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Introduction

The objective of a statistical analysis is to use data to make
optimal and coherent decisions, including

§ inference: making statements about the unknown data
generating mechanism;

§ prediction: making statements about as yet unobserved
(‘future’) data,

whilst appropriately representing the uncertainty associated
with these decisions.

Typically, the analysis is based on a probabilistic (or statisti-
cal) model.
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Notation and Basic Concepts

Let Y denote a single random variable taking values on Y Ď R.

§ Y records the result of some measurement procedure;

§ Y could be countable (so that Y is ‘discrete’).

Let y denote an observed value associated with Y .
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Notation and Basic Concepts

A probability model for Y is encapsulated in a probability
function, PY p.q, where (informally) for set A Ď R,

PY pAq ” PrrY P A s

and more specifically

PY p p´8, cs q ” PrrY ď cs.

We define the distribution function, FY p.q, via the specification

FY pcq ” PY p p´8, cs q “ PrrY ď cs c P R.
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Notation and Basic Concepts

If Y is discrete, then

Y “ ty˚1 , y˚2 , . . . , u

and for any y P R, we have

FY pyq “
ÿ

j :y˚j ďy

PrrY “ y˚j s “
ÿ

j :y˚j ďy

pY py
˚
j q

say, where

pY py
˚
j q “ PrrY “ y˚j s

is the probability mass function (pmf) for Y .
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Notation and Basic Concepts

If we can write

FY pyq “

ż y

´8

fY ptq dt y P R

then we term FY an absolutely continuous distribution, with

fY pyq

termed the probability density function (pdf) for Y . In this
case

fY pyq “
dFY ptq

dt

ˇ

ˇ

ˇ

ˇ

t“y

Note: more generally a distribution can have both discrete
and continuous components.
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Notation and Basic Concepts

For simplicity we can unify notation for the discrete and con-
tinuous cases by writing

PrpY P Aq “

ż

A
FY pdyq ”

$

’

’

&

’

’

%

ř

yPA
pY pyq Y discrete

ż

A
fY pyq dy Y continuous

The notation

PrpY P Aq “

ż

A
dFY pyq

is also used.
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Notation and Basic Concepts

In practice, we observe data (‘observables’)

y1, . . . , yn

and use them to learn about the unknown (‘unobservable’)
model PY or FY , or features of it such as its expectation

θ “

ż

y FY pdyq

That is, it is the distribution FY that is unknown.
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Notation and Basic Concepts

The data are realizations of random variables Y1, . . . ,Yn , and
we have observed the event

Pr

«

n
č

i“1

pYi P tyiuq

ff

.

This is a joint probability, so we need to consider the joint
probability model

Pr

«

n
č

i“1

pYi P Ai q

ff

for arbitrary subsets A1, . . . ,An of R.
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Notation and Basic Concepts

Specifically, we consider the joint cdf

FY1,...,yn py1, . . . , ynq “ Pr

«

n
č

i“1

pYi ď yi q

ff

py1, . . . , ynq P Rn

or quantities derived from it (joint pdf etc).
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Notation and Basic Concepts

A typical assumption is that Y1, . . . ,Yn are independent , that
is that for all py1, . . . , ynq P Rn

Pr

«

n
č

i“1

pYi ď yi q

ff

“

n
ź

i“1

Pr rYi ď yi s

so that

FY1,...,yn py1, . . . , ynq “

n
ź

i“1

FYi pyi q.
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Notation and Basic Concepts

Further, it is often assumed that the Y1, . . . ,Yn are identically
distributed

FY1,...,yn py1, . . . , ynq “

n
ź

i“1

FY pyi q.

However, these are quite strong assumptions.

12



Notation and Basic Concepts

A weaker assumption is that of infinite exchangeability: we
consider an infinite sequence

Y1,Y2,Y3, . . .

for which, for all n ě 1 and sets A1, . . . ,An we have that

Pr

«

n
č

i“1

pYi P Ai q

ff

“ Pr

«

n
č

i“1

pYi P Aσpiqq

ff

for all permutations pσp1q, . . . , σpnqq of indices p1, . . . ,nq.
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Notation and Basic Concepts

n “ 2:

Pr rpY1 ď y1q X pY2 ď y2qs “ Pr rpY1 ď y2q X pY2 ď y1qs

n “ 3:

PrrpY1 ď y1q X pY2 ď y2q X pY3 ď y3qs

“ PrrpY1 ď y2q X pY2 ď y1q X pY3 ď y3qs

“ PrrpY1 ď y3q X pY2 ď y2q X pY3 ď y1qs

“ PrrpY1 ď y3q X pY2 ď y1q X pY3 ď y2qs

“ ¨ ¨ ¨
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Notation and Basic Concepts

For infinite exchangeability: need this kind of relationship

(a) to hold for any finite n drawn from the infinite sequence

(b) to respect marginalization conditions; that is

Pr

«

n
č

i“1

pYi ď yi q

ff

must be compatible with

Pr

«

n`1
č

i“1

pYi ď yi q

ff

in the sense that

Pr

«

n
č

i“1

pYi ď yi q

ff

“ lim
yn`1ÝÑ8

Pr

«

n`1
č

i“1

pYi ď yi q

ff
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Notation and Basic Concepts

Example: Binary case

Suppose we have an infinitely exchangeable sequence tYnu,
where for each i , Yi P t0,1u. Consider for n ě 1

PrrpY1 “ y1q X ¨ ¨ ¨ X pYn “ ynqs

which we may write in short

PrrY1 “ y1, . . . ,Yn “ yn s,

where we consider vector arguments

py1, . . . , ynq P t0,1u
n
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Notation and Basic Concepts

Example: Binary case

Then under infinite exchangeability, we must have that

PrrY1 “ y1, . . . ,Yn “ yn s

depends only on the value of

sn “

n
ÿ

i“1

yi .

For each n, there are 2n possible binary vectors of length n,
but

sn P t0,1, . . . ,nu

so there are a maximum of pn ` 1q different probabilities, al-
though these probabilities must sum to 1.
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Notation and Basic Concepts

Example: Binary case

‚ n “ 1: sn P t0,1u, so denote the probabilities p1,0 and
p1,1, where we must have

p1,0 “ 1´ p1,1
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Notation and Basic Concepts

Example: Binary case

‚ n “ 2: sn P t0,1,2u, so denote the probabilities p2,0,p2,1

and p2,2, where we must have that

p2,0 “ 1´ p2,1 ´ p2,2

but also due to marginalization that

p1,y1 “ PrrY1 “ y1s

“ PrrY1 “ y1,Y2 “ 0s ` PrrY1 “ y1,Y2 “ 1s

“ p2,y1 ` p2,y1`1

for y1 P t0,1u.
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Notation and Basic Concepts

Example: Binary case

This construction be extended to define the required relations
for any n.

However, to specify the distribution in this way, we need to
specify and compute the relations for all n.
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Notation and Basic Concepts

Example: Binary case

Assuming independence, we have

PrrY1 “ y1, . . . ,Yn “ yn s “

n
ź

i“1

PrrYi “ yi s “ psn p1´ pqn´sn

where
p “ PrrYi “ yi s i “ 1, . . . ,n.
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Conditional probability

For two events, E1,E2 with PpE2q ą 0, we have that

PpE1|E2q “
PpE1 X E2q

PpE2q

is the conditional probability for E1 given E2.

§ PpE1q is the probability that E1 occurs;

§ PpE1|E2q is the probability that E1 occurs if we have in-
formation that E2 occurs.

§ relative to the probability of E2, what is the probability
that both E1 and E2 occur ?

§ E1 and E2 are independent if and only if PpE1|E2q “ PpE1q
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Conditional probability

For two events, E1,E2 with both PpE1q ą 0 and PpE2q ą 0, we
have by the definition that

PpE1|E2q “
PpE2|E1qPpE1q

PpE2q
.

We know this result as Bayes Theorem.
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Conditional probability

Exchangeability assumptions allow for dependence: that is,
for example

PrrYn`1 P An`1|Y1 “ y1, . . . ,Yn “ yn s

does not reduce to

PrrYn`1 P An`1s

as in the independence case. That is, for all i and j , Yi and Yj

are identically distributed, but not independent.
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Conditional probability

Example: Infinitely exchangeable binary case

PrrYn`1 “ 1|Y1 “ y1, . . . ,Yn “ yn s

“
PrrY1 “ y1, . . . ,Yn “ yn ,Yn`1 “ 1s

PrrY1 “ y1, . . . ,Yn “ yn s

“
pn`1,sn`1

pn,sn

where

sn “

n
ÿ

i“1

yi .
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Conditional probability

Example: Independent binary case

PrrYn`1 “ 1|Y1 “ y1, . . . ,Yn “ yn s

“
PrrY1 “ y1, . . . ,Yn “ yn ,Yn`1 “ 1s

PrrY1 “ y1, . . . ,Yn “ yn s

“
psn`1p1´ pqn´sn

psn p1´ pqn´sn

“ p

“ PrrYn`1 “ 1s
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Conditional probability

Note

It is possible to consider finite exchangeability, where the ex-
changeability holds for a finite collection of random variables,
that is, for a specific n ě 1

Pr

«

n
č

i“1

pYi ď yi q

ff

“ Pr

«

n
č

i“1

pYi ď yσpiqq

ff

for all permutations pσp1q, . . . , σpnqq of indices p1, . . . ,nq.
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Inference and prediction

In statistical calculations

§ we observe data y1, . . . , yn and wish to make statements
about unknown quantities in light of the data;

§ given the data, what do we think about the model ?

If FY is known, there is no inference problem, and prediction
can be carried out via FY .
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Inference and prediction

If FY is unknown, then it is the focus of our inference.

§ we treat FY as an unknown, and make statements about
it in light of the data;

§ given the data, what do we think about FY ?

We treat FY as a random variable.
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Inference and prediction

If FY is unknown, then an independent and identically dis-
tributed (IID) statement of the sort above is really a condi-
tional statement given FY .

Pr

«

n
č

i“1

pYi ď yi q

ˇ

ˇ

ˇ

ˇ

FY

ff

“

n
ź

i“1

FY pyi q
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Inference and prediction

If FY is a random variable, we must be able to specify a prob-
ability distribution for it:

§ in general, FY is an infinite-dimensional object;

§ FY has certain specific properties.

Need the capability to build a probability distribution on the
space of functions. F say, that satisfy the properties of distri-
bution functions.
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Parametric modelling

The most common approach involves using a finite dimen-
sional ‘parameter’, θ P Rd say, and specifying that

FY pyq ” FY py; θq y P R

so that the unknown quantity is now θ, and FY p.; θq is a known
functional form. Then

Pr

«

n
č

i“1

pYi ď yi q

ˇ

ˇ

ˇ

ˇ

θ

ff

“

n
ź

i“1

FY pyi ; θq
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Non-parametric modelling

The non-parametric approach involves using an infinite di-
mensional parameter, the function FY p.q itself. We write

Pr

«

n
č

i“1

pYi ď yi q

ˇ

ˇ

ˇ

ˇ

FY

ff

“

n
ź

i“1

FY pyi q

33



Semi-parametric modelling

The semi-parametric approach involves using a model that is
specified in terms of both

§ a finite dimensional parameter, θ P Rd

§ an infinite dimensional parameter.

Example: Semi-parametric location model

The model
FY py; θq ” Fpy ´ θq

where θ P R and F is an arbitrary cdf is a semi-parametric
location model for a univariate random variable Y .

34



Interest and nuisance parameters

We often partition parameters into two components

§ parameters of interest : the focus of inference;

§ nuisance parameters: parameters necessary for the
specification of the probability model, but which are not
the focus of interest.

In the parametric case, we might partition θ “ pψ, λq where ψ
is the parameter of interest.

In the semi-parametric case, the non-parametric component
is usually regarded as nuisance parameter.
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Interest and nuisance parameters

In the non-parametric case, inference focusses on FY itself, or
possibly some functional of FY , for example the expectation
of FY :

µpFY q “ EY rY ; FY s “

ż

y dFY pyq ”

ż

y FY pdyq
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Part 1

Bayesian Theory



1.1 De Finetti’s Representation

The first key result of Bayesian theory is a representation re-
sult for the probability distribution of infinitely exchangeable
random variables.

§ the theorem characterizes all possible forms for the dis-
tribution;

§ it gives a straightforward mechanism for the construc-
tion of arbitrary distributions for infinitely exchangeable
sequences;

§ this result underpins the logic of Bayesian inference and
prediction.
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1.1 De Finetti’s Representation

Theorem: 0-1 representation theorem

Suppose that Y1,Y2, . . . is an infinitely exchangeable sequence
of 0-1 variables. Then there exists a distribution function
π0p.q such that for all n ě 1, the joint mass function of
pY1,Y2, . . . ,Ynq can be represented

pY1,Y2,...,Yn py1, y2, . . . , ynq “

ż 1

0

#

n
ź

i“1

θyi p1´ θq1´yi

+

π0 pdθq

for some probability distribution π0p.q.

de Finetti, Hewitt-Savage

39



1.1 De Finetti’s Representation

Theorem: 0-1 representation theorem

Furthermore, π0p.q is defined for 0 ď θ ď 1 by

ż θ

0
π0 pdtq “ lim

nÑ8
Pr rRn ď θs (�)

and where

Sn “

n
ÿ

i“1

Yi Rn “
Sn

n
.
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1.1 De Finetti’s Representation

Theorem: 0-1 representation theorem

We define
θ0 “ lim

nÑ8
Rn

that is, Rn
a.s.
ÝÑ θ0; the quantity θ0 is the limiting relative fre-

quency of 1s in the infinitely exchangeable binary sequence.

Proof: See Handout 01.
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1.1 De Finetti’s Representation

Note

(i) The converse of the theorem is also true: it is straightfor-
ward to see that the distributions formed by computing
the integral for a given π0p.q are finite dimensional distri-
butions derived for an infinitely exchangeable sequence.

(ii) The quantity θ parameterizes the conditional distribution
of the Yi ; we can interpret

n
ź

i“1

θyi p1´ θq1´yi “

n
ź

i“1

pYi pyi ; θq

and deduce that for each n, Y1, . . . ,Yn are conditionally
independent given θ.
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1.1 De Finetti’s Representation

Note

(iii) The quantity θ parameterizes the conditional distribution
of the Yi ; we can interpret

n
ź

i“1

θyi p1´ θq1´yi “

n
ź

i“1

pYi pyi ; θq

and deduce that for each n, Y1, . . . ,Yn are conditionally
independent given θ.
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1.1 De Finetti’s Representation

Note

(iv) π0p.q is a probability distribution for θ, but the general-
ity of the construction does not specify what form π0pdθq
should take; different choices for π0p.q will lead to differ-
ent exchangeable forms.

(v) We often relax notation and allow π0p.q to denote either
the cdf or the pdf whenever convenient to do so.
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1.1 De Finetti’s Representation

The theorem extends to arbitrary infinitely exchangeable se-
quences.

Theorem: General representation theorem

Suppose that

‚ Y1,Y2, . . . is an infinitely exchangeable sequence of vari-
ables taking values on R;

‚ PY is a probability measure on R8 that defines all finite
dimensional distributions for tYnu

8
n“1;

‚ F denotes the set of all distribution functions on R.
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1.1 De Finetti’s Representation

Theorem: General representation theorem

Then there exists a distribution function π0p.q on F , such that
the joint distribution of pY1,Y2, . . . ,Ynq has the form

Pr

«

n
č

i“1

pYi ď yi q

ff

“

ż

F

#

n
ź

i“1

Fpyi q

+

π0 pdFq

where F parameterizes the model: F is an unobservable dis-
tribution function.
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1.1 De Finetti’s Representation

Theorem: General representation theorem

We interpret F via its limiting form; let F0 be a distribution
function defined for y P R by

F0 pyq “ lim
nÑ8

Fnpyq “ lim
nÑ8

#

1

n

n
ÿ

i“1

1ry,8qpYi q

+

is a distribution on the space of functions F , defined as a limit
as n ÝÑ 8 of the empirical distribution function, Fn , defined
for Y1, . . . ,Yn .
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1.1 De Finetti’s Representation

Note

(i) The unknown distribution F parameterizes the condi-
tional distribution of the Yi ;

n
ź

i“1

Fpyi q

indicates that for each n, Y1, . . . ,Yn are conditionally in-
dependent given F .

(ii) π0p.q is a probability distribution for F ; that is, it is a prob-
ability distribution on the space F of distribution func-
tions. Calculations require (Lebesgue) integrals over F
taken with respect to π0.
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1.1 De Finetti’s Representation

Note

(iii) F0 is the limiting empirical distribution function:
§ classical results tell us that this limiting distribution can

be interpreted as the true marginal distribution function
for the Yi ;

§ the limiting form does not tell us about the joint structure
of the Yi .

(iv) π0p.q is a probability distribution for F ; therefore it is
a probability distribution on the space F of distribution
functions.
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1.1 De Finetti’s Representation

Note

(v) Fn is the empirical distribution function:
§ this is the classical estimator of the distribution function

based on Y1, . . . ,Yn ;
§ pointwise behaviour (at each individual y) easy to study;
§ function-wise behaviour (at all y simultaneously) requires

empirical process theory.
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1.1 De Finetti’s Representation

The general representation theorem can be made specific by

§ imposing symmetry or invariance constraints on the ob-
servables;

§ requiring the existence of sufficient statistics;
§ the exponential family.

§ allowing for partial exchangeability to construct condi-
tional forms of exchangeable sequences

§ regression, hierarchical models etc.

These considerations lead to the use of specific parametric
models.
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1.1 De Finetti’s Representation

Example: Partial exchangeability

Let tOnu
8
n“1 be an infinitely exchangeable sequence of ran-

dom vectors in R2

Oi “ pXi ,Yi q i “ 1,2, . . . .

Then

‚ tXnu
8
n“1 is also an infinitely exchangeable sequence;

‚ for each n ě 1, and given X1 “ x1, . . . ,Xn “ xn , the
variables

Y1, . . . ,Yn

are partially exchangeable.

52



1.1 De Finetti’s Representation

A typical form of the de Finetti representation is in terms of
parametric densities: for n ě 1

fY1,...,Yn py1, . . . , ynq “

ż n
ź

i“1

fpyi ; θq π0 pdθq

where

fY1,...,Yn py1, . . . , ynq

is the joint pdf for Y1, . . . ,Yn .
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1.1 De Finetti’s Representation

Note

The de Finetti calculation is a standard type of ‘marginal-
ization’ calculation; for example, for two continuous random
variables

fY pyq “

ż

fY |X py|xqfX pxq dx.

We can think of fX pxq as a ‘mixing’ distribution.

In the de Finetti representation, the two random variables are

‚ the observables Y1, . . . ,Yn ;

‚ the ‘parameter’ θ or F .
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1.1 De Finetti’s Representation

Note

The terms

n
ź

i“1

pYi pyi ; θq or
n
ź

i“1

fYi pyi ; θq

in parametric case, or in the non-parametric case

n
ź

i“1

Fpyi q

are equivalent to the familiar likelihood function that forms
the basis of much statistical theory.
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Prediction

The assumption of infinite exchangeability and the de Finetti
representation give an automatic rule for constructing predic-
tions. For n,m ě 1 consider the prediction of

Yn`1, . . . ,Yn`m

conditional on observed values of

Y1, . . . ,Yn .

We focus first on the binary case for simplicity.
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Prediction

By de Finetti, recall that for each n ě 1

pY1,...,Yn py1, . . . , ynq “

ż 1

0

#

n
ź

i“1

θyi p1´ θq1´yi

+

π0 pdθq (§)
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Prediction

Similarly

pY1,...,Yn`m py1, . . . , yn`mq “

ż 1

0

#

n`m
ź

i“1

θyi p1´ θq1´yi

+

π0 pdθq
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Prediction

Then for the predictive distribution, by the conditional prob-
ability definition, we have

pYn`1,...,Yn`m |Y1,...,Yn
pyn`1, . . . , yn`m |y1, . . . , ynq

“
pY1,...,Yn`m py1, . . . , yn`mq

pY1,...,Yn py1, . . . , ynq

“

ż 1

0

#

n`m
ź

i“1

θyi p1´ θq1´yi

+

π0 pdθq

ż 1

0

#

n
ź

i“1

tyi p1´ tq1´yi

+

π0 pdtq

where t is a dummy integrating variable.
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Prediction

We may rewrite this expression by noting that the denomina-
tor can be treated as a constant in the integral in the numer-
ator, and that the product in the numerator can be split

n`m
ź

i“1

θyi p1´ θq1´yi

“

#

n
ź

i“1

θyi p1´ θq1´yi

+

ˆ

#

n`m
ź

i“n`1

θyi p1´ θq1´yi

+

.
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Prediction

That is

pYn`1,...,Yn`m |Y1,...,Yn
pyn`1, . . . , yn`m |y1, . . . , ynq

“

ż 1

0

#

n`m
ź

i“n`1

θyi p1´ θq1´yi

+

πn pdθq

(†)

where

πnpdθq “

n
ź

i“1

θyi p1´ θq1´yi π0 pdθq

ż 1

0

#

n
ź

i“1

tyi p1´ tq1´yi

+

π0 pdtq

(‡)
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Prediction

Comparing (§) to (†), we see that the forms of the two repre-
sentations for

pY1,...,Yn py1, . . . , ynq

and

pYn`1,...,Yn`m |Y1,...,Yn
pyn`1, . . . , yn`m |y1, . . . , ynq

are identical with π0pdθq in the former replaced by πnpdθq in
the latter.
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Prediction

We can therefore think of

πnpdθq

as being an updated version of

π0pdθq

in light of observing y1, . . . , yn . Note that

ż

πnpdθq “ 1

from (‡), so πnpdθq does define a valid probability distribution.

63



Terminology

§ π0pdθq is the prior distribution for θ;

§ πnpdθq is the posterior distribution for θ;

§ pY1,...,Yn py1, . . . , ynq is the prior predictive distribution
§ also termed the marginal likelihood ;

§ pYn`1,...,Yn`m |Y1,...,Yn
pyn`1, . . . , yn`m |y1, . . . , ynq is the poste-

rior predictive distribution.
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Limiting predictions

Let

S1,n “

n
ÿ

i“1

Yi Sn`1,n`m “

n`m
ÿ

i“n`1

Yi

By direct calculation from (§), by the theorem of total proba-
bility, we have

PrrS1,n “ s1,n s “

ˆ

n

s1,n

˙
ż 1

0
t s1,n p1´ tqn´s1,n π0pdtq

using t as the integrating variable; this holds for

s1,n P t0,1, . . . ,nu.
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Limiting predictions

Note from (‡) that πnpdθq depends on the data y1, . . . , yn only
via

s1,n “

n
ÿ

i“1

yi

as

πnpdθq “
θs1,n p1´ θqn´s1,n π0 pdθq

ż 1

0
t s1,n p1´ tqn´s1,n π0 pdtq

Thus we can interpret S1,n as a (Bayesian) sufficient statistic.
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Limiting predictions

Therefore for s P t0,1, . . . ,mu,

PrrSn`1,n`m “ s|S1,n “ s1,n s

“

ˆ

m

s

˙
ż 1

0
t sp1´ tqm´s πnpdtq.
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Limiting predictions

Now let

Rn`1,n`m “
Sn`1,n`m

m
.

Then, by the form of (†), and the result from the theorem (�),
we may conclude directly that

lim
mÑ8

Pr rRn`1,n`m ď θ|S1,n “ s1,n s “

ż θ

0
πn pdtq

that is, the posterior distribution is a limiting form of the pre-
dictive distribution for a particular summary statistic.
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Limiting predictions

Note

In the above formulation, if we consider n ÝÑ 8, we observe
that for θ P r0,1s,

lim
nÝÑ8

πnpθq “ δtθ0u
pθq “

#

1 θ “ θ0

0 θ ‰ θ0

that is, the posterior distribution is degenerate at θ0.
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True values

In our specifications, we have defined

§ in the binary case

θ0 “ lim
nÝÑ8

1

n

n
ÿ

i“1

Yi

§ in the general case

F0pyq “ lim
nÝÑ8

1

n

n
ÿ

i“1

1ry,8qpYi q

We can regard θ0 and F0p.q as the ‘true’ parameters that ren-
der the observables independent if conditioned upon.
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Model mis-specification

In any real example, we observe y1, . . . , yn , but whereas we
can propose a model for the joint distribution of the vari-
ables under exchangeability, we do not know that our selected
model is the correct (data generating) one.

The limit results hold under the assumption that the model
is correctly specified , but in reality our model may be mis-
specified .
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Model mis-specification

Example: Binary case

In the exchangeable binary case, we must have

pYi pyi ; θq “ θyi p1´ θq1´yi

for each 0 ď θ ď 1; however different choices of π0pdθq lead
to different models for the joint distribution of Y1, . . . ,Yn .

θ0 is the hypothetical value of θ that renders the Yi s indepen-
dent if conditioned upon: however,

‚ this cannot be assessed in the data, as we do not observe
data from a conditional-on-θ model.
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Model mis-specification

Example: Binary case

Suppose that
π0pθq ” Betapα0, β0q.

for α0, β0 ą 0. Then from (‡), we have for the posterior density

πnpθq 9

#

n
ź

i“1

θyi p1´ θq1´yi

+

θα0´1p1´ θqβ0´1

“ θsn`α0´1p1´ θqn´sn`β0´1

where

sn “

n
ÿ

i“1

yi .
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Model mis-specification

Example: Binary case

That is,

πnpθq ” Betapsn ` α0,n ´ sn ` β0q ” Betapαn , βnq

say, so that

πnpθq “
Γpαn ` βnq

ΓpαnqΓpβnq
θαn´1p1´ θqβn´1.
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Model mis-specification

Example: Binary case

From inspection of posterior πnpθq, we may deduce that

lim
nÝÑ8

πnpθq ÝÑ δθ0pθq

that is, the posterior is degenerate at θ0 irrespective of the
choice of prior parameters.

75



Model mis-specification

Example: Binary case

However, other choices of prior may lead to different be-
haviour: for example,

‚ if π0pθq is itself degenerate at a given value c say, then
the posterior is also degenerate at c;

‚ if π0pθq is uniform on a sub-interval pc1, c2q Ă r0,1s, then
the posterior is also restricted to this interval.
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Model mis-specification

Example: Binary case

From (§), we may conclude that the prior predictive

pY1,...,Yn py1, . . . , ynq

takes the form

pY1,...,Yn py1, . . . , ynq “
Γpα0 ` β0q

Γpα0qΓpβ0q

ΓpαnqΓpβnq

Γpαn ` βnq
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Model mis-specification

Example: Binary case

For n “ 1:

pY1 py1q “
Γpα0 ` β0q

Γpα0qΓpβ0q

Γpα0 ` y1qΓpβ0 ` 1´ y1q

Γpα0 ` β0 ` 1q

so that

EY1rY1s “ PrrY1 “ 1s “
Γpα0 ` β0q

Γpα0qΓpβ0q

Γpα0 ` 1qΓpβ0q

Γpα0 ` β0 ` 1q

“
α0

α0 ` β0
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Model mis-specification

Example: Binary case

For n “ 2:

pY1,Y2 py1, y2q “
Γpα0 ` β0q

Γpα0qΓpβ0q

Γpα0 ` y1 ` y2qΓpβ0 ` 2´ y1 ´ y2q

Γpα0 ` β0 ` 2q

6 EY1,Y2rY1Y2s “ PrrY1 “ 1,Y2 “ 1s

“
Γpα0 ` β0q

Γpα0qΓpβ0q

Γpα0 ` 2qΓpβ0q

Γpα0 ` β0 ` 2q

“
α0pα0 ` 1q

pα0 ` β0qpα0 ` β0 ` 1q
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Model mis-specification

Example: Binary case

CovY1,Y2rY1,Y2s “
α0pα0 ` 1q

pα0 ` β0qpα0 ` β0 ` 1q
´

ˆ

α0

α0 ` β0

˙2

Thus as the prior changes (that is, α0 and β0 change) the mod-
elled covariance between pairs of Ys changes.
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Model mis-specification

Example: Binary case

From (†), we may conclude that the posterior predictive

pYn`1,...,Yn`m |Y1,...,Yn
pyn`1, . . . , yn`m |y1, . . . , ynq

takes the form

Γpαn ` βnq

ΓpαnqΓpβnq

Γpαn ` sn`1,n`mqΓpβn `m ´ sn`1,n`mq

Γpαn ` βn `mq

where

sn`1,n`m “

n`m
ÿ

i“n`1

yi
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Model mis-specification

Example: Binary case

If n “ m “ 1

pY2|Y1
py2|y1q “

Γpα0 ` y1 ` y2qΓpβ0 ` 2´ y1 ´ y2q

Γpα0 ` y1qΓpβ0 ` 1´ y1qpα0 ` β0 ` 1q

so that for y2 P t0,1u

pY2|Y1
py2|0q “

Γpα0 ` y2qΓpβ0 ` 2´ y2q

Γpα0qΓpβ0 ` 1qpα0 ` β0 ` 1q

pY2|Y1
py2|1q “

Γpα0 ` 1` y2qΓpβ0 ` 1´ y2q

Γpα0 ` 1qΓpβ0qpα0 ` β0 ` 1q
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Model mis-specification

In general, in the parametric case, we need to consider the
possibility of mis-specification of a component of the model;
the choice of

fY pyi ; θq or π0pdθq

yields a prior predictive

fY1,...,Yn py1, . . . , ynq

that may not match the true (data generating) model.

In the non-parametric case, the same considerations apply.
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Model mis-specification

De Finetti’s theorem tells us that under exchangeability, there
must exist a representation of the data generating model such
that

Pr

«

n
č

i“1

pYi ď yi q

ff

“

ż n
ź

i“1

F˚pyi ; θq π
˚
0 pdθq

for at least one combination of

F˚Y pyi ; θq and π˚0pdθq
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Model mis-specification

It may be that π˚0pdθq is a degenerate distribution at θ “ θ˚0
say, so that

Pr

«

n
č

i“1

pYi ď yi q

ff

“

n
ź

i“1

F˚pyi ; θ
˚
0q

and the Yi s are independent.

In most cases, we will assume correct specification.
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Numerical Examples

Example: Normal model

See knitr handout 01.

Note the important identity: for scalar x, and constants
A , a,B ,b

Apx ´ aq2 ` Bpx ´ bq2 “ pA ` Bq

ˆ

x ´
Aa ` Bb

A ` B

˙2

`
AB

A ` B
pa ´ bq2

Example: Bernoulli model

See knitr handout 02.

86



Extensions

§ multivariate Ys: extension straightforward;

§ regression problems: partial exchangeability;

§ hierarchical models: partial exchangeability.
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1.2 Bayesian calculations

§ Bayesian updating

§ Sufficiency concepts

§ Prior specification
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Bayesian updating

The Bayesian calculation acts sequentially; that is, for data y1

πn1pθq “
fY1py1; θqπ0pθq

fY1py1q
“

fY1py1; θqπ0pθq
ż

fY1py1; tqπ0ptq dt

contains the information about θ in light of the data y1 and
prior assumptions.
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Bayesian updating

If new (independent and identically distributed to y1) data y2

become available, then the posterior for θ in light of the com-
bined data py1, y2q is

πnpθq “
fY1,Y2py1,, y2; θqπ0pθq

fY1,Y2py1, y2q
“

fY1,Y2py1, y2; θqπ0pθq
ż

fY1,Y2py1, y2; tqπ0ptq dt

where n “ n1 ` n2 is the total sample size.
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Bayesian updating

But note also that

πnpθq “
fY2py2|θqπn1pθq

fY2|Y1
py2|y1q

where πn1pθq is the posterior for θ based on y1, and

fY2|Y1
py2|y1q “

fY1,Y2py1, y2q

fY1py1q
“

ż

fY1,Y2py1, y2; tqπ0ptq dt
ż

fY1py1; sqπ0psq ds
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Sufficiency

If TpYq is a sufficient statistic for θ in the classical sense, then
by the Neyman factorization result, we have for the joint dis-
tribution

fYpy; θq “ gpTpyq, θqhpyq

It follows that

πnpθq “
fYpy; θqπ0pθq

fYpyq
“

gpTpyq, θqhpyqπ0pθq

fYpyq

“

„

hpyq

fYpyq



gpTpyq, θqπ0pθq

Thus the posterior distribution of θ only depends on the data
through Tpyq.
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Sufficiency

Lemma

If TpYq is a sufficient statistic for θ (in the classical sense)
then πnpθq depends on y only through the value of

Tpyq

for all prior specifications π0pθq.
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Sufficiency

Proof.

By definition
fYpy; θq “ fY,T|θpy, t|θq

if t “ Tpyq, and zero otherwise. Thus, by sufficiency,

fYpy; θq “ fY|Tpy|tqfTpt; θq

and hence

πnpθq ∝ fYpy; θqπpθq ∝ fTpt; θqπ0pθq
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Sufficiency

Lemma

TpYq is sufficient in the Bayesian sense – the Bayesian pos-
terior depends on y only through Tpyq – if and only if it is
sufficient in the classical sense.

We need to establish the converse of the previous result.
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Sufficiency

Proof.

For the posterior based on t,

πnpθq “
fTpt; θqπ0pθq

fTptq
.

This must be equal to the posterior based on Y, that is,

fYpy; θq

fYpyq
“
πnpθq

π0pθq
“

fTpt; θq

fTptq
.

Hence we must have

fYpy; θq “ fTpt; θq
fYpyq

fTptq
“ gpt, θqhpyq

say. Thus TpYq is sufficient in the classical sense.
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Construction of Prior Distributions

In the Bayesian formulation, the prior density plays an impor-
tant role. There are several methods via which the prior can
be specified quantitatively;

§ from historical or training data;

§ by subjective assessment , similar to the subjective as-
sessment of probabilities in elementary probability the-
ory;

§ by matching to a desired functional form;

§ or in a non-informative or vague specification, where the
prior probability is supposedly spread ‘evenly’ across the
parameter space.
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Construction of Prior Distributions

For some models, a conjugate prior can be chosen; this prior
combines with the likelihood in such a way to give an analyti-
cally tractable posterior calculation.

Consider a class of distributions F indexed by parameter θ

F “ tfY py; θq : θ P Θu

A class P of prior distributions for θ is a conjugate family for
F if the posterior distribution for θ resulting from data y is an
element of P for all fY P F , π0 P P and y P Y.
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Construction of Prior Distributions

Example: Exponential Family

Suppose that fY py; θq is an Exponential Family distribution

fY py; θq “ hpxqcpθq exp

#

k
ÿ

j“1

tj pyqwj pθq

+

so that for a random sample of size n

Lnpθq “ hpyqtcpθqun exp

#

k
ÿ

j“1

Tj pyqwj pθq

+

(1)

for

Tj pyq “
n
ÿ

i“1

tj pyi q.
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Construction of Prior Distributions

Example: Exponential Family

Suppose that

π0pθq “ dpα, βqtcpθquα exp

#

k
ÿ

j“1

βj wj pθq

+

(2)

where α and β “ pβ1, . . . , βk q
J are hyperparameters. Combin-

ing prior and likelihood yields the posterior as

πnpθq 9 tcpθquα`n exp

#

k
ÿ

j“1

rβj ` Tj pyqswj pθq

+

“ tcpθquα
‹

exp

#

k
ÿ

j“1

β‹j wj pθq

+
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Construction of Prior Distributions

Example: Exponential Family

The normalizing constant can be deduced to be

dpα` n, β ` Tpyqq,

and hence the posterior distribution has the same functional
form as the prior, but with parameters updated to

α‹ “ α`n β‹ “ pβ‹1, . . . , β
‹
k q
J “ pβ1`T1pyq, . . . , β1`T1pyqq

J.
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Construction of Prior Distributions

A non-informative prior expresses prior ignorance about the
parameter of interest.

§ If Θ “ tθ1, . . . , θku (that is, θ is known to take one of a
finite number of possible values). Then a non-informative
prior places equal probability on each value, that is,

π0pθq “
1

k
θ P Θ.
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Construction of Prior Distributions

§ If Θ is a bounded region, then a natural non-informative
prior is constant on Θ.

§ If the parameter space Θ is uncountable and unbounded,
however, a non-informative prior specification is more dif-
ficult to construct.

§ A naive prior specification would be to set π0pθq to be a
constant, although this prior does not give a valid proba-
bility measure as it does not integrate to 1 over Θ.

§ A prior distribution π0pθq for parameter θ is termed im-
proper if it does not integrate to 1.
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Construction of Prior Distributions

Even for improper priors can be used to compute the poste-
rior density, which itself will often be proper (integrate to 1).

However, if φ “ gpθq is a transformation of θ, then by ele-
mentary transformation results, including the Jacobian of the
transform Jpθ Ñ φq, it follows that

π0,θpθq “ c ùñ π0,φpφq “ c ˆ Jpθ Ñ φq

which may not be constant, and hence a non-uniform prior on
φ results. This is perhaps unsatisfactory, and so the following
procedure may be preferable.
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Construction of Prior Distributions

Consider the prior π0pθq for parameter θ in probability model
fY py; θq determined by

π0pθq ∝ t|Iθ pθq |u1{2

where Iθ pθq is the Fisher Information,

Iθpθq “ EfY

“

SpY ; θqSpY ; θqJ; θ
‰

“ ´EfY rΨpY ; θq; θs

and |Iθ pθq | indicates the absolute value of the determinant
of Iθ pθq. The prior π0pθq defined in this way is termed the
Jeffreys prior.
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Construction of Prior Distributions

SpY ; θq is the k ˆ 1 vector score function with j th element

Sj pY ; θq “
B

Bθj
log fY py; θq j “ 1, . . . , k

and ΨpY ; θq is the k ˆ k matrix of second partial derivatives
with pj , lqth element

B2

BθjBθl
log fY py; θq
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Construction of Prior Distributions

Example: Binomial pm, θq

We have

log fY py; θq “ log

ˆ

m

y

˙

` y log θ ` pm ´ yq logp1´ θq

Spy; θq “
y

θ
´
pm ´ yq

p1´ θq

Ψpy; θq “ ´
y

θ2
´
pm ´ yq

p1´ θq2
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Construction of Prior Distributions

Example: Binomial pm, θq

Therefore

Iθpθq “ ´EY |θ

„

´
Y

θ2
´
pm ´ Yq

p1´ θq2



“
mθ

θ2
`

mp1´ θq

p1´ θq2
“

m

θp1´ θq

and hence

π0pθq ∝ |Iθ pθq |1{2 “ tθp1´ θqu´1{2
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Construction of Prior Distributions

Lemma

Jeffreys’s prior is invariant under 1-1 transformations, that is,
if φ “ φpθq, then the prior for φ obtained by reparameteriza-
tion from θ to φ in the prior for θ, is precisely Jeffreys’s prior
for φ.
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Construction of Prior Distributions

Proof.

Let φ “ φpθq be a 1-1 transformation. Denote by `θpy; θq and
`φpy;φq the log pdfs in the two parameterizations. Then by
the rules of partial differentiation

B`φ
Bφj

“

k
ÿ

l“1

B`θ
Bθl

Bθl

Bφj
j “ 1, . . . , k

so that
Spy;φq “ Λpθ, φqSpy; θq

where Λpθ, φq is the k ˆ k matrix with pj , lqth element

Bθl

Bφj
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Construction of Prior Distributions

Proof.

In fact, Λpθ, φq is just the Jacobian of the transformation from
θ to φ, Jpθ Ñ φq. Hence

Iφpφq “ Λpθ, φqIθpθqΛpθ, φqJ

and so

|Iφpφq| “ |Λpθ, φqIθpθqΛpθ, φqJ| “ |Λpθ, φq|2|Iθpθq|

and
|Iφpφq|1{2 “ |Λpθ, φq||Iθpθq|1{2.
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Construction of Prior Distributions

Proof.

Thus

π0pφq ∝ |Iφpφq|1{2 “ |Λpθ, φq||Iθpθq|1{2 “ |Λpθ, φq|π0pθq

and Jeffreys’ prior for φ is identical to the one that would be
obtained by constructing Jeffreys’ prior for θ and reparame-
terizing to φ.
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Construction of Prior Distributions

Example: Binomial pm, θq

Suppose that φ “ θ{p1´ θq (so that θ “ φ{p1` φq). Then

log fY py;φq “ log

ˆ

m

y

˙

` y log φ´m logp1` φq

Spy;φq “
x

φ
´

m

p1` φq

Ψpy;φq “ ´
y

φ2
`

m

p1` φq2
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Construction of Prior Distributions

Example: Binomial pm, θq

Therefore

Iφpφq “ ´EfY

„

´
Y

φ2
`

m

p1` φq2
;φ



“
mφ

p1` φqφ2
´

m

p1` φq2

“
m

φp1` φq2

and hence

π0pφq ∝ |Iφ pφq |1{2 “ tφp1` φq2u´1{2.
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Construction of Prior Distributions

Example: Binomial pm, θq

Now, recall that Jeffreys’ prior for θ takes the form

π0pθq ∝ tθp1´ θqu
´1{2

The Jacobian of the transformation from θ to φ is p1`φq2, and
thus using the univariate transformation theorem

π0pφq9tφ{p1` φq
2u´1{2p1` φq2 “ tφp1` φq2u´1{2

matching the result found above.
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Location and Scale Parameters

Parameter θ is a location parameter if

fY py; θq “ fpy ´ θq

and is a scale parameter if

fY py; θq “
1

θ
f
´y

θ

¯

for some pdf f .

A ‘non-informative’ prior can be constructed using invariance
principles in the location and scale cases.
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Location and Scale Parameters

§ For a location parameter, for a non-informative prior, it is
required to have, for set A Ă Θ

ż

A
π0pθq dθ “

ż

Ac

π0pθq dθ

where Ac “ tθ : θ ´ c P Au for scalar c. Therefore, for all
c, we must have

ż

Ac

π0pθq dθ “

ż

A
π0pθ ´ cq dθ

6 π0pθq “ π0pθ ´ cq ùñ π0pθq “ constant.
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Location and Scale Parameters

§ For a scale parameter, it is required to have, for arbitrary
set A Ă Θ

ż

A
π0pθq dθ “

ż

Ac

π0pθq dθ

where now Ac “ tθ : cθ P Au for scalar c. Therefore, for
all c, we must have

ż

Ac

π0pθq dθ “

ż

A
cπ0pcθq dθ

6 π0pθq “ cπ0pcθq ùñ π0pθq ∝
1

θ
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Location and Scale Parameters

This follows by the usual ‘scale invariance’ definition: a
function gpyq is scale invariant if

gpcyq ∝ gpyq

and all scale invariant functions are power laws; for some
α ą 0,

gpyq ∝ y´α.

Here, the condition π0pθq “ cπ0pcθq means that we must
have α “ 1.
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1.3 Bayesian Optimal Decisions

Many statistical procedures involve decision-making, that is,
taking actions in light of observed data.

§ parameter estimation;

§ hypothesis testing;

§ prediction/classification;

§ model selection.
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1.3 Bayesian Optimal Decisions

Define

§ Tp.q as a function of data Y “ pY1, . . . ,Ynq;

T : Rn ÝÑ T

For example

TpYq “
1

n

n
ÿ

i“1

Yi sample mean

TpYq “ pYp1q, . . . ,Ypnqq
J order statistics

TypYq “
1

n

n
ÿ

i“1

Fp´8,Yi s
pyq empirical cdf

§ Model space F ;
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1.3 Bayesian Optimal Decisions

§ Loss function, Lp., .q,

L : T ˆ F ÝÑ R`
ď

t0u.

Defines the loss in reporting T when the truth is defined
by F P F .
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1.3 Bayesian Optimal Decisions

Example:

For cdf FY , let

µ “

ż

y FY pdyq.

Then could define

LpT ,FY q “ pT ´ µq
2

as the loss in reporting ‘estimator’ T when the true functional
of interest is µ.
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1.3 Bayesian Optimal Decisions

The optimal decision is one that minimizes the expected loss,
where the expectation is taken with respect to the distribution
of random quantities in the calculation.

For a parametric analysis parameterized by θ

§ in a frequentist analysis, θ is a fixed constant and the data
are treated as random;

§ in a Bayesian analysis, the data y1, . . . , yn are fixed, and
θ is a random variable.
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1.3 Bayesian Optimal Decisions

Example: Frequentist calculation

For cdf FY , let

µ “

ż

y FY pdyq.

with
LpT ,FY q “ pT ´ µq

2

we have that

arg min
T
EFY rpT ´ µq

2s

“ arg min
T

 

EFY

“

pT ´ EFY rT sq
2
‰

` pEFY rT s ´ µq
2
(

“ VarFY rT s ` pEFY rT s ´ µq
2
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1.3 Bayesian Optimal Decisions

Example: Frequentist calculation

This does not define the optimal T , but it does tell us that we
need to take into account

‚ the variance of T , VarFY rT s

‚ the squared bias, bFY pTq

bFY pTq “ EFY rT s ´ µ
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Kullback-Leibler loss

The Kullback-Leibler (KL) loss is used when measuring the
discrepancy between distributions. For two distributions with
cdfs F0,F1

KLpF0,F1q “

ż

log

"

F0pdyq

F1pdyq

*

F0pdyq

which is defined when F1 is absolutely continuous with re-
spect to F0, that is for the corresponding probability measures

P0pBq “ 0 ùñ P1pBq “ 0

for any set B .
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Kullback-Leibler loss

§ Discrete case:

KLpp0,p1q “
ÿ

y

log

"

p0pyq

p1pyq

*

p0pyq “ Ep0

„

log

"

p0pYq

p1pYq

*

.

§ Continuous case:

KLpf0, f1q “

ż

log

"

f0pyq

f1pyq

*

f0pyq dy “ Ef0

„

log

"

f0pYq

f1pYq

*

.

128



Kullback-Leibler loss

Note

1. KLpF0,F1q ě 0;

2. KLpF0,F1q ‰ KLpF1,F0q

3. KLpF0,F1q “ 0 if and only if the two distributions are
identical.
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Kullback-Leibler loss

Example:

In a parametric problem, we might have pdf

fpy; θq

with θ “ θ0 presumed to be the data generating model. Then
we may write

KLpθ0, θq “

ż

log

"

fpy; θ0q

fpy; θq

*

f0py; θ0q dy

and we seek to use data to report an estimator pθ “ TpY1:nq of
the true value θ0.
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Decision theory concepts

The key components of a decision problem are as follows;

§ a decision d is to be made, and the decision is selected
from some set D of alternatives.

§ a true state of nature, υpθq, lying in set Υ, defined by the
data generating model, FY py; θq.

§ a loss function, Lpd, υq, for decision d and state υ, which
records the loss (or penalty) incurred when the true state
of nature is υ and the decision made is d.

We aim to select the decision to minimize the expected loss.
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Decision theory concepts

In an estimation context, the decision is the estimate of the
parameter, and the true state of nature is the true value of the
parameter, υpθq ” θ.

If data y “ y1:n are available, the optimal decision will intu-
itively become a function of the data. Suppose now that the
decision in light of the data is now in the form of an estimate,
denoted dpyq “ pθn , say, with associated loss Lppθn , θq
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Decision theory concepts

(i) The frequentist risk or loss associated with decision de-
noted dpYq (given by estimator pθn) is the expected loss
associated with dpYq, with the expectation taken over the
distribution of Y given θ

Rnpd, θq “ EFYrLp
pθn , θqs “

ż

Y
Lppθn , θqfYpy; θq dy
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Decision theory concepts

(ii) The Bayes risk for dpYq is the expected risk over the prior
distribution of θ

Rnpdq “ Eπ0rRnpd, θqs

“ Eπ0

”

EFY

”

Lppθn , θq
ıı

“

ż

Θ

"
ż

Y
Lppθn , θqfYpy; θq dy

*

π0pθq dθ

“

ż

Θ

ż

Y
Lppθn , θqfYpyqπnpθq dy dθ

“

ż

Y

"
ż

Θ
Lppθn , θqπnpθq dθ

*

fYpyq dy

where by Bayes theorem fYpy; θqπ0pθq “ fYpyqπnpθq.
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Decision theory concepts

(iii) With prior π0pθq and fixed data y the optimal Bayesian
decision, termed the Bayes rule is

pdB “ arg min
dPD

Rpdq

so that, for the Bayes estimate pθnB

pθnB “ arg min
dPD

ż

Y

"
ż

Θ
Lppθn , θqπnpθq dθ

*

fYpyq dy

“ arg min
pθnPΘ

ż

Θ
Lppθn , θqπnpθq dθ

as only the inner integral depends on the decision and
the data.
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Decision theory concepts

That is, the decision that minimizes the Bayes risk mini-
mizes posterior expected loss in making decision d, with
expectation taken with respect to the posterior distribu-
tion πnpθq.
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Results for Different Loss Functions

(I) Under squared-error loss

Lppθn , θq “ ppθn ´ θq
2

the Bayes rule for estimating θ is

pdB pyq “ pθnB pyq “ Eπn rθs “

ż

θπnpθq dθ

that is, the posterior expectation.
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Results for Different Loss Functions

The expected posterior loss for any Bayes estimate pθn is

ż

Lppθn , θqπnpθq dθ “

ż

ppθn ´ θq
2πnpθq dθ

which needs to be minimized with respect to pθn .
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Results for Different Loss Functions

Write t “ pθn . Then

d

dt

"
ż

pt ´ θq2 πnpθq dθ

*

“

ż

d

dt

!

pt ´ θq2
)

πnpθq dθ

“

ż

2 pt ´ θqπnpθq dθ

and equating this to zero gives

t “

ż

θπnpθq dθ “ Eπn rθs

and hence the optimal t “ pθn is the posterior expectation
as stated.
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Results for Different Loss Functions

(II) Under absolute error loss

Lppθn , θq “ |pθn ´ θ|

the Bayes estimate for θ is the solution of

ż

pθn

´8

πnpθq dθ “
1

2

that is, it is the posterior median.
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Results for Different Loss Functions

The expected posterior loss is

ż

Lppθn , θqπnpθq dθ “

ż

|pθn ´ θ|πnpθq dθ

which needs to be minimized with respect to pθn . Let t “
pθn . Then

ż

|t ´ θ|πnpθq dθ

“

ż t

´8

pt ´ θqπnpθq dθ `

ż 8

t
pθ ´ tqπnpθq dθ
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Results for Different Loss Functions

Differentiating with respect to t the first term using the
product rule yields

d

dt

"
ż t

´8

pt ´ θqπnpθq dθ

*

“
d

dt

"

t

ż t

´8

πnpθq dθ ´

ż t

´8

θπnpθq dθ

*

“ tπnptq `

ż t

´8

πnpθq dθ ´ tπnptq.
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Results for Different Loss Functions

Similarly

d

dt

"
ż 8

t
pθ ´ tqπnpθq dθ

*

“ ´tπnptq´

ż 8

t
πnpθqdθ`tπnptq

Thus, equating the original derivative to zero yields

ż t

´8

πnpθq dθ ´

ż 8

t
πnpθq dθ “ 0

so that
ż t

´8

πnpθq dθ “

ż 8

t
πnpθq dθ “

1

2

and hence the optimal t “ pθn is the posterior median.
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Results for Different Loss Functions

(III) Under zero-one loss

Lpdpyq, θq “

#

0 dpyq “ θ

1 dpyq ‰ θ

the Bayes rule for estimating θ is

pdB pyq “ pθnB pyq “ arg max θ P Θ πnpθq

that is, the posterior mode.
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Results for Different Loss Functions

To see this, note that the expected posterior loss is

ż

Lppθn , θqπnpθq dθ “

ż

Θzpθn

πnpθq dθ

which needs to be minimized with respect to the choice
of pθn . Consider the loss function

Lδppθn , θq “

#

0 pθn P pθ ´ δ, θ ` δq

1 pθn R pθ ´ δ, θ ` δq

for δ ě 0. That is, the loss is zero if |θn ´ θ| ă δ, and one
otherwise.
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Results for Different Loss Functions

The expected loss is therefore

ż

Lδppθn , θqπnpθq dθ “

ż

Θzppθn´δ,pθn`δq
πnpθq dθ

“ 1´ Prrθ P ppθn ´ δ, pθn ` δq|ys.

Thus we need to choose pθn so that

Prrθ P ppθn ´ δ, pθn ` δq|ys

is as large as possible, that is, we need to choose pθn as the
centre of the highest posterior probability region of width
2δ. As δ ÝÑ 0, this interval shrinks to be the posterior
mode, as stated.
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1.4 Likelihood Considerations

We have seen in the Bayesian calculation that the posterior
distribution is highly dependent on the likelihood for its prop-
erties; on the log scale, we have in the iid case

log πnpθq “
n
ÿ

i“1

log fY pyi ; θq ` log π0pθq ` constant

and so as n grows, we expect the log-likelihood

`npθq “
n
ÿ

i“1

log fY pyi ; θq

to be the dominant term. Because of this it is useful to study
the properties of the likelihood as n gets larger.
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Asymptotic Theory of the Likelihood

Suppose that

§ data y1:n “ py1, . . . , ynq are realizations of iid random
variables Y1, . . . ,Yn drawn from distribution with pdf
f0pyq. We term this model the true model.

§ we wish to represent the data using a parametric pdf
fY py; θq, where θ is d dimensional parameter. We term
this model the working model.
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Asymptotic Theory of the Likelihood

Typically, the analysis assumes that, for some θ0,

f0pyq ” fY py; θ0q

that is, the parametric model is correctly specified .

However, if f0pyq ‰ fY py; θq for any θ, the model is incorrectly
specified , and the theory needs to be reconsidered.
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Asymptotic Theory of the Likelihood

1. Interpreting θ0 in the working model: We define the
‘true’ value of θ0 as

θ0 “ arg min
θ

KLpf0, fY p.; θqq (3)

Note that

KLpf0, fY p.; θqq “

ż

log f0pyqf0pyq dy ´

ż

log fY py; θqf0pyq dy

or equivalently, denoting log fY py; θq by `py; θq,

θ0 “ arg max
θ
Ef0 r`pY ; θqs . (4)
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Asymptotic Theory of the Likelihood

2. Maximum likelihood: We maximize the sample-based
expectation (or sample mean) to produce an estimator.
Specifically, the estimator based on (4) will be

pθn “ arg max
θ

1

n

n
ÿ

i“1

`pYi ; θq.

This follows by the weak law of large numbers:

1

n

n
ÿ

i“1

`pYi ; θq
p
ÝÑ Ef0 r`pY ; θqs (5)

as n ÝÑ 8 for any fixed θ, if the expectation exists.
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Asymptotic Theory of the Likelihood

We will assume that the log density `py; θq is at least three
times differentiable with respect to θ; under this assump-
tion, the estimate is defined as the solution to the score
equations, the system of d equations given by

B

Bθ

#

1

n

n
ÿ

i“1

`pyi ; θq

+

“ 0d

or equivalently,

1

n

n
ÿ

i“1

B

Bθ
t`pyi ; θqu “

1

n

n
ÿ

i“1

Spyi ; θq “ 0d (6)

say, where Spy; θq “ 9̀py; θq “ B`1py; θq{Bθ. Denote the
solution of (6) by pθn ” pθnpy1:nq.
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Asymptotic Theory of the Likelihood

3. Taylor expansion: We consider a Taylor expansion of the
function `px; θq with respect to θ around θ0.

`py; θq “ `py; θ0q ` 9̀py; θ0qpθ ´ θ0q

`
1

2
pθ ´ θ0q

J :̀py; θ0qpθ ´ θ0q `R3py; θ˚q (7)

where

:̀py; θq “
B2`py; θq

BθBθJ
pd ˆ dq.

and R3py; θ˚q is a remainder term, for some θ˚ such that
}θ0 ´ θ

˚} ď }θ0 ´ θ}.
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Asymptotic Theory of the Likelihood

Evaluating (7) for each of y1, . . . , yn and summing the re-
sult, we have

`npθq “ `npθ0q ` 9̀
npθ0q

Jpθ ´ θ0q

`
1

2
pθ ´ θ0q

J :̀
npθ0qpθ ´ θ0q `R3. (8)

where R3 ” R3py1:n ; θ˚q for }θ0 ´ θ
˚} ď }θ0 ´ θ}.
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Asymptotic Theory of the Likelihood

At θ “ pθn and rearranging we have

`nppθnq ´ `npθ0q “ 9̀
npθ0q

Jppθn ´ θ0q

`
1

2
ppθn ´ θ0q

J :̀
npθ0qppθn ´ θ0q `R3

(9)
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Asymptotic Theory of the Likelihood

4. Asymptotic behaviour: Consider (9) written in terms
of random variables, with pθn “ pθnpY1:nq:

`nppθnq ´ `npθ0q “ 9̀
npθ0q

Jppθn ´ θ0q

`
1

2
ppθn ´ θ0q

J :̀
npθ0qppθn ´ θ0q `R3

(10)
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Asymptotic Theory of the Likelihood

First consider for arbitrary θ, the quantity

1

n
p`npθq ´ `npθ0qq “

1

n

n
ÿ

i“1

p`pYi ; θq ´ `pYi ; θ0qq .

We may rewrite this expression with terms involving the
true density f0 that cancel :

1

n

n
ÿ

i“1

p`pYi ; θq ´ `0pYi qq ´
1

n

n
ÿ

i“1

p`pYi ; θ0q ´ `0pYi qq (11)

where `0pxq “ log f0pyq.
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Asymptotic Theory of the Likelihood

For any θ, as n ÝÑ 8, we have by the weak law of large
numbers that

1

n

n
ÿ

i“1

p`pYi ; θq ´ `0pYi qq
p
ÝÑEf0

„

log

ˆ

fY pY ; θq

f0pYq

˙

“ ´KLpf0, fY p.; θqq

as Y1, . . . ,Yn „ f0.
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Asymptotic Theory of the Likelihood

Therefore
1

n

n
ÿ

i“1

`pYi ; θq ´
1

n

n
ÿ

i“1

`pYi ; θ0q

converges in probability to

KLpf0, fY p.; θ0qq ´ KLpf0, fY p.; θqq
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Asymptotic Theory of the Likelihood

By definition of θ0 via (3), KLpf0, fY pθqq attains its mini-
mum value at θ “ θ0, so

KLpf0, fY p.; θ0qq ´ KLpf0, fY p.; θqq ď 0

and hence
1

n

n
ÿ

i“1

`pYi ; θq ´
1

n

n
ÿ

i“1

`pYi ; θ0q

converges in probability to a non-positive constant.
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Asymptotic Theory of the Likelihood

Therefore, we have that

Prf0r`npθ0q ě `npθqs ÝÑ 1 (12)

as n ÝÑ 8. That is, with probability tending to 1, the log
likelihood `npθ0q is not less than `npθq for any other θ.
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Asymptotic Theory of the Likelihood

If we make an identifiability assumption, this statement
may be strengthened: the model fY py; θq is identifiable if,
for two parameter values θ: “ θ;,

fY py; θ:q “ fY py; θ;q for all y ùñ θ: “ θ;.

If the model is identifiable, then the “true" value θ0 is
uniquely defined, and we have

Prf0r`npθ0q ą `npθqs ÝÑ 1 θ ‰ θ0. (13)
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Asymptotic Theory of the Likelihood

This theory holds for fixed θ0 in the expression

1

n
p`npθq ´ `npθ0qq

However, we need to study `nppθnpY1:nqq, that is, where
the parameter at which the log-likelihood is evaluated is
itself a random variable, namely the estimator pθnpY1:nq.
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Asymptotic Theory of the Likelihood

It can be shown that pθnpY1:nq
p
ÝÑ θ0 and pθnpY1:nq is con-

sistent for θ0, and by “continuous mapping” (as `npθq is a
continuous function in θ)

ˇ

ˇ

ˇ

ˇ

1

n

!

`nppθnpY1:nqq ´ `npθ0q

)

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0

so that, from (5), as n ÝÑ 8

1

n

n
ÿ

i“1

`pYi ; pθnpY1:nqq
p
ÝÑ Ef0 r`pY ; θ0qs (14)
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Asymptotic Theory of the Likelihood

5. Asymptotic Normality: For a continuous function such
as 9̀

npθq, with defined second derivative :̀
npθq, it is guar-

anteed by the Mean Value Theorem that there exists an
‘intermediate value’

rθ “ cpθn ` p1´ cqθ0

for some c, 0 ă c ă 1, such that

9̀
nppθnq “ 9̀

npθ0q ` :̀
nprθqppθn ´ θ0q

§ The left hand side is zero as pθn is the mle.
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Asymptotic Theory of the Likelihood

§ Provided :̀
nprθq is non-singular, we may write after rescal-

ing and rearrangement that

?
nppθn ´ θ0q “

"

´
1

n
:̀
nprθq

*´1 "?
n

ˆ

1

n
9̀
npθ0q

˙*

(15)
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Asymptotic Theory of the Likelihood

§ In its random variable form, second term on the right
hand side of (15) is

?
n

˜

1

n

n
ÿ

i“1

SpYi ; θ0q

¸

that is, a sample average quantity scaled by
?

n. But by
definition of θ0,

Ef0rSpYi ; θ0qs “

ż

9̀py; θ0qf0pyq dy “ 0d

as, by definition θ0 minimizes KLpf0, fY p; θqq, and therefore
must be a solution of this equation.
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Asymptotic Theory of the Likelihood

Therefore, by the Central Limit Theorem

?
n

˜

1

n

n
ÿ

i“1

SpYi ; θ0q

¸

d
ÝÑ Normald p0d ,Jf0pθ0qq (16)

where

Jf0pθ0q “ Ef0rSpY ; θ0qSpY ; θ0q
Js ” Varf0rSpY ; θ0qs

is a pd ˆ d ˆ dq quantity.

168



Asymptotic Theory of the Likelihood

§ As pθn
p
ÝÑ θ0, we have that

´
1

n
:̀
nprθq

a.s.
ÝÑ If0pθ0q.

Therefore we write for an asymptotic approximation to
(15)

?
nppθn ´ θ0q “

"

´
1

n
:̀
npθ0q

*"

1
?

n
9̀
npθ0q

*

` opp1q

where the distribution of the second term given by (16),
and where opp1q denotes a term that converges in proba-
bility to zero.
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Asymptotic Theory of the Likelihood

We therefore have that

?
nppθn ´ θ0q

d
ÝÑ Normald p0d ,Σpθ0qq

where

Σpθ0q “ tIf0pθ0qu
´1Jf0pθ0qtIf0pθ0qu

´1
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Asymptotic Theory of the Likelihood

6. Correct specification: Under correct specification

f0pyq ” fY py; θ0q,

and we have from earlier results that

Jθ0pθ0q “ Iθ0pθ0q

and hence from the general result we deduce that

?
nppθn ´ θ0q

d
ÝÑ Normald p0d , tIθ0pθ0qu

´1q.
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Implications for Bayesian analysis

Using the same quadratic approximation for the likelihood at
θ around pθn we have

`npθq l `nppθnq ` 9̀
nppθnq

Jppθn ´ θq `
1

2
ppθn ´ θq

J :̀
nppθnqppθn ´ θq

but noting that 9̀
nppθnq “ 0, we have that

expt`npθqu l expt`nppθnqu exp

"

1

2
ppθn ´ θq

J :̀
nppθnqppθn ´ θq

*

∝ exp

"

´
1

2
pθ ´ pθnq

Jt´:̀
nppθnqupθ ´ pθnq

*

.
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Implications for Bayesian analysis

Thus, when the regularity conditions apply, the likelihood can
be approximated by one arising from a Normal distribution

Normald

ˆ

pθn ,
!

´:̀
nppθnq

)´1
˙

.

This approximation can be used in a wide variety of models.
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1.5 Modelling Extensions

Beyond the iid case, Bayesian methods can be used for

§ regression models (linear, non-linear, generalized linear);

§ latent variable models;

§ hierarchical models.
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Regression models

We consider the infinite sequence tpXn ,Ynq,n “ 1,2, . . .u such
that for any n ě 1

fX1,...,Xn ,Y1,...,Yn px1, . . . , xn , y1, . . . , ynq

is factorized

fX1,...,Xn px1, . . . , xnqfY1,...,Yn |X1,...,Xn
py1, . . . , yn |x1, . . . , xnq

where each term has a de Finetti representation.
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Regression models

fX1,...,Xn px1, . . . , xnq

“

ż

#

n
ź

i“1

fX pxi ;φq

+

π0pdφq

fY1,...,Yn |X1,...,Xn
py1, . . . , yn |x1, . . . , xnq

“

ż

#

n
ź

i“1

fY |X pyi |xi ; θq

+

π0pdθq
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Regression models

Inference for pφ, θq is required:

§ inference for φ via the marginal model for the X vari-
ables;

§ inference for θ via the conditional model for Y given that
X “ x was observed.

In the latter case, the fact that X is random is immaterial as
we perform a conditional on x analysis.

When considering the statistical behaviour of Bayesian (or
frequentist) procedures, we must remember that X and Y
have joint structure.
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Regression models

Example: Prediction

To predict Yn`1,

fYn`1|X1:n ,Y1:n
pyn`1|x1:n , y1:nq

“

ż

fXn`1,Yn`1|X1:n ,Y1:n
pxn`1, yn`1|x1:n , y1:nqdxn`1

“

ż

fYn`1|X1:n ,Xn`1,Y1:n
pyn`1|x1:n , xn`1, y1:nq

fXn`1|X1:n ,Y1:n
pxn`1|x1:n , y1:nq dxn`1
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Linear regression

Suppose that we have the linear regression model

Yi “ xiβ ` εi

where for i “ 1, . . . ,n

§ Yi is a scalar

§ xi is p1ˆ dq

§ β is pd ˆ 1q

§ εi „ Normalp0, σ2q, independently.

This describes the model for the partially exchangeable Yi

conditional on the Xi “ xi .

§ There may or not be a need to model the distribution of
the Xi .
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Linear regression

In vector form

Y “ Xβ ` ε

where Y and ε are pn ˆ 1q, X is pn ˆ dq.

We then have that in the conditional model

fY1,...,Yn |X1,...,Xn
py1, . . . , yn |x1, . . . , xn ;β, σ2q ” NormalnpXβ, σ

2Inq

where In is the pn ˆ nq identity matrix.
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Linear regression

Therefore the likelihood is

Lnpβ, σ
2q “

ˆ

1

2πσ2

˙n{2

exp

"

´
1

2σ2
py´ XβqJpy´ Xβq

*

.

A conjugate prior in this setting can be factorized

π0pβ, σ
2q “ π0pσ

2qπ0pβ|σ
2q

where

π0pσ
2q ” InvGammapa0{2,b0{2q

π0pβ|σ
2q ” Normald pm0, σ

2M0q

where a0,b0,m0 and M0 are fixed constant hyperparameters.
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Linear regression

π0pσ
2q “

pb0{2qa0{2

Γpa0{2q

ˆ

1

σ2

˙a0{2`1

exp

"

´
b0

2σ2

*

π0pβ|σ
2q “

ˆ

1

2πσ2

˙d{2 1

|M0|
1{2

exp

"

´
1

2σ2
pβ ´m0q

JM´1
0 pβ ´m0q

*

To compute the joint posterior πnpβ, σ
2q up to proportionality

Lnpβ, σ
2qπ0pβ, σ

2q

we need to examine the exponent as a quadratic form.
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Linear regression

The expression

py´ XβqJpy´ Xβq ` pβ ´m0q
JM´1

0 pβ ´m0q

equates to

pβ ´mnq
JM´1

n pβ ´mnq ` cn

where we need to find expressions for mn , Mn and cn .

§ Quadratic term:

βJM´1
n βJ “ βJXJXβJ ` βJM´1

0 βJ

so therefore

M´1
n “ XJX`M´1

0 6 Mn “ pX
JX`M´1

0 q´1
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Linear regression

§ Linear term:

βJM´1
n mn “ βJXJy` βJM´1

0 m0

so therefore

mn “ MnpX
Jy`M´1

0 m0q

“ pXJX`M´1
0 q´1pXJy`M´1

0 m0q
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Linear regression

§ Constant term:

mJ
n M´1

n mn ` cn “ yJy`mJ
0 M´1

0 m0

so therefore

cn “ yJy`mJ
0 M´1

0 m0 ´mJ
n M´1

n mn
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Linear regression

Therefore for the joint posterior up to proportionality is

ˆ

1

σ2

˙

pn`a0`dq
2 `1

exp

"

´
pcn ` b0q

2σ2

*

ˆ exp

"

´
1

2σ2
pβ ´mnq

JM´1
n pβ ´mnq

*

from which we can conclude directly that for the
conditional posterior

πnpβ|σ
2q ” Normald pmn , σ

2Mnq
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Linear regression

Integrating out β from the joint posterior, we obtain that
up to proportionality

πnpσ
2q ∝

ˆ

1

σ2

˙

pn`a0q
2 `1

exp

"

´
pcn ` b0q

2σ2

*

that is

πnpσ
2q ” InvGammapan{2,bn{2q

where

an “ n ` a0 bn “ cn ` b0
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Linear regression

Finally, we can compute the marginal posterior for β.
From the arguments above we have that the joint
posterior takes the form

πnpβ|σ
2qπnpσ

2q

which equates to

pbn{2qan{2

Γpan{2q

ˆ

1

σ2

˙an{2`1

exp

"

´
bn

2σ2

*

ˆ

ˆ

1

2πσ2

˙d{2 1

|Mn |
1{2

exp

"

´
1

2σ2
pβ ´mnq

JM´1
n pβ ´mnq

*
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Linear regression

The constant term is

pbn{2qan{2

Γpan{2q

ˆ

1

2π

˙d{2 1

|Mn |
1{2

and to marginalize we must compute

ż 8

0

ˆ

1

σ2

˙
an`d

2 `1 "

´
1

2σ2

“

bn ` pβ ´mnq
JM´1

n pβ ´mnq
‰

*

dσ2
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Linear regression

The integrand is the kernel of an Inverse Gamma pdf so
therefore we have that the integral equates to

Γppan ` dq{2q
"

1

2

“

bn ` pβ ´mnq
JM´1

n pβ ´mnq
‰

*
an`d

2
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Linear regression

Combining terms together, we have that

πnpβq “

b
an{2
n

Γpan{2qπd{2

1

|Mn |
1{2

Γppan ` dq{2q
 

bn ` pβ ´mnq
JM´1

n pβ ´mnq
(

an`d
2

which is a multivariate Student-t distribution.
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Linear regression

Note

We may express prior ignorance concerning β by considering
M´1

0 ÝÑ 0, in which case

mn ÝÑ pXJXq´1XJy

and
Mn ÝÑ pXJXq´1

yielding results equivalent to those of maximum likelihood.

This ‘uniform’ prior for β is in line with the earlier non-
informative constructions.
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Linear regression

Note

An alternative is the g-prior: for hyperparameter λ ą 0

M0 “ λ´1pXJXq´1

in which case
Mn “ p1` λq

´1pXJXq´1
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Linear regression

Note

If, for hyperparameter λ ą 0

m0 “ 0d M0 “ λId

then
mn “ pX

JX` λId q
´1XJy

and
Mn “ pX

JX` λId q
´1

yields the ridge regression procedure
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Linear regression

Note

The log density is

`pβ, σ2q “ ´
1

2
log σ2 ´

1

2σ2
py ´ xβq2 ` constant

so therefore

B`pβ, σ2q

Bβ
“

1

σ2
xJpy ´ xβq

B2`pβ, σ2q

BβBβJ
“ ´

1

σ2
xJx
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Linear regression

Note

Also

B`pβ, σ2q

Bσ2
“ ´

1

2σ2
`

1

2σ4
py ´ xβq2

B2`pβ, σ2q

Bpσ2q2
“

1

2σ4
´

1

σ6
py ´ xβq2

and
B2`pβ, σ2q

BβBσ2
“ ´

1

σ4
xJpy ´ xβq
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Linear regression

Note

Hence the (unit) Fisher information is

Ipβ, σ2q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

»

—

–

´
1

σ2
xJx 0

0 ´
1

2σ2

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˆ

1

σ2

˙pd`1q{2
ˇ

ˇxJx
ˇ

ˇ

which implies that Jeffreys’s prior for linear regression is

π0pβ, σ
2q ∝

ˆ

1

σ2

˙pd`1q{2
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Linear regression

Note

This prior depends on dimension d . It is common instead to
use the prior

π0pβ, σ
2q ∝

1

σ2

as an invariant prior for linear regression.

198



Non-linear regression

§ Generalized Linear Models: fY |X py|xq follows an Expo-
nential Family Model with

EY |X rY |X “ x;βs “ g´1pxβq ” µ

VarY |X rY |X “ x;βs “ Vpµq

that is

gpµq “ xβ

for some link function, g.
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Non-linear regression

Example: Poisson regression

Yi |Xi “ xi „ Poissonpµi q

EY |X rYi |Xi “ xi ;βs “ exppxiβq ” µi

VarY |X rY |Xi “ xi ;βs “ µi

so that

Lnpβq “
n
ź

i“1

exptyi logµi ´ µiu

yi !
“

n
ź

i“1

exptyixiβ ´ exptxiβuu

yi !
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Non-linear regression

Example: Poisson regression

`npβq “
n
ÿ

i“1

pyixiβ ´ exptxiβuq ` const.

9̀
npβq “

n
ÿ

i“1

`

yix
J
i ´ exptxiβux

J
i

˘

“

n
ÿ

i“1

xJi pyi ´ exptxiβuq

:̀
npβq “ ´

n
ÿ

i“1

exptxiβux
J
i xi

that is, writing DpXβq “ diagpx1β, . . . , xnβq.

9̀
npβq “ XJpy´ µq :̀

npβq “ ´XJDpXβqX
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Non-linear regression

Example: Binary regression

Yi |Xi “ xi „ Bernoullipµi q

EY |X rYi |X “ xi ;βs “
exppxiβq

1` exppxiβq
” µi

VarY |X rYi |Xi “ xi ;βs “ µi p1´ µi q
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Non-linear regression

Example: Binary regression

Lnpβq “
n
ź

i“1

exp tyi logµi ` p1´ yi q logp1´ µi qu

“

n
ź

i“1

exp

"

yi log

ˆ

µi

1´ µi

˙

` logp1´ µi q

*

“

n
ź

i“1

exp tyixiβ ´ logp1` exptxiβuqu
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Non-linear regression

Example: Binary regression

`npβq “
n
ÿ

i“1

pyixiβ ´ logp1` exptxiβuq

9̀
npβq “

n
ÿ

i“1

xJi

ˆ

yi ´
exptxiβu

1` exptxiβu

˙

:̀
npβq “ ´

n
ÿ

i“1

exptxiβu

p1` exptxiβuq2
xJi xi “ ´

n
ÿ

i“1

µi p1´ µi qx
J
i xi

that is, now writing DpXβq “ diagpµ1p1´ µ1q, . . . , µnp1´ µnqq.

9̀
npβq “ XJpy´ µq :̀

npβq “ ´XJDpXβqX
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Non-linear regression

Using the quadratic approximation theory, we have that

Lnpβq l cnppβnq exp

"

´
1

2
pβ ´ pβnq

JΣ´1
n ppβnqpβ ´ pβnq

*

where

Σnppβnq “

´

XJDpXpβnqX
¯´1

This approximate likelihood can be combined with a Nor-
mal prior on β.
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Non-linear regression

Example: GLM

See knitr 3.
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Non-linear regression

§ Non-linear regression:

Yi “ gpxi ; θq ` εi

where gp.; .q is some non-linear function of its arguments,
and εi „ Normalp0, σ2q.

Lnpθ, σ
2q “

ˆ

1

2πσ2

˙n{2

exp

#

´
1

2σ2

n
ÿ

i“1

pyi ´ gpxi ; θqq
2

+

.
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Non-linear regression

Example: Exponential decay models

For θ “ pθ1, θ2, θ3, θ4q
J with θj ą 0 for j “ 1,2,3,4

gpxi ; θq “ θ1e´θ2xi ` θ3e´pθ2`θ4qxi

where xi ą 0 is a scalar quantity.
§ pθn found numerically;
§ 9̀pθ, σ2q and :̀pθ, σ2q straightforward to compute;
§ similar Normalppθn ,Σnppθnq approximation available.
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Latent variable models

Latent (or auxiliary) variables can be introduced to simplify
calculations in a model.

Suppose fY py; θq is intractable, but

fY py; θq “

ż

fY ,Z py, z; θq dz

for some other variable Z , where the augmented joint distri-
bution

fY ,Z py, z; θq

is tractable.
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Latent variable models

Example: Mixture model

Suppose

fY py; θq “ p1´ ωqf0py; θ0q ` ωf1py; θ1q

so that θ “ pω, θ1, θ2q, so that 0 ă ω ă 1. Then

fY py; θq “
1
ÿ

z“0

fY ,Z py, z; θq “
1
ÿ

z“0

fY |Z py|z; θqpZ pz; θq

where

pZ pz; θq “ PrrZ “ zs “

"

1´ ω z “ 0
ω z “ 1

and
fY |Z py|z; θq “ fzpy; θzq z “ 0,1.
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Latent variable models

Example: Mixture model

Then

fY ,Z pyi , zi ; θq “ ωzi p1´ ωq1´zi f0pyi ; θ0q
zi f1pyi ; θ1q

1´zi

and the sum in the original pdf fY py; θq has become a product .
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Latent variable models

Example: Mixture model

Then

n
ź

i“1

fY pyi ; θq “
n
ź

i“1

tp1´ ωqf0pyi ; θ0q ` ωf1pyi ; θ1qu

which is not very tractable, but

n
ź

i“1

fY ,Z pyi , zi ; θq “
n
ź

i“1

1
ź

z“0

tωz fzpy; θzqu
1zpzi q

where ω0 “ p1´ ωq and ω1 “ ω, which is more tractable.
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Latent variable models

Example: see also

‚ data with censoring;

‚ state space models.
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Hierarchical models

Hierarchical or multi-level models are built by ‘stacking’ lev-
els of variables.

§ random effects (or mixed ) models;

§ multi-level models
§ hospital/physician or school league tables;
§ multi-arm clinical studies;
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Hierarchical models

Example: Multi-centre models

K centres, labelled 1,2, . . . ,K .

‚ STAGE 3: For centre k , data Yk1, . . . ,Yknk partially ex-
changeable, and conditionally independent given centre
parameter θk . For each k

nk
ź

i“1

fk pyki ; θk q.

‚ STAGE 2: Parameters θ1, . . . , θK exchangeable,

K
ź

k“1

π
p2q
0 pθk |φq.

‚ STAGE 1: Prior on φ, π
p1q
0 pφq.
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Hierarchical models

Example: Multi-centre models

Data generating model:

‚ Pick φ „ π
p1q
0 pφq

‚ Pick θ1, . . . , θK „ π
p2q
0 pθk |φq

‚ For each k “ 1, . . . ,K , pick

Yk1, . . . ,Yknk „ fk p.; θk q
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Hierarchical models

Example: Multi-centre models

φ

θ1

y11 . . . y1n1

θ2

y21 . . . y2n2

. . . θK

yK1 . . . yKnK

π
p1q
0 pφq

π
p2q
2 pθk |φq

fk pyki ;θk q

STAGE 1

STAGE 2

STAGE 3
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Hierarchical models

The posterior distribution πnpφ, θ1, . . . , θK q is given, up to pro-
portionality, by

πnpφ, θ1, . . . , θK q ∝

#

K
ź

k“1

#

nk
ź

i“1

fk pyki ; θk q

+

π
p2q
0 pθk |φq

+

π
p1q
0 pφq
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Neural network models

...

...
...

X1

X2

X3

XK

Z1

ZL

Y1

YD

Input
layer

Hidden
layer

Output
layer
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Neural network models

Hidden Layer:

Zl “ g1l

˜

K
ÿ

k“1

w
p1q
lk Xk ` b

p1q
l , εl

¸

l “ 1, . . . ,L

with ε1, . . . , εL residual errors.

Output Layer:

Yd “ g2d

˜

L
ÿ

l“1

w
p2q
dl Zl ` b

p2q
d , εd

¸

d “ 1, . . . ,D

with ε1, . . . , εD residual errors.
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Neural network models

§ Data on X1, . . . ,XK and Y1, . . . ,YD observed;

§ Parameters are

Weights : w
p1q
lk , l “ 1, . . . ,L , k “ 1, . . . ,K

: w
p2q
dl ,d “ 1, . . . ,D , l “ 1, . . . ,L

Biases : b
p1q
1 , l “ 1, . . . ,L

: b
p2q
d ,d “ 1, . . . ,D

§ Link functions g1l p.q, l “ 1, . . . ,L and g2d p.q,d “ 1, . . . ,D .
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Neural network models

The complete data likelihood Lnpw,dq is given, up to propor-
tionality, by

Lnpw,dq “
n
ź

i“1

#

L
ź

l“1

!

fZli |Xi
pzli |xi ; w

p1q,dp1qq
)

(hiddenq

ˆ

D
ź

d“1

!

fYdi |Zi
pydi |zi ; w

p2q,dp2qq
)

+

(outputq

where the hidden variables

Zli , l “ 1, . . . ,L , i “ 1, . . . ,n

are treated as auxiliary quantities.
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1.6 Model selection approaches

It is often necessary to consider model selection and evalua-
tion approaches

§ in-sample validity;

§ generalization;
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Assumptions

Consider the exchangeable, continuous case.

§ For the inference model
§ θ P Rd ,
§ likelihood model fY py; θq,
§ prior π0pθq.
§ posterior πnpθq.

§ Suppose that the data-generating model is

f˚pyq ” f˚py;ϕq

with ϕ a fixed (but unknown to the modeller) value, so
that exchangeability reduces to independence.
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Predictive performance

The predictive distribution for the ‘next’ data point is

pnpyq ” pYn`1|Y1,...,Yn
py|y1, . . . , ynq “

ż

fY py; θqπnpθq dθ

and is the usual Bayesian estimator of f˚pyq. It is used to
assess the quality of a proposed model.
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Predictive performance

If we consider instead

rpnpyq “ pYn`1|Y1,...,Yn
py|Y1, . . . ,Ynq

then the predictive distribution itself is a random function, as
it is a function of the random variables Y1, . . . ,Yn , not the data
y1, . . . , yn .

We may similarly consider the random posterior rπnpθq, a func-
tion of θ that is random because its inputs are Y1, . . . ,Yn in-
stead of y1, . . . , yn .

226



Predictive performance

The KL divergence between f˚pyq and pnpyq is

KLpf˚,pnq “

ż

log

ˆ

f˚pyq

pnpyq

˙

f˚pyq dy

“

ż

logpf˚pyqqf˚pyq dy ´

ż

logppnpyqqf
˚pyq dy.

(♦)

The first term in (♦) is a constant which does not depend on
the inference model.

A random variable version KLpf˚, rpnq can also be considered.
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Predictive performance

§ Training loss: The training loss, Tn , is a measure that
approximates the KL divergence based on the sample

Tn ” TpY1, . . . ,Ynq “ ´
1

n

n
ÿ

i“1

log rpnpYi q

which can be regarded as a sample-based estimator of
the second term in (♦), with the data drawn indepen-
dently from f˚.

In this form, Tn is random variable as it depends on rpn .
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Predictive performance

§ Generalization loss: The generalization loss, Gn , is the
second term in (♦):

Gn ” GpY1, . . . ,Ynq “ ´

ż

log rpnpyqf
˚pyq dy.

This can only be computed precisely if f˚pyq is known.
However, we can interpret Gn as a measure of proximity
of the predictive model to the data-generating distribu-
tion.

229



Predictive performance

Note

The first term in (♦) is often denoted S

S “

ż

logpf˚pyqqf˚pyq dy

and is termed the entropy of f˚. The quantity

Gn ´ S

is termed the generalization error: note that Gn ě S as the
KL divergence is non-negative.
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Predictive performance

§ Cross-validation loss: The cross-validation loss, Cn , is
defined by

Cn “ ´
1

n

n
ÿ

i“1

log rp
p´iq
n pYi q

where rp
p´iq
n pyq is the posterior predictive distribution de-

rived from the random variables

Y
p´iq
1:n “ pY1, . . . ,Yi´1,Yi`1, . . . ,Ynq

that is, the original collection with Yi removed.
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Predictive performance

Taking expectations of Gn and Cn with respect to the joint
pdf of Y1, . . . ,Yn , which by independence reduces to

n
ź

i“1

f˚pyi q

we can establish connections between the losses.
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Predictive performance

Provided all expectations are finite

ErCn s “ EY1,...,Yn

«

´
1

n

n
ÿ

i“1

log rp
p´iq
n pYi q

ff

“ ´
1

n

n
ÿ

i“1

E
Y
p´iq
1:n

”

EYi

”

log rp
p´iq
n pYi q

ıı

“ ´
1

n

n
ÿ

i“1

E
Y
p´iq
1:n

„
ż

log rp
p´iq
n pyqf˚pyq dy



where the second line follows using iterated expectation.
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Predictive performance

But for i “ 1,2, . . . ,n the terms

ż

log rp
p´iq
n pyqf˚pyq dy

are identically distributed random variables, so

´
1

n

n
ÿ

i“1

E
Y
p´iq
1:n

„
ż

log rp
p´iq
n pyqf˚pyq dy



is equal to

E
Y
p´1q
1:n

„

´

ż

log rp
p´1q
n pyqf˚pyq dy



” ErGn´1s

again as Y1, . . . ,Yn are iid from f˚.
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Predictive performance

Note also that

p
p´iq
n pyq “

ż

fY py; θqπ
p´iq
n pθq dθ

“

ż

fY py; θq

ś

j‰i
fY pyj ; θqπ0pθq

ż

ź

j‰i

fY pyj ; tqπ0ptq dt
dθ

so therefore

rp
p´iq
n pYi q “

ż

fY pYi ; θq
ź

j‰i

fY pYj ; θqπ0pθq dθ

ż

ź

j‰i

fY pYj ; tqπ0ptq dt
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Predictive performance

Numerator:

ż

fY pYi ; θq
ź

j‰i

fY pYj ; θqπ0pθq dθ “

ż n
ź

j“1

fY pYj ; θqπ0pθq dθ

Denominator:

ż

ź

j‰i

fY pYj ; tqπ0ptq dt “

ż

1

fY pYi ; tq

n
ź

j“1

fY pYj ; tqπ0ptq dt
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Predictive performance

Therefore

Cn “ ´
1

n

n
ÿ

i“1

log rp
p´iq
n pYi q

“
1

n

n
ÿ

i“1

log

ż

1

fY pYi ; tq

n
ź

j“1

fY pYj ; tqπ0ptq dt

ż n
ź

j“1

fY pYj ; θqπ0pθq dθ

“
1

n

n
ÿ

i“1

log

ż

1

fY pYi ; tq

n
ś

j“1
fY pYj ; tqπ0ptq

ż n
ź

j“1

fY pYj ; θqπ0pθq dθ

dt
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Predictive performance

But t and θ are merely dummy integrating variables, so
we may exchange them and write

Cn “
1

n

n
ÿ

i“1

log

ż

1

fY pYi ; θq

n
ś

j“1
fY pYj ; θqπ0pθq

ż n
ź

j“1

fY pYj ; tqπ0ptq dt

dθ

“
1

n

n
ÿ

i“1

logE
rπn

„

1

fY pYi ; θq



as the term in red is merely the random variable version
of the posterior rπnpθq.
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Predictive performance

This identity may be useful as it gives an expression for
computing the numerical value of Cn which does not de-
pend on the leave-one-out posterior distributions:

§ the original formula requires n separate posterior calcu-
lations of the quantities pp´iq

n pyq;
§ the new formula requires only the computation of πnpθq,

the full posterior;
§ the new formula does require the computation of

Eπn

„

1

fY pyi ; θq



for i “ 1, . . . ,n.
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Predictive performance

§ WAIC: The widely applicable information criterion (or
WAIC), Wn , is defined by

Wn “ Tn `
1

n

n
ÿ

i“1

Var
rπn rlog fY pYi ; θqs

where, recall, Tn is the training loss

Tn “ ´
1

n

n
ÿ

i“1

log rpnpYi q
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Predictive performance

Note

It can be shown that if Y1, . . . ,Yn are independently drawn,
then

Wn “ Cn ` Op

ˆ

1

n2

˙

and so Wn provides a tractable approximation strategy.
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Predictive performance

§ Marginal likelihood (or prior predictive): The nor-
malizing constant that appears in the denominator of the
(random) posterior rπnpθq is

Zn ” ZpY1, . . . ,Ynq “

ż n
ź

i“1

fY pYi ; θqπ0pθq dθ.

and, by de Finetti, this can be interpreted as the value of
the (random) joint pdf

fY1:n pY1:nq ” fY1,...,Yn pY1, . . . ,Ynq.
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Predictive performance

The quantity Zn is termed the
§ marginal likelihood ,
§ prior predictive distribution.

In this form, Zn “ ZpY1, . . . ,Ynq is a random variable:

zn “ Zpy1, . . . , ynq

can also be computed.

243



Predictive performance

Note that

KLpf˚Y1:n
, fY1:n q “

ż

log

ˆ

f˚Y1:n
py1:nq

fY1:n py1:nq

˙

f˚Y1:n
py1:nq dy1:n

measures the divergence between the data-generating
joint pdf

f˚Y1:n
py1:nq “

n
ź

i“1

f˚Y pyi q

and the modelled joint pdf fY1:n py1:nq.
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Predictive performance

Thus

KLpf˚Y1:n
, fY1:n q “

ż

log f˚Y1:n
py1:nqf

˚
Y1:n
py1:nq dy1:n

´

ż

log fY1:n py1:nqf
˚
Y1:n
py1:nq dy1:n

for which the term being subtracted is

Ef˚Y1:n
rlog fY1:n pY1:nqs “ Erlog Zn s.
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Predictive performance

The random variable

Fn “ ´ log Zn

that is, minus the log marginal likelihood, is sometimes
termed the free energy.
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Predictive performance

We have that

pnpyn`1q “

ż

fY pyn`1; θq

n
ś

i“1
fY pyi ; θqπ0pθq

ż n
ź

i“1

fY pyi ; tqπ0ptq dt

dθ

“

ż n`1
ź

i“1

fY pyi ; θqπ0pθq dθ

ż n
ź

i“1

fY pyi ; tqπ0ptq dt

“
zn`1

zn
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Predictive performance

Therefore

log rpnpYn`1q “ log Zn`1 ´ log Zn “ Fn ´ Fn`1.
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Note

Note that by direct calculation, we have

ErGn s “ ErFn`1s ´ ErFn s

or equivalently

ErFn s “ ErF1s `

n´1
ÿ

i“1

ErGi s
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The quantities

§ Tn

§ Gn

§ Cn

§ Wn

§ Fn

can all be used for model evaluation and comparison.
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