1´ r

˙

for which
?

n ´ 3Zn
d
ÝÑ Z „ N pµ,1q

where

µ “
1

2
log

ˆ

1` ρ

1´ ρ

˙
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The Bootstrap: Pearson correlation

Example: LSAT vs GPA

2000 Zn values, and normal approximation: skewness is ap-
parent, and the bootstrap variance is 1.793, rather than 1.

Histogram of resampled r
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The Bootstrap: Principal components

Suppose that vectors of observations of length d

xi , i “ 1, . . . ,n

are available. Let X denote the n ˆ p matrix formed by row-
binding the n i.i.d. vectors x1, . . . , xn , after column standard-
ization

§ each column of X has its mean subtracted.
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The Bootstrap: Principal components

Then the sample covariance matrix is

S “
1

n
XJX

This is a positive-definite matrix, that can be decomposed us-
ing the eigen-decomposition

S “ VDVJ

where D is the diagonal matrix of eigenvalues, and V is the
corresponding eigenvector matrix with orthonormal columns.
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The Bootstrap: Principal components

The diagonal elements of D are the sample eigenvalues

pλ1 ě pλ2 ě ¨ ¨ ¨ ě pλp

and the scaled quantity

pθj “
pλj

p
ř

l“1

pλl

j “ 1, . . . ,p.

is an estimate of the proportion of variation explained by the
first eigenvector.

The statistical properties of pθj are hard to study analytically.
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The Bootstrap: Pearson correlation

The bootstrap operates in this case by

§ resampling vectors pxpbq1 , . . . , xpbqn q (size n)
§ forming the resampled matrix Xpbq,
§ forming the resampled covariance matrix Spbq,
§ computing eigenvalues pλ

pbq
1 , . . . , pλ

pbq
p and scaling

for b “ 1, . . . ,B .

Note that again it is the i.i.d. units that are being resampled.
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The Bootstrap: Principal components

Example: Education test scores

88 students each took five tests on mechanics, vectors, alge-
bra, analysis and statistics. This yielded the S matrix

S “

»

—

—

—

—

—

–

302.29 125.78 100.43 105.07 116.07
125.78 170.88 84.19 93.60 97.89
100.43 84.19 111.60 110.84 120.49
105.07 93.60 110.84 217.88 153.77
116.07 97.89 120.49 153.77 294.37

fi

ffi

ffi

ffi

ffi

ffi

fl

and eigenvalues

pλ “ p679.18,199.81,102.57,83.67,31.79q
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The Bootstrap: Principal components

Example: Education test scores

mec

20 40 60 80 10 30 50 70

0
20

40
60

80

20
40

60
80

vec

alg

20
40

60
80

10
30

50
70

ana

0 20 40 60 80 20 40 60 80 10 30 50 70

10
30

50
70

sta

542



The Bootstrap: Principal components

Example: Education test scores

2000 resampled eigenvalues, λj , j “ 1, . . . ,5

1 2 3 4 5

0
20

0
40

0
60

0
80

0
10

00

543



The Bootstrap: Principal components

Example: Education test scores

2000 resampled scaled eigenvalues, θj , j “ 1, . . . ,5
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The Bootstrap: Principal components

Example: Education test scores

2000 resampled scaled eigenvalues, cumulative:
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The Bootstrap: Principal components

Example: Education test scores

We might conclude from this that really there are only two
(orthogonal) dimensions of variation (rather than five) that
explain the majority variation in the response.

The principal components are the vectors

zj “ Xvj j “ 1, . . . ,p

where vj is the j th column of V . The first two principal com-
ponents carry greater than 80% of the variation observed.
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The Bootstrap: Principal components

Example: Education test scores

Principal components
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The Bootstrap: Regression

The bootstrap can also be applied in a regression setting.
Suppose pairs of data pxi , yi q, i “ 1, . . . ,n are available, and
the relationship is modelled as

yi “ gpxi ;βq ` εi Erεi |xs “ 0

for some regression function g. If g is taken to be linear in β,

gpx;βq “ β0 `

p
ÿ

j“1

βj gj pxq

and the residual errors are presumed Gaussian, then estima-
tion can be carried out using least-squares in the usual way.

Pointwise confidence intervals are easy to obtain, but simulta-
neous confidence intervals are more complicated to compute.
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The Bootstrap: Regression

In harmonic regression, the gj s are taken to be sin and cos

functions. Assuming p “ 2q say, and j “ 1, . . . ,p

gj pxq “

#

cosp2πxφl q j “ 2l ´ 1

sinp2πxφl q j “ 2l

for known constants φ1, . . . , φq .

For example, a typical choice is q “ 2, with

φ1 “
1

2
φ2 “

1

4
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The Bootstrap: Regression

In such a model, the ML estimator is

pβ “ pXJXq´1XJY

where X is the n ˆ pp ` 1q matrix with i th row

r1, cosp2πxiφ1q, sinp2πxiφ1q, cosp2πxiφ2q, sinp2πxiφ2qs

The variance of pβ is
pσ2pXJXq´1

and pointwise confidence intervals can be obtained in the
usual way.
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The Bootstrap: Regression

Example: Cholostyramine Data

n “ 164 men took part in an experiment to see if the drug
cholostyramine lowered blood cholesterol levels.
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The Bootstrap: Regression

Example: Cholostyramine Data

Consider the model

gpx;βq “ β00 ` β01x `
q
ÿ

j“1

rβj0 cosp2πxφl q ` βj1 sinp2πxφl qs

on the range r0,100s with

φ1 “
1

50
φ2 “

1

66
φ3 “

1

75

and the three fits obtained taking

‚ q “ 0
‚ q “ 2
‚ q “ 3
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The Bootstrap: Regression

The bootstrap operates in this case by

§ resampling pairs ppx
pbq
1 , y

pbq
1 q, . . . , px

pbq
n , y

pbq
n qq (size n) and

forming the boostrapped design matrix Xpbq.
§ fitting the regression to the resampled data obtaining

pβpbq “ pXJpbqXpbqq
´1XJpbqypbq

§ recording the fitted values

ŷpbq “ Xpbqpβ
pbq

for b “ 1, . . . ,B .

Again it is the i.i.d. units that are being resampled.
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The Bootstrap: Regression

Example: Cholostyramine Data

B “ 200 bootstrapped curves with q “ 2.
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The Bootstrap: Regression

Example: Cholostyramine Data

B “ 200 bootstrapped curves with q “ 2.
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The Bootstrap: Loess

A more flexible model is based on local smoothing using loess.

The loess approach fits a series of weighted local linear re-
gression models restricted to a rolling neighbourhood of data
points. The size of the neighbourhood (the span) determines
the smoothness of the resulting fitted curve.

The statistical properties of the resulting fitted curve are hard
to study analytically, but can be studied by the bootstrap.
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The Bootstrap: Loess

Example: Cholostyramine Data

B “ 200 bootstrapped loess curves: span is 0.75.
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The Bootstrap: Loess

Example: Cholostyramine Data

B “ 200 bootstrapped loess curves: span is 0.375.
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The Bootstrap: Loess

The span can be determined by K -fold cross-validation:

1. split data at random into K equal portions of size m.
2. fit the loess model using K ´ 1 training portions using a

fixed value of the span.
3. use the fitted model to predict the values in the remaining

test portion; record the prediction mean square error

1

m

m
ÿ

i“1

ppyi ´ yi q
2

4. repeat 1. to 3. over different random splits, taking the
average prediction MSE.

and repeat this whole process for different values of the span,
recording the MSE every time. Choose the optimal span to
minimize the prediction MSE.
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The Bootstrap: Loess

Example: Cholostyramine Data

8-fold cross-validation: average prediction MSE from 20000
random splits.
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The Bootstrap: Loess

Example: Cholostyramine Data

B “ 200 bootstrapped loess curves: span is 0.50.
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The Bootstrap: Loess instability

Note: in this semi-parametric setting, the cross-validation can
become unstable. A specific random split may disrupt the
local structure of the data so that a local fit at any given x is
not possible.

This instability can potentially occur in the parametric setting
as well; if the x values contain ties (as for the cholostyramine
data) then, by chance we may resample an Xpbq such that

XJpbqXpbq

is singular.
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The Bootstrap: Problems

Suppose Y1, . . . ,Yn „ N p0,1q. Consider the statistic

Tn “ maxtY1, . . . ,Ynu

We know that for t P R

FTn ptq “ tΦptqu
n fTn ptq “ nφptqtΦptqun´1

Can we study this statistic via the bootstrap ?
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The Bootstrap: Problems

B “ 2000 bootstrapped maxima for n “ 50,100,1000,10000.
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The Bootstrap: Problems

The maximum order statistic cannot be studied in this setting
using the bootstrap.

In this case, Tn has no limiting distribution, that is, as n ÝÑ 8

FTn ptq ÝÑ 0

for all t . Is this the source of the problem ?
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The Bootstrap: Problems

Suppose Y1, . . . ,Yn „ Uniformp0, θq. Consider again the ML
estimator of θ

pθn “ Tn “ maxtY1, . . . ,Ynu.

We know that for t P R

FTn ptq “

"

t

θ

*n

fTn ptq “ n
1

θ

"

t

θ

*n´1

The same problem arises in this setting.
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The Bootstrap: Problems

For the b th bootstrap resampled data set

Prrpθpbq “ pθs “ PrrmaxtY
pbq
1 , . . . ,Y

pbq
n u “ maxtY1, . . . ,Ynus

“ 1´

ˆ

1´
1

n

˙n

and as n ÝÑ 8

1´

ˆ

1´
1

n

˙n

ÝÑ 1´ e´1 l 0.632

Therefore, even for large n, there is a probability mass at pθ in
the sampling distribution.
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The Bootstrap: Problems

Other problems can occur for the bootstrap when resampling
can fundamentally change the nature of the data set:

§ Mixture distributions: if the Yi follow a mixture dis-
tribution with K components, then resampling may only
yield observations from L ă K of the components. This
changes the statistical behaviour of some estimators.

§ Logistic Regression (classification): For binary data,
resampling may eliminate all of the data with response
value 0 (or 1), in which case the logistic regression coef-
ficients are not defined.
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The Parametric Bootstrap

The parametric bootstrap replaces resampling from pFn with
sampling from a parametric approximation Fp.; pϑnq, where pϑn

is the parameter estimate derived from the original sample.

Essentially, this is a Monte Carlo technique, where psppθp˚qq is
approximated using B random samples from Fp.; pϑnq.

This can be useful if a good (and tractable) parametric ap-
proximation exists.

569



The Parametric Bootstrap

Suppose Y1, . . . ,Yn „ Uniformp0, θq.

§ Nonparametric bootstrap: resampling from the values
ty1, . . . , ynu leads to problems as

Prrpθpbq “ pθs ą 0

§ Parametric bootstrap: sampling from the distribution
Uniformp0, pθq yields

Prrpθpbq “ pθs “ 0

and a reasonable approximation to the distribution of pθ.
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The Parametric Bootstrap

Non-parametric (left) vs Parametric (right)
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Bootstrap regression: alternative approach

In an alternative formulation of the bootstrap for linear re-
gression, consider

yi “ xiβ ` εi

where εi „ Fp.q, where F is constrained to have mean zero.

If the distribution F is regarded as unknown, but the form of
the linear regression is satisfactory (up to unknown parame-
ters), attention can focus on bootstrapping the residual errors
ε1, . . . , εn .
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Bootstrap regression: alternative approach

In this β can be estimated by least-squares

pβ “ pXJXq´1XJy

and then the residual cdf F estimated by the empirical cdf of
the residuals

ei “ yi ´ xi
pβ i “ 1, . . . ,n

denoted pFn .

The bootstrap data y
pbq
1 , . . . , y

pbq
n are then computed by pro-

ducing a bootstrap resample e
pbq
1 , . . . , e

pbq
n , and setting

y
pbq
i “ xiβ ` e

pbq
i
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Bootstrap regression: alternative approach

This then yields the bootstrap estimate

pβpbq “ pXJXq´1XJypbq.

In this case, the idealized bootstrap estimate (B “ 8) of the
standard error is available analytically via

Varrpβpbqs “ pσ2pXJXq´1

where

pσ2 “
1

n ´ p

n
ÿ

i“1

e2
i

that is, identical to the usual variance in least-squares.
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Bootstrap regression: alternative approach

Example: Cholostyramine Data

B “ 200 harmonic regressions with bootstrapped residuals.
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Estimating Bias

The bias of an estimator Tn of θpFq is

bTn pFq “ EF rTn s ´ θpFq

which can be estimated by

pbTn p
pFnq “ E

pFn
rT
p˚q
n s ´ θppFnq

where T
p˚q
n is the bootstrap estimator, derived from bootstrap

resamples
t
p1q
n , . . . , t

pBq
n

and θppFnq is the plug-in estimate. Typically E
pFn
rT
p˚q
n s is ap-

proximated by

1

B

B
ÿ

b“1

t
pbq
n
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Estimating Bias

If Tn “ θppFnq, that is, the estimator is the plug-in estimator,
then an alternative estimate of bias can be obtained for B “

8.

Denote by P
pbq
j , j “ 1, . . . ,n denote the proportion of a boot-

strap resampled data set y
pbq
1 , . . . , y

pbq
n that are equal to yj .

P
pbq
j “

1

n

n
ÿ

i“1

1tyj u
py
pbq
i q

The (random) probability distribution P pbq “ pP
pbq
1 , . . . ,P

pbq
n q

(the resampling vector) can be used to construct the boot-
strap estimate in terms of the original data; for example,

ypbq “
n
ÿ

j“1

P
pbq
j yj .
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Estimating Bias

The bootstrap resampling vectors are thus

P p1q, . . . ,P pBq.

In general, denote the bootstrap estimator in terms of the

T
pbq
n “ TnpP

pbqq

Let P0 “
1
n 1n denote the vector of length n containing identi-

cal elements 1{n. Then, in this notation

TnpP0q “ θppFnq
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Estimating Bias

Let

P
p˚q
“

1

B

B
ÿ

b“1

P pbq

This allows a new bias estimate

rbTn p
pFnq “

1

B

B
ÿ

b“1

t
pbq
n ´ TnpP

p˚q
q

to be compared with the plug-in estimate

pbTn p
pFnq “

1

B

B
ÿ

b“1

t
pbq
n ´ TnpP0q
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Estimating Bias

Example: Hormone patch data

Eight subjects were treated with two different hormone
patches, and the subsequent level of hormone in the blood-
stream measured.

ID Placebo Old Patch New Patch old-plac. new - old
z y

1 9243 17649 16449 8406 -1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 -2705
4 13357 21816 23798 8459 1982
5 9055 13850 12560 4795 -1290
6 6290 9806 10157 3516 351
7 12412 17208 16570 4796 -638
8 18806 29044 26325 10238 -2719
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Estimating Bias

Example: Hormone patch data

The parameter of interest here is

θ “
ErY s

ErZ s

which is a measure of bio-equivalence. The plug-in estimate
is

tn “ θppFnq “
y

z
“ ´0.0713.

This parameter can be studied using the bootstrap, resam-
pling individual subjects as the i.i.d. units.

For different values of B , we study the bias estimates given
by the previous formulae.
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Estimating Bias

Example: Hormone patch data

Bias estimates pb and rb for B up to 1000.
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Estimating Bias

Example: Hormone patch data

The bias estimate rb is much less variable than pb .

The two bias estimates agree approximately when B “

100000

pbTn p
pFnq “ 0.00762 rbTn p

pFnq “ 0.00781

but for B up to 1000, rb is very stable, whereas pb fluctuates
considerably.
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Estimating Bias

Example: Hormone patch data

Sampling distribution of pθ: Prr|pθ| ă 0.2s l 0.9158.
 

θ̂
*

F
re

qu
en

cy

−0.2 0.0 0.2 0.4 0.6

0
50

00
10

00
0

15
00

0
20

00
0

584



The jackknife

The jackknife was introduced as another bias estimation pro-
cedure. For i “ 1, . . . ,n, let

ypiq “ py1, . . . , yi´1, yi`1, . . . , ynq

be the i -deleted data set (with the i th datum deleted). Let

pθpiq “ tn´1pypiqq

be the estimate derived from the i -deleted data, and let

pθp.q “
1

n

n
ÿ

i“1

pθpiq
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The jackknife

A bias estimate for a plug-in statistic pθ is then

pbJACK “ pn ´ 1qppθp.q ´ pθq

In this calculation

pθ “ θppFnq pθpiq “ θppFnpiqq

are the plug-in estimators derived from the full and i -deleted
data respectively.
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The jackknife

A jackknife estimate for the standard error of a statistic is

pseJACK “

g

f

f

e

n ´ 1

n

n
ÿ

i“1

ppθpiq ´ pθp.qq2

This formula applies for smooth functions t of the data.

Note: There is no resampling here, so precisely n computa-
tions are needed.

Formally, the jackknife is an approximation to the bootstrap
that arises from a linear approximation to the statistic of in-
terest, derived from a Taylor expansion.
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The jackknife

The above bias/s.e. formulae are derived under the assump-
tion that the identity

pθ “ tnpyq “ µ`
1

n

n
ÿ

i“1

αpyi q

holds exactly from some function αp.q. The jackknife arises
from regarding a first-order Taylor approximation for arbi-
trary tn .

The jackknife procedure fails when such an expansion fails;
for example, for studying the median, the jackknife provides
an inconsistent estimator.
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The jackknife

Example: Mean – estimated standard error

B “ 2000 bootstrap resamples (black) and jackknife (red)
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The jackknife

Example: Median – estimated standard error

B “ 2000 bootstrap resamples (black) and jackknife (red)
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Confidence Intervals and Hypothesis Testing

Given an estimator pθ and estimated standard error pse, the
p1´ αq% confidence interval

pθ ˘ Φ´1
´

1´
α

2

¯

pse

is commonly used, where Φ´1 is the standard normal inverse
cdf.
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Confidence Intervals and Hypothesis Testing

For example,

α “ 0.10 : Φ´1p0.95q “ 1.645

α “ 0.05 : Φ´1p0.975q “ 1.960.

This formula uses the asymptotic normal approximation to the
distribution of pθ.
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Confidence Intervals and Hypothesis Testing

Recall the definition of a confidence interval in a simple situ-
ation where a pivotal quantity is available. Suppose the sam-
pling distribution of estimator pθ is given exactly by

pθ „ N pθ, se2q.

Recall that this is a frequentist statement, conditional on the
known true values θ and se. Then

Z “
pθ ´ θ

se
„ N p0,1q

so that, for c ą 0,

Prθr´c ď Z ď cs “ Φpcq ´ Φp´cq “ 1´ 2Φp´cq
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Confidence Intervals and Hypothesis Testing

Choosing c such that Φpcq “ α{2, say c “ zα{2, we have

Prθ

«

´zα{2 ď
pθ ´ θ

se
ď zα{2

ff

“ 1´ α

which can be rewritten

Prθ
”

pθ ´ seˆ zα{2 ď θ ď pθ ` seˆ zα{2

ı

“ 1´ α

This is a probability statement concerning the random inter-
val

rpθ ´ seˆ zα{2, pθ ` seˆ zα{2s

given the true value of θ, and the true standard error se.
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Confidence Intervals and Hypothesis Testing

Recalling the equivalence with hypothesis testing, the p1 ´
αq% confidence interval is the set of values of θ0 that do not
lead to a rejection of the null hypothesis

H0 : θ “ θ0

at significance level α, in a two-tailed test, in light of the ob-
served data and the estimate pθ.

Typically, α is chosen to be 0.05, or 0.01.
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Confidence Intervals and Hypothesis Testing

The Normal interval

rpθ ´ pseˆ zα{2, pθ ` pseˆ zα{2s

is justified asymptotically, but for finite n, the Student-t inter-
val

rpθ ´ pseˆ tα{2pn ´ 1q, pθ ` pseˆ tα{2pn ´ 1qs

is preferable, where

tαpνq

is the α percentile of the Student-t density with ν degrees of
freedom.
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Confidence Intervals and Hypothesis Testing

The standard error se is typically not known, so it is replaced
by the usual estimate pse obtained from the plug-in procedure.

For example, for an unknown mean

pseppθq “
pσ
?

n
“

1
?

n

g

f

f

e

1

n

n
ÿ

i“1

pyi ´ yq2

that is, using the plug-in estimator of the population variance
based on pFn .
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Confidence Intervals and Hypothesis Testing

The corresponding studentized bootstrap interval is based on
the bootstrap resampled quantities

Z pbq “
pθpbq ´ pθ

psepbq

where

§ pθ is the estimator from the original data
§ pθpbq “ t

pbq
n is the estimator derived from the b th bootstrap

resample.
§

psepbq is the estimator of the standard error for pθpbq from
the b th bootstrap resample.
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Confidence Intervals and Hypothesis Testing

The empirical distribution of the observed bootstrap resam-
pled quantities zp1q, . . . , zpBq yields the lower and upper per-
centiles

plα{2 :
1

B

B
ÿ

b“1

1
tzpbqď plα{2u

l α{2

puα{2 :
1

B

B
ÿ

b“1

1tzpbqě puα{2u
l α{2

and hence the bootstrap interval

rpθ ´ pseˆ puα{2, pθ ´ pseˆplα{2s

Here pθ and pse are estimated from the original data.
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Example: Mouse data

Example: Mouse data

The following data are the survival times for mice in a ran-
domized experiment comparing a treated group T with a con-
trol group C .

C 52 104 146 10 50 31 40 27 46
T 94 197 16 38 99 141 23
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Example: Mouse data

Example: Mouse data

Bootstrap percentiles: studentized CI for ErYCs:

B 0.05 0.1 0.5 0.9 0.95
100 -4.8036 -4.0021 0.0147 1.1167 1.2910
200 -4.8036 -3.4922 -0.1306 1.1167 1.3470
500 -4.8022 -2.2789 0.0000 1.1301 1.5284
1000 -4.5891 -3.0654 -0.0331 1.1705 1.5438
2000 -4.5817 -3.1671 -0.0562 1.1930 1.5290
5000 -4.6010 -3.2014 -0.0411 1.1953 1.5528
10000 -4.6087 -2.9663 -0.0512 1.1739 1.5193
20000 -4.5900 -3.0849 -0.0678 1.1662 1.5072
50000 -4.6083 -3.1837 -0.0735 1.1662 1.5064
100000 -4.5813 -3.0844 -0.0720 1.1677 1.5059
Normal -1.6449 -1.2816 0.0000 1.2816 1.6449
Student -1.8595 -1.3968 0.0000 1.3968 1.8595
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Confidence Intervals and Hypothesis Testing

The observed quantiles zp1q, . . . , zpBq yields the lower and up-
per percentiles of the distribution of the pivotal quantities:

plα{2 :
1

B

B
ÿ

b“1

1
tzpbqď plα{2u

l α{2

puα{2 :
1

B

B
ÿ

b“1

1tzpbqě puα{2u
l α{2

and hence the bootstrap interval

rpθ ´ pseˆ puα{2, pθ ´ pseˆplα{2s

Here pθ and pse are estimated from the original data.
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Example: Mouse data

Example: Mouse data

α “ 0.05, equi-tailed studentized bootstrap interval.

B Lower Upper
100 31.6323 123.7727
200 32.6767 128.2670
500 30.6577 128.8923
1000 31.1979 126.5177
2000 31.1686 126.5072
5000 31.1257 127.3363
10000 31.4763 127.8735
20000 31.7005 127.6070
50000 31.8398 127.4720
100000 31.8758 126.9972
Normal 30.0952 82.3492
Student 25.4824 86.9620
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R Code

1 > library(boot)
2 > meancalc<-function(x,i){
3 + m <- mean(x[i])
4 + n <- length(i)
5 + v <- (n-1)*var(x[i])/n^2
6 + return(c(m, v))
7 + }
8 > bmean<-boot(y,meancalc,R=100000)
9 > mouse.ci<-boot.ci(bmean)

10 > mouse.ci
11 BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
12 Based on 100000 bootstrap replicates
13

14 CALL : boot.ci(boot.out = bmean)
15

16 Intervals :
17 Level Normal Basic Studentized
18 95% ( 30.09, 82.37 ) ( 27.89, 79.22 ) ( 32.10, 127.22 )
19

20 Level Percentile BCa
21 95% (33.22, 84.56 ) (36.11, 91.67 )
22 Calculations and Intervals on Original Scale
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R Code

23 > bmean
24

25 ORDINARY NONPARAMETRIC BOOTSTRAP
26

27 Call:
28 boot(data = y, statistic = meancalc, R = 1e+05)
29

30

31 Bootstrap Statistics :
32 original bias std. error
33 t1* 56.22222 -0.009346667 13.33840 #For the sample mean
34 t2* 177.69822 -19.867671001 84.15095 #For the sample variance
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R Code

The five intervals are:

§ Normal: The normal interval using a bias-correction con-
structed using the bootstrap, that is

”

ppθ ´ pbppθqq ´ 1.96ˆ pse, ppθ ´ pbppθqq ` 1.96ˆ pse
ı

where the bias estimate pbppθq is given by

pbppθq “
1

B

B
ÿ

b“1

pθpbq ´ pθ

35 >mean(bmean$t[,1])-thetahat.c
36 [1] -0.009346667
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R Code

§ Basic: The Basic interval is constructed by regarding
the quantities

Z pbq “ pθpbq ´ pθ

as pivotal, that is the interval is
”

pθ ´ puα{2, pθ ´plα{2

ı

where

plα{2 :
1

B

B
ÿ

b“1

1
tzpbqď plα{2u

l α{2 l puα{2 :
1

B

B
ÿ

b“1

1tzpbqě puα{2u

which implies that the interval may be rewritten

”

pθ ´ ppθu ´ pθq, pθ ´ ppθl ´ pθq
ı

where pθu and pθl are the p1´α{2q and α{2 bootstrap quan-
tiles.

607



R Code

§ Studentized: As described above, the Studentized inter-
val uses the pivots

Z pbq “
pθpbq ´ pθ

psepbq
b “ 1, . . . ,B

and the interval
”

pθ ´ pseˆ puα{2, pθ ´ pseˆplα{2

ı

§ Percentile: The percentile interval is simply

rpθl , pθus

§ BCa: The BCa interval is the bias-corrected accelerated
interval from lectures.
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Example: Mouse data

Example: Mouse data

pθpbq:  
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Example: Mouse data

Example: Mouse data

psepbq:  
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Example: Mouse data

Example: Mouse data

Z pbq “ ppθpbq ´ pθq{ psepbq:
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Issues

Some issues:

§ In general, a formula for pse is not available
§ Need to do a nested bootstrap: within each bootstrap it-

eration, need an internal bootstrap calculation of the stan-
dard error estimate, pseB .

§ Can be computationally demanding

§ The symmetric interval of the form

pθ ˘ seˆ qα{2

may include negative values, even if the quantity of inter-
est is positive.

§ A transformation may be necessary

§ The bootstrap interval is not invariant to transformations
(the computation of standard errors needs care)
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Variance stabilizing transformations

The bootstrap-t interval is constructed by appealing to asymp-
totic normality, so therefore we seek a transformation φ “

gpθq such that the distribution of pφ is better represented by a
normal distribution for finite n.

Suppose that, by the Central Limit Theorem, we have that

?
nppθ ´ θq

d
ÝÑ N p0, σ2pθqq

where the asymptotic variance σ2pθq in general depends on
the true θ. We seek a transform φ “ gpθq such that

?
nppφ´ φq

d
ÝÑ N p0, ς2q

where ς2 does not depend on the true θ (or φ).
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Variance stabilizing transformations

For example, for the Pearson correlation coefficient R in a
bivariate normal problem with true correlation ρ, we saw that
if

Z “
1

2
log

ˆ

1` R

1´ R

˙

% “
1

2
log

ˆ

1` ρ

1´ ρ

˙

then
?

n ´ 3Z
d
ÝÑ N p%,1q

suggesting that we should construct the bootstrap-t interval
for Z , and then back-transform to the R scale to get the con-
fidence interval for ρ.
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Variance stabilizing transformations

Suppose that X is a random variable with

ErX s “ θ VarrX s “ spθq2

Let transformation g be defined by the relation

9gpxq “
1

spxq
or, equivalently gpxq “

ż x 1

spuq
du

Then if Y “ gpXq, by a Taylor series approximation

VarrY s “ t 9gpθqu2spθq2 “ 1

This variance-stabilizing transformation can be used to assist
in the construction of the bootstrap-t intervals.
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Variance stabilizing transformations

In statistical applications, the function sp.q is the standard er-
ror, a function of the true θ; often this is not known. However,
it can be estimated from the data.

Let
spuq “ seppθ|θ “ uq.

This function can be estimated using a nested bootstrap for a
collection of fixed values, then integrated numerically to yield
an estimate of the transform function g.
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Algorithm

1. Generate B1 bootstrap samples, and bootstrap estimates
pθpbq. For each bootstrap sample ypbq, generate B2 nested
resamples, and estimate the standard error pseppθpbqq for
this bootstrap sample.

2. Fit a curve through the collection of points tppθpbq, pseppθpbqq,
to get an estimate of spuq “ seppθ|θ “ uq.

3. Estimate the variance-stabilizing transform g by integrat-
ing spuq numerically
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Algorithm

4. Use B3 new bootstrap samples to compute a bootstrap-t
interval for φ “ gpθq by inspecting

pφpbq ´ pφ

as the variance has been stabilized to 1.
5. Back-transform to the θ scale using the numerically de-

fined g´1.
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Algorithm

Example: LSAT vs GPA data

Raw data
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Variance stabilizing transformations: Example

Example: LSAT vs GPA data

B1 “ 10000 bootstrap resamples, B2 “ 500 inner resamples.
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Variance stabilizing transformations: Example

Example: LSAT vs GPA data

Estimated transform g (solid), and Fisher transform (dashed)
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Variance stabilizing transformations: Example

Example: LSAT vs GPA data

B “ 2000 bootstrap samples of pρ (left) and pφ (right).
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Variance stabilizing transformations: Example

Example: LSAT vs GPA data

Comparison of 90 % intervals:

Method Lower Upper

Fisher transform 0.5090 0.9071
pg 0.5299 0.9448
Bootstrap 0.5262 0.9475

The bootstrap interval is computed direct from the percentiles
of the initial B1 bootstrap resampled values.
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Bootstrap Percentile Interval

The bootstrap percentile interval is computed direct from the
percentiles of the bootstrap resampled values.

plα{2 :
1

B

B
ÿ

b“1

1
tpθpbqď plα{2u

l α{2

puα{2 :
1

B

B
ÿ

b“1

1
tpθpbqě puα{2u

l α{2

This method is invariant to transformation; it is a non para-
metric version of the previous method which focusses on the
quantiles of interest.

Typically, B needs to be large to get reliable percentile inter-
vals. They can be more variable when the sampling distribu-
tion of the statistic is highly skewed.
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Bias correction/Acceleration

An alternative approach uses the interval based on

plα1 :
1

B

B
ÿ

b“1

1
tpθpbqď plα1u

l α1

puα2 :
1

B

B
ÿ

b“1

1
tpθpbqď puα2u

l α2
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Bias correction/Acceleration

That is, the empirical α1 and α2 quantiles, where

α1 “ Φ

ˆ

pz0 `
pz0 ` zα{2

1´ pappz0 ` zα{2q

˙

α2 “ Φ

ˆ

pz0 `
pz0 ` z1´α{2

1´ pappz0 ` z1´α{2q

˙

where pz0 and pa are to be defined, and zα{2 and z1´α{2 are the
tail quantiles of the standard normal.
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Bias correction/Acceleration

For α “ 0.1, zα{2 “ z0.05 “ ´1.645, z1´α{2 “ z0.95 “ 1.645.

§
pz0 is a bias-correction constant defined by

pz0 “ Φ´1

˜

1

B

B
ÿ

b“1

1
tpθpbqď pθu

¸

that is, it measures the median bias of pθpbq
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Bias correction/Acceleration

§
pa is an acceleration factor which defined via jackknife
quantities

pa “

n
ř

i“1
ppθp.q ´ pθpiqq

3

6

"

n
ř

i“1
ppθp.q ´ pθpiqq2

*3{2

Bias corrected accelerated (BCa) percentile intervals have
good theoretical properties.
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Permutation tests

Permutation procedures utilize resampling to construct tests
of hypothesis without using parametric assumptions.

The sampling distribution of a (test) statistic is constructed
using resampling from the original data, but assuming the
structure implied by the null hypothesis.

Thus, unlike the bootstrap which retains the original data
structure during resampling, permutation tests impose a hy-
pothesis driven structure.
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Permutation tests

Example: Mouse data

Recall the mouse survival time data:

C pyq 52 104 146 10 50 31 40 27 46
T pzq 94 197 16 38 99 141 23

Suppose the null hypothesis is that there is no difference be-
tween the survival time distributions in the two groups.
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Permutation tests

Example: Mouse data

We select a test statistic, T “ TpY,Zq, suitable for testing
the hypothesis; could use the two-sample t -statistic assuming
unequal variances:

T “
Y ´ Z

c

sY

nY
`

sZ

nZ

where sY and sZ are the unbiased sample variances. This
statistic is derived from the perspective of normal random
sampling, but the test itself will not rely on this assumption.
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Permutation tests

Example: Mouse data

The sampling distribution of T under the null hypothesis, H0,
is computed by noting that, under H0, the labelling of a mouse
as being in the Control or Treatment group makes no differ-
ence to their random survival time.

Therefore, we compute the statistic for each of the possible
relabellings of the n “ nY `nZ measurements consistent with
the original group sizes.
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Permutation tests

Example: Mouse data

For relabelling j , we choose at random without replacement
nY measurements and denote them ypjq, denote the remaining
nZ measurements zpjq, and compute the resulting relabelled
statistic Tpjq.

When all N possible relabellings have been examined, we
have computed the statistics

tp1q, . . . , tpNq

which define the permutation distribution.
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Permutation tests

Example: Mouse data

The critical values for the test are defined via the empirical
distribution of

tp1q, . . . , tpNq

If t “ Tpy, zq is the observed test statistic for the original data,
then empirical probabilities

Pr0rTp˚q ď ts “
1

N

N
ÿ

j“1

1rtpjq,8qptq

can be used to define the p-value (achieved significance level )
in the two-tailed test as

Pr0rTp˚q ď ´|t |s ` Pr0rTp˚q ě |t |s
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Permutation tests

Evaluating all possible relabellings can be a computationally
demanding step; for the two-sample problem, the number of
relabellings is

N “

ˆ

n

nY

˙

For the mouse data, nY “ 9,nZ “ 7, so

N “

ˆ

16

9

˙

“ 11440

which is not too large.

If N gets too large, a fixed number of randomly chosen rela-
bellings can be generated in place of the exhaustive calcula-
tion.
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Permutation tests

If the permutations are randomly chosen, the procedure is
termed a Monte Carlo permutation (or Monte Carlo random-
ization) procedure.

The choice of the Monte Carlo sample size depends on the
quantity being estimated.

In any case, the procedure is distribution-free, but is reliant
on being able to construct a suitable test statistic.
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Permutation tests: Example

Example: Mouse data

Permutation p-value = 0.3068.  
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Permutation tests: Other statistics

The permutation procedure can be used

§ with other test statistics
§ tests for equality of variance
§ Kolmogorov-Smirnov

§ in more general data collection situations
§ inference in regression
§ ANOVA
§ discrete data (chi-squared test, Fisher’s Exact test)
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Permutation tests: Other statistics

Example: Mouse data

Test statistic T “ logpsY{sZ q: two-sided p-value 0.3156
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Permutation tests: Other statistics

Example: Mouse data

Kolmogorov-Smirnov test one-sided p-value 0.5727 (32 possi-
ble values of tpjq.
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Hypothesis testing: summary

In general, hypothesis testing can be carried out using the
bootstrap due to the connection between hypothesis testing
and confidence intervals.

That is, a p1´αq% confidence interval for θ that contains those
θ0 values that, in light of the observed data and estimate pθ,
would NOT lead to the rejection of the null hypothesis

H0 : θ “ θ0

at significance level α.
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