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Introduction

The objective of a statistical analysis is to use data to make
optimal and coherent decisions, including

» inference: making statements about the unknown data
generating mechanism;

» prediction: making statements about as yet unobserved
(‘future’) data,

whilst appropriately representing the uncertainty associated
with these decisions.

Typically, the analysis is based on a probabilistic (or statisti-
cal) model.



Notation and Basic Concepts

Let Y denote a single random variable taking valueson Y < R.
» Y records the result of some measurement procedure;
» )V could be countable (so that Y is ‘discrete’).

Let y denote an observed value associated with Y.



Notation and Basic Concepts

A probability model for Y is encapsulated in a probability
function, Py(.), where (informally) for set A € R,

Py(A) = Pr[Y € A]
and more specifically
Py ((—w,c])=Pr[Y <c].
We define the distribution function, Fy(.), via the specification

Fy(c) =Py ((—o0,c] ) =Pr[Y < c] ceR.



Notation and Basic Concepts

If Y is discrete, then

yZ{Yik7y;7,}

and for any y € R, we have
Fy(y)= ), PrlY=y'l= > pv(y)
Jyf<y Jyf<y

say, where
py(yj") = Pr[Y = y]
is the probability mass function (pmf) for Y.



Notation and Basic Concepts

If we can write

B - [ #oa yer

—00

then we term Fy an absolutely continuous distribution, with

fy(y)

termed the probability density function (pdf) for Y. In this

case
~ dFy(t)

fy(y) dt

t=y
Note: more generally a distribution can have both discrete
and continuous components.



Notation and Basic Concepts

For simplicity we can unify notation for the discrete and con-
tinuous cases by writing

> py(¥) Y discrete
yeA

Pr(YeA) = f Fy(dy) =
)

A fy(y) dy Y continuous

The notation

Pr(YeA) = L dFy(y)

is also used.



Notation and Basic Concepts

In practice, we observe data (‘observables’)

yi,---»¥n

and use them to learn about the unknown (‘unobservable’)
model Py or Fy, or features of it such as its expectation

0 = Jy Fy(dy)

That is, it is the distribution Fy that is unknown.



Notation and Basic Concepts

The data are realizations of random variables Yi,...,Y,, and
we have observed the event

Pr [ﬂm - {ym] :

i=1

This is a joint probability, so we need to consider the joint

probability model
n
[ﬂ (Y; € A}) ]

for arbitrary subsets A;, ..., Ay of R.



Notation and Basic Concepts

Specifically, we consider the joint cdf

n
Fy,,..ya(¥1,--.,¥n) =Pr [ﬂ(Yi < Yi)] (V1.

i=1

or quantities derived from it (joint pdf etc).

,Yn) € ]RH
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Notation and Basic Concepts

A typical assumption is that Yi,..., Y, are independent, that
is that for all (y1,...,yn) € R®

so that
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Notation and Basic Concepts

Further, it is often assumed that the Yi,..., Y, are identically
distributed

n

FYl,.-.,Yn(.}q)' .. ayn) = HFY(YI)
i=1

However, these are quite strong assumptions.
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Notation and Basic Concepts

A weaker assumption is that of infinite exchangeability: we
consider an infinite sequence

Y1,Ys, Y5, ...
for which, for all n > 1 and sets A1,...,A; we have that
n n
Pr [ﬂ(Yj S AI-)] = Pr [ﬂ(Yj € Ag(j))]
i=1 i=1
for all permutations (o(1),...,0(,)) of indices (1,...,n).

13



Notation and Basic Concepts
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Notation and Basic Concepts

For infinite exchangeability: need this kind of relationship

(a) to hold for any finite n drawn from the infinite sequence

(b) to respect marginalization conditions; that is

i=1

Pr [ﬁ(Yi < Yi)]

must be compatible with

Pr rﬁl(Yi < Yi)]

i=1

in the sense that

n n+1
Pr Y. <yj)|= lim Pr
[ACEI TSy
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Notation and Basic Concepts

Example: Binary case

Suppose we have an infinitely exchangeable sequence {Y,},
where for each i, Y; € {0,1}. Consider forn > 1

Pr{(Y1 =y1) n--- 0 (Yo = yn)]
which we may write in short
Pr[Y1 = y1,..., Yn = ¥al,
where we consider vector arguments

(y1,---,¥n) € {0,1}"
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Notation and Basic Concepts

Example: Binary case

Then under infinite exchangeability, we must have that
Pr[Yl = Yi,---5¥n — YH]

depends only on the value of

n
Sn = Z Yi-
i=1

For each n, there are 2" possible binary vectors of length n,
but
sp€{0,1,...,n}

so there are a maximum of (n + 1) different probabilities, al-
though these probabilities must sum to 1.

17



Notation and Basic Concepts

Example: Binary case

* n=1: s, €{0,1}, so denote the probabilities p; o and
P11, where we must have

pPio=1-p11
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Notation and Basic Concepts

Example: Binary case

* n =2:s,€{0,1,2}, so denote the probabilities p; o, p2.1
and p; 2, where we must have that

pP20=1—p21—p22
but also due to marginalization that
P1y, = Pr[Y1 = yi]
=Pr[Y1 =yn,Y2 =0] + Pr[Y1 =y, Y2 = 1]
= DP2,y; t D2,y +1
for y; € {0,1}.
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Notation and Basic Concepts

Example: Binary case

This construction be extended to define the required relations
for any n.

However, to specify the distribution in this way, we need to
specify and compute the relations for all n.
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Notation and Basic Concepts

Example: Binary case

Assuming independence, we have
n
PrYr = y1,..., Yo = yu] = | [ Pr[Yi = 3] = p™ (1 —p)*
i=1

where
pZPr[YjZYj] i=1,...,n.
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Conditional probability

For two events, E;, E; with P(Ez) > 0, we have that

P(El M Ez)

PIEIE) = = p ()

is the conditional probability for E; given Ej.
» P(E,) is the probability that E; occurs;

» P(E1|E3) is the probability that E; occurs if we have in-
formation that E; occurs.

» relative to the probability of E,, what is the probability
that both E; and E; occur ?

» E; and E; are independent if and only if P(E1|E;) = P(E1)
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Conditional probability

For two events, E1, E; with both P(E;) > 0 and P(E;) > 0, we
have by the definition that

Ep|E1)P(E1)
P(Ep) ’

P(Ei|Ez) = il

We know this result as Bayes Theorem.
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Conditional probability

Exchangeability assumptions allow for dependence: that is,
for example

PI‘[YH_H € An+1‘Y1 =Vi,---, Yn = yn]

does not reduce to
Pr[Y, 1 € Apy1]

as in the independence case. That is, for all i and j, Y; and Y;
are identically distributed, but not independent.
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Conditional probability

Example: Infinitely exchangeable binary case

Pr[YH+1 = 1|Y1 = yla"'7YIl = .Vn]

_ Pr[Yl =Y1,...,Yn =Vn,Yni1 = 1]
PI‘[Yl :yla"'vYH :_Vn]

_ pn+1,sn+1
Pns,

where

n
Sp = Z Yi-
i=1
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Conditional probability

Example: Independent binary case

Pr[Y,;1 =1|Y1 = y1,..., Y, = yn]

_ Pr[Yl =Y1,...,Yp =¥n, Yni1 = 1]
Pr[Y1 =yi1,..., Yy = yu]

ps,,+1(1 . p)n_s“
= psn(l _ p)nfsn

=p
— Pr[Yps1 = 1]
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Conditional probability

It is possible to consider finite exchangeability, where the ex-
changeability holds for a finite collection of random variables,
that is, for a specific n > 1

Pr[ﬁ(Yi ]= [ﬁ < Yo(i) ]

i=1

for all permutations (o(y),...,0(,)) of indices (1,...,n).
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Inference and prediction

In statistical calculations

» we observe data yi, ..., y, and wish to make statements
about unknown quantities in light of the data;

» given the data, what do we think about the model ?

If Fy is known, there is no inference problem, and prediction
can be carried out via Fy.
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Inference and prediction

If Fy is unknown, then it is the focus of our inference.

» we treat Fy as an unknown, and make statements about
it in light of the data;

» given the data, what do we think about Fy ?

We treat Fy as a random variable.
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Inference and prediction

If Fy is unknown, then an independent and identically dis-
tributed (IID) statement of the sort above is really a condi-
tional statement given Fy.

Pr[ﬁ(n <)
i=1

FY] = ﬁ Fy(yi)
i=1
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Inference and prediction

If Fy is a random variable, we must be able to specify a prob-
ability distribution for it:

» in general, Fy is an infinite-dimensional object;
» Fy has certain specific properties.

Need the capability to build a probability distribution on the
space of functions. F say, that satisfy the properties of distri-
bution functions.
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Parametric modelling

The most common approach involves using a finite dimen-
sional ‘parameter’, # € RY say, and specifying that

Fy(y) =Fy(y;0) yeR

so that the unknown quantity is now 6, and Fy(.;0) is a known
functional form. Then

| ey

|-
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Non-parametric modelling

The non-parametric approach involves using an infinite di-
mensional parameter, the function Fy(.) itself. We write

Pr [ﬂ(YI <yi) FY] = HFY(Yi)
i=1 i=1
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Semi-parametric modelling

The semi-parametric approach involves using a model that is
specified in terms of both

» a finite dimensional parameter, # € RY

» an infinite dimensional parameter.

Example: Semi-parametric location model

The model

Fy(y;0) = F(y —0)

where # € R and F is an arbitrary cdf is a semi-parametric
location model for a univariate random variable Y.
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Interest and nuisance parameters

We often partition parameters into two components
» parameters of interest: the focus of inference;

» nuisance parameters: parameters necessary for the
specification of the probability model, but which are not
the focus of interest.

In the parametric case, we might partition 6 = (¢, \) where ¢
is the parameter of interest.

In the semi-parametric case, the non-parametric component
is usually regarded as nuisance parameter.
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Interest and nuisance parameters

In the non-parametric case, inference focusses on Fy itself, or
possibly some functional of Fy, for example the expectation
of Fyz

u(Fy) = Ey[Y; Fy] = j y dFy(y) = f y Fy(dy)
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Part 1

Bayesian Theory




1.1 De Finetti’s Representation

The first key result of Bayesian theory is a representation re-
sult for the probability distribution of infinitely exchangeable
random variables.

» the theorem characterizes all possible forms for the dis-
tribution;

» it gives a straightforward mechanism for the construc-
tion of arbitrary distributions for infinitely exchangeable
sequences;

» this result underpins the logic of Bayesian inference and
prediction.
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1.1 De Finetti’s Representation

Theorem: 0-1 representation theorem

Suppose that Y7, Ys, ... is an infinitely exchangeable sequence
of 0-1 variables. Then there exists a distribution function
mo(.) such that for all n > 1, the joint mass function of
(Y1,Y2,...,Y,) can be represented

1 n
PY Yo, Yo (V1, Y25, Vn) = f {H 0% (1 — W”}Wo (do)
0 (i=1

for some probability distribution 7g(.).

de Finetti, Hewitt-Savage
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1.1 De Finetti’s Representation

Theorem: 0-1 representation theorem

Furthermore, m(.) is defined for 0 < 6 < 1 by

0
f 7o (dt) — Tim Pr[R, < 0] 0)
0 n—oo
and where .
S
Sn = Zi Y; Ry = f.
=

40



1.1 De Finetti’s Representation

Theorem: 0-1 representation theorem

We define

0o = lim R,

n—0o0

that is, R, =5 6y; the quantity 0y is the limiting relative fre-
quency of 1s in the infinitely exchangeable binary sequence.

Proof: See Handout 01.
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1.1 De Finetti’s Representation

Note

@)

(i1)

The converse of the theorem is also true: it is straightfor-
ward to see that the distributions formed by computing
the integral for a given 7 (.) are finite dimensional distri-
butions derived for an infinitely exchangeable sequence.

The quantity 6§ parameterizes the conditional distribution
of the Yj; we can interpret

n
HQYi (1 — 1 e HpY .Vu
i=1

and deduce that for each n, Y1,...,Y, are conditionally
independent given 6.
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1.1 De Finetti’s Representation

(iii) The quantity # parameterizes the conditional distribution
of the Y;; we can interpret

n
[To" =0 = [Tonions
i=1

and deduce that for each n, Yi,...,Y, are conditionally
independent given 6.
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1.1 De Finetti’s Representation

(iv) mo(.) is a probability distribution for ¢, but the general-
ity of the construction does not specify what form m((d#)
should take; different choices for mo(.) will lead to differ-
ent exchangeable forms.

(v) We often relax notation and allow 7 (.) to denote either
the cdf or the pdf whenever convenient to do so.
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1.1 De Finetti’s Representation

The theorem extends to arbitrary infinitely exchangeable se-
quences.

Theorem: General representation theorem

Suppose that

®* Y1,Y,,... is an infinitely exchangeable sequence of vari-
ables taking values on R;

® Py is a probability measure on R® that defines all finite
dimensional distributions for {Y,}7_;;

e T denotes the set of all distribution functions on R.
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1.1 De Finetti’s Representation

Theorem: General representation theorem

Then there exists a distribution function m¢(.) on F, such that
the joint distribution of (Y1, Yz,..., Yy) has the form

o] ] o

where F parameterizes the model: F is an unobservable dis-
tribution function.
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1.1 De Finetti’s Representation

Theorem: General representation theorem

We interpret F via its limiting form; let Fy be a distribution
function defined for y € R by

is a distribution on the space of functions 5, defined as a limit
as n — oo of the empirical distribution function, F;, defined
for Yq,...,Y,.

47



1.1 De Finetti’s Representation

(i) The unknown distribution F parameterizes the condi-
tional distribution of the Y;;

n

[[F)

i=1

indicates that for each n, Yi,...,Y, are conditionally in-
dependent given F.

(ii) mo(.) is a probability distribution for F; that is, it is a prob-
ability distribution on the space F of distribution func-
tions. Calculations require (Lebesgue) integrals over F
taken with respect to 7.
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1.1 De Finetti’s Representation

(iii) Fy is the limiting empirical distribution function:
> classical results tell us that this limiting distribution can
be interpreted as the true marginal distribution function

for the Y;;
> the limiting form does not tell us about the joint structure

of the Y;.
(iv) mo(.) is a probability distribution for F; therefore it is
a probability distribution on the space F of distribution
functions.
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1.1 De Finetti’s Representation

(v) F, is the empirical distribution function:

» this is the classical estimator of the distribution function
based on Yy,..., Yy;

» pointwise behaviour (at each individual y) easy to study;

» function-wise behaviour (at all y simultaneously) requires
empirical process theory.
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1.1 De Finetti’s Representation

The general representation theorem can be made specific by
» imposing symmetry or invariance constraints on the ob-
servables;

» requiring the existence of sufficient statistics;
* the exponential family.
» allowing for partial exchangeability to construct condi-
tional forms of exchangeable sequences
» regression, hierarchical models etc.

These considerations lead to the use of specific parametric
models.
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1.1 De Finetti’s Representation

Example: Partial exchangeability

Let {O,}_, be an infinitely exchangeable sequence of ran-

dom vectors in R?

0;=(X,Y;) i=1,2,....

Then
* {X,}r_, is also an infinitely exchangeable sequence;
e foreach n > 1, and given X; = x1,...,X; = X, the
variables
Yi,.... Y,

are partially exchangeable.
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1.1 De Finetti’s Representation

A typical form of the de Finetti representation is in terms of
parametric densities: forn > 1

n
le,...,Yn(ylv s 7Yn) = JHf(Ylaa) o (de)
i=1

where
fy Yo (V15 V)

is the joint pdf for Yy,...,Y,.
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1.1 De Finetti’s Representation

The de Finetti calculation is a standard type of ‘marginal-
ization’ calculation; for example, for two continuous random

variables
() = | fxlylx)8(x) dx
We can think of fx(x) as a ‘mixing’ distribution.
In the de Finetti representation, the two random variables are

¢ the observables Yi,..., Yy;

¢ the ‘parameter’ 6 or F.
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1.1 De Finetti’s Representation

The terms

n

n
H ((vi30)  or [ f(:6)

i=1
in parametric case, or in the non-parametric case
n
[[F)
i=1

are equivalent to the familiar likelihood function that forms
the basis of much statistical theory.
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Prediction

The assumption of infinite exchangeability and the de Finetti
representation give an automatic rule for constructing predic-
tions. For n, m > 1 consider the prediction of

Yn+17 SRR Yn+m
conditional on observed values of
Yi,...,Y,.

We focus first on the binary case for simplicity.
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Prediction

By de Finetti, recall that foreach n > 1

1 n
DPy,,..Ya (Y1,...,yn) = f {H QYi (1 —9)1)/1}71'0 (de) (8)
0 li=1
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Prediction

Similarly

0

1 (n+m
Pyy,..Yotm (Y17 R 7y11+m) = J\ { H 6 (1 - 0)17% } o (de)
i=1



Prediction

Then for the predictive distribution, by the conditional prob-
ability definition, we have

pYn+1,...,Yn+m‘Y1,...,Yn (Yn—s-la oo 7}’n+m|}’1> e 7yn)

_ DY Yaim (V15 Ynim)
PYi..Ya (1, ¥n)

Ll {ﬁn o (1 )t } o (df)
_ i=1
fol {ﬁ (1 — t)1Yf}7r0 (dt)
i=1

where t is a dummy integrating variable.
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Prediction

We may rewrite this expression by noting that the denomina-
tor can be treated as a constant in the integral in the numer-
ator, and that the product in the numerator can be split

n+m

H gYi (1 _ 9)1*5’1

i=1

= {ﬁ@)’i (1 _ 9)1)’1’} % { Hﬁn gYi (1 _ 9)15’1} .
i=1

i=n+1
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Prediction

That is
pYHJrl ..... Yoim|Y1,-..s Yn (yﬂ+17 "'7yn+m|.V17"'7yn)
1 n+m
- j { [T ¢ a- 9)1—%} 7 (d6)
0 (i=n+1
()
where

Ta(df) = —2 ()
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Prediction

Comparing (8) to (1), we see that the forms of the two repre-
sentations for

and

Py, 1, Yoim| Y1, Y (Ya+1s-- -+ Yatm|Y1,---,¥Yn)

are identical with m(d#) in the former replaced by 7, (d#) in
the latter.
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Prediction

We can therefore think of
mn(d0)
as being an updated version of
mo(d@)

in light of observing y1, ..., y,. Note that

an(dﬁ) —1

from (), so m,(d#) does define a valid probability distribution.
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Terminology

v

mo(d#) is the prior distribution for 6;

v

mn(d@) is the posterior distribution for 6;

v

Py;,....Ya (V1,...,¥n) is the prior predictive distribution
» also termed the marginal likelihood;

> PYyi1ro Yoim|YisoYn Vat1,- > Yn+m|Y1,---,¥n) is the poste-
rior predictive distribution.
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Limiting predictions

Let
n n+m
Sl,n = Z Y1 Sn+1,n+m = Z Y1
i=1 i=n+1

By direct calculation from (§), by the theorem of total proba-
bility, we have

Pr[Sin = S1.a] = ( f )

1
f £ (1 — £)" 50 o (d)
S1.n

0

using t as the integrating variable; this holds for

sin€{0,1,...,n}.
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Limiting predictions

Note from (+) that 7, (d6) depends on the data y1,...,y, only

via
n

Sin = Z Yi
i=1

as
60 (1 — 6)" 12 7 (d6)

1
f t51n (1 — t)"7°0 g (dt)

0

mn(dO) =

Thus we can interpret S; ,, as a (Bayesian) sufficient statistic.
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Limiting predictions

Therefore for s € {0,1,..., m},

Pr[Sn+17n+m = S‘Sl,n = Sl,H]

— (’:) f £S(1 — £)™S 1o (dt).

0
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Limiting predictions

Now let

Sn+1,n+m

—

Then, by the form of (1), and the result from the theorem (¢),
we may conclude directly that

Rn+1,n+m =

0
lim Pr [Rn+1,n+m < ‘9|Sl,n = Sl,n] = f Tn (dt)

m—00 0

that is, the posterior distribution is a limiting form of the pre-
dictive distribution for a particular summary statistic.
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Limiting predictions

In the above formulation, if we consider n — o0, we observe
that for 6 € [0, 1],

. 1 6= 0,
i a0 =0y O =4 o

that is, the posterior distribution is degenerate at 6.
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True values

In our specifications, we have defined

» in the binary case

1 n
O = Jim, o 2%
i=

» in the general case

We can regard 6y and Fy(.) as the ‘true’ parameters that ren-
der the observables independent if conditioned upon.

70



Model mis-specification

In any real example, we observe yi,...,y,, but whereas we
can propose a model for the joint distribution of the vari-
ables under exchangeability, we do not know that our selected
model is the correct (data generating) one.

The limit results hold under the assumption that the model
is correctly specified, but in reality our model may be mis-
specified.
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Model mis-specification

Example: Binary case

In the exchangeable binary case, we must have
Py, (yi;0) = 6”1 (1 — )™

for each 0 < 0 < 1; however different choices of my(d6f) lead
to different models for the joint distribution of Yy, ..., Y;.

0o is the hypothetical value of 6 that renders the Y;s indepen-
dent if conditioned upon: however,

e this cannot be assessed in the data, as we do not observe
data from a conditional-on-8 model.
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Model mis-specification

Example: Binary case

Suppose that
mo(0) = Beta(ao, Bo)-

for g, Bo > 0. Then from (1), we have for the posterior density

T (6) o {ﬁ 0vi(1 — 9)t v } g0—1(1 — g)Po—1
i=1

_ anJraofl(l - e)nfsnﬁﬁofl

where

n
Sp = 2 Yi-
i=1
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Model mis-specification

Example: Binary case

That is,
7a(0) = Beta(sy + ag,n — sy + Bo) = Beta(an, Bn)
say, so that

) = Tt 0P
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Model mis-specification

Example: Binary case

From inspection of posterior 7, (#), we may deduce that

lim 74 (6) —> dg, (6)

n—oo

that is, the posterior is degenerate at 6y irrespective of the
choice of prior parameters.
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Model mis-specification

Example: Binary case
However, other choices of prior may lead to different be-
haviour: for example,

e if mo(0) is itself degenerate at a given value c say, then
the posterior is also degenerate at c;

e if my(0) is uniform on a sub-interval (c1,c;) < [0, 1], then
the posterior is also restricted to this interval.
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Model mis-specification

Example: Binary case

From (§), we may conclude that the prior predictive

le,...,Yn (y17 et 7yn)

takes the form

I'(ao + fo) T'(an)C(Bn)
PYi,. Yo (V15 ¥n) = r(a;))r(ﬁ(;) I'(on + Bn)
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Model mis-specification

Example: Binary case
Forn =1:

[(ao + Bo) '(ao + y1)I'(Bo + 1 — 1)
I'(0)T'(Bo) (o + Bo + 1)

py, (1) =

so that

F(Ozo + ,30) F(Ozo + I)F(ﬁo)

I(ao)T'(Bo) T'(ag + Bo + 1)
(67)]

~ao+ fBo

[EY1 [Yl] = PI‘[Yl = 1] =
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Model mis-specification

Example: Binary case
Forn = 2:

( ) — I'(ao + Bo) T'(ao + y1 + y2)T'(Bo +2 — y1 — y2)
Py, V1,Y2) = T(a0)T(Bo) T(ao + fo + 2)

- [EY1,Y2 [YlYZ] = Pr[Yl =1,Y2 = 1]

_ T(ao + Bo) T(ao +2)T(Bo)
['(a0)T'(Bo) T'(evo + Bo + 2)
_ ap(ap + 1)
(co + Bo)(ao + Bo + 1)
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Model mis-specification

Example: Binary case

COVYl,Yz [Y17 YZ] =

ag(ap + 1) _( ap )2

(o + Bo) (o + Bo + 1) ap + o

Thus as the prior changes (that is, a9 and 5y change) the mod-
elled covariance between pairs of Ys changes.
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Model mis-specification

Example: Binary case
From (1), we may conclude that the posterior predictive
pYH+1,,_,,Yn+m|Y17,,,7YH (YH+11 000 aYn+m|Y1> 000 7Yn)

takes the form

I'(an + Ba) (o + 5n+1,n+m)r(5n +m — Sn+1,n+m)

F(an)r(ﬂn) F(an + Bn + m)
where .
n+m
Sn+1ln+m = 2 Yi
i=n+1

81



Model mis-specification

Example: Binary case
Ifn=m=1

I(awo +y1 +y2)I'(Bo +2 —y1 — y2)
(oo + y1)I'(Bo+1 —y1)(ao + o + 1)

Py, vy (y2ly1) =

so that for y, € {0,1}

(o +y2)I'(Bo + 2 — y2)
I'(ao)T'(Bo + 1)(co + Bo + 1)
F(ao+1+y2)'(Bo +1—y2)
T'(ap + 1)T(Bo) (o + Bo + 1)

Py,|v; (72/0) =

Py, vy (y2|1)
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Model mis-specification

In general, in the parametric case, we need to consider the
possibility of mis-specification of a component of the model;
the choice of

fy(yl‘;9> or Wo(d@)

yields a prior predictive

. Ya(V15- -+, V)

that may not match the true (data generating) model.

In the non-parametric case, the same considerations apply.
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Model mis-specification

De Finetti’s theorem tells us that under exchangeability, there
must exist a representation of the data generating model such

that
Pr [ﬂ(Yj < yj)] = jHF*(yi;H) o (d)
i=1

i=1

for at least one combination of

Fy(yi;0) and =g5(do)
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Model mis-specification

It may be that 7§(d#) is a degenerate distribution at 6 = 6;
say, so that

Pr [ﬂ(Yj <y1-)] = [ [F*(:65)
i=1 i=1

and the Yjs are independent.

In most cases, we will assume correct specification.
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Numerical Examples

Example: Normal model

See knitr handout 01.

Note the important identity: for scalar x, and constants
A a,B,b

(a—b)?

Aa+Bb>2 AB

A(X—a)2+B(X—b)2—(A+B)<X_ A+B A+B

Example: Bernoulli model

See knitr handout 02.
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Extensions

» multivariate Ys: extension straightforward;
» regression problems: partial exchangeability;

» hierarchical models: partial exchangeability.

87



1.2 Bayesian calculations

» Bayesian updating
» Sufficiency concepts

» Prior specification
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Bayesian updating

The Bayesian calculation acts sequentially; that is, for data y;

o (0) — fy, (y1;0)m0(0) _ fy, (y1;0)70(6)

f, (y1) an (y1;t)mo(t) dt

contains the information about # in light of the data y; and
prior assumptions.
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Bayesian updating

If new (independent and identically distributed to y;) data y;
become available, then the posterior for § in light of the com-
bined data (y1,y2) is

Ry, (71, ¥230)m0(0) iy, (W1, Y2 0)mo(6)
mn(0) = =

v, v,(¥1,¥2) fle Y, (V1,¥2; t)mo(t) dt

where n = n; + ny is the total sample size.
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Bayesian updating

But note also that

Bl 0)
T (0) = o, (Valy1)

where 7y, () is the posterior for § based on y;, and

5 ,yo; t)mo(t) dt
fy, 1y, (V2]y1) = fy, v, (¥1,¥2) _ f v,.Y, (Y1, ¥2; t)7mo(t)
2[Y1 le (yl) fle (Y1;S)7TO(S) ds
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Sufficiency

If T(Y) is a sufficient statistic for ¢ in the classical sense, then
by the Neyman factorization result, we have for the joint dis-
tribution

fy(y;0) = g(T(y),0)h(y)
It follows that

@)~ BEOT0) _ gT3).0h@)m0(0
! fx(y) fy(y)

_ |2y -
- | a2 ] axw).0)m(0)

Thus the posterior distribution of 6 only depends on the data
through T(y).
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Sufficiency

Lemma

IfT(Y) is a sufficient statistic for 6 (in the classical sense)
then 7, (0) depends ony only through the value of

T(y)

for all prior specifications mo(6).
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Sufficiency

Proof.

By definition
f(y;0) = fy1o(y, t[0)

if t = T(y), and zero otherwise. Thus, by sufficiency,
fy(y; 0) = fyr(ylt)fr(t; 0)
and hence

mn(0) o fy(y;0)m(0) o< fr(t;0)mo(6)
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Sufficiency

Lemma

T(Y) is sufficient in the Bayesian sense — the Bayesian pos-
terior depends on y only through T(y) - if and only if it is
sufficient in the classical sense.

We need to establish the converse of the previous result.
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Sufficiency

Proof.

For the posterior based on t,

fT(t; 0)71'0(0)
fr(t)

This must be equal to the posterior based on Y, that is,

f(y;0) _ m(0) _ fr(t;0)
f(y)  mo(0)  fr(t)

Hence we must have

mn(0) =

VR

(¥)
(t

fy(y; 0) = fr(t; 0) = g(t,0)h(y)

=
S~—

say. Thus T(Y) is sufficient in the classical sense.
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Construction of Prior Distributions

In the Bayesian formulation, the prior density plays an impor-
tant role. There are several methods via which the prior can
be specified quantitatively;

» from historical or training data;

» by subjective assessment, similar to the subjective as-
sessment of probabilities in elementary probability the-
ory;

» by matching to a desired functional form;

» or in a non-informative or vague specification, where the
prior probability is supposedly spread ‘evenly’ across the
parameter space.
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Construction of Prior Distributions

For some models, a conjugate prior can be chosen; this prior
combines with the likelihood in such a way to give an analyti-
cally tractable posterior calculation.

Consider a class of distributions F indexed by parameter 6
F ={fy(y;0):0¢c 0}

A class P of prior distributions for 6 is a conjugate family for
F if the posterior distribution for # resulting from data y is an
element of P forall fy e F, mp e Pandye ).
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Construction of Prior Distributions

Example: Exponential Family

Suppose that fy(y; #) is an Exponential Family distribution

k
fr(v;0) = 0) exp {Z

so that for a random sample of size n

k
Ln(0) = h(y){c(0)}" exp {Z T
j=1

for

n

i=1

tj()’i)-

o}

(Y)WJ(G)} (1)
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Construction of Prior Distributions

Example: Exponential Family

Suppose that

k
70(0) = d(a, B){c(0)}* exp {Z @-ij)} )

Jj=1

where o and 8 = (51, ...,8x)" are hyperparameters. Combin-
ing prior and likelihood yields the posterior as
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Construction of Prior Distributions

Example: Exponential Family

The normalizing constant can be deduced to be
d(a+n, B+ T(y)),

and hence the posterior distribution has the same functional
form as the prior, but with parameters updated to

a* = a+n /8* = (IBI7 s 7ﬁ1:)—r = (51+T1(Y)5 s 7/81+T1(Y))T‘
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Construction of Prior Distributions

A non-informative prior expresses prior ignorance about the
parameter of interest.

» If © = {01,...,0k} (that is, 0 is known to take one of a
finite number of possible values). Then a non-informative
prior places equal probability on each value, that is,

o(6) = feo.

1
k
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Construction of Prior Distributions

» If © is a bounded region, then a natural non-informative
prior is constant on ©.

» If the parameter space © is uncountable and unbounded,
however, a non-informative prior specification is more dif-
ficult to construct.

» A naive prior specification would be to set my(6) to be a
constant, although this prior does not give a valid proba-
bility measure as it does not integrate to 1 over O.

» A prior distribution 7 (6) for parameter 0 is termed im-
proper if it does not integrate to 1.
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Construction of Prior Distributions

Even for improper priors can be used to compute the poste-
rior density, which itself will often be proper (integrate to 1).

However, if ¢ = g(0) is a transformation of ¢, then by ele-
mentary transformation results, including the Jacobian of the
transform J(6 — ¢), it follows that

mo9(0) =c =  Toe(¢) =c x]J(O — )

which may not be constant, and hence a non-uniform prior on
¢ results. This is perhaps unsatisfactory, and so the following
procedure may be preferable.
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Construction of Prior Distributions

Consider the prior 7y(#) for parameter ¢ in probability model
fy(y; 0) determined by

mo(6) o< {|Zo (6) [}/
where Zy () is the Fisher Information,
Ty(0) = Er, [S(Y;:0)S(Y;0) ;0] = —Eg, [¥(Y;0): 0]

and |Zy (0) | indicates the absolute value of the determinant
of Zy (#). The prior m(f) defined in this way is termed the
Jeffreys prior.
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Construction of Prior Distributions

S(Y;0) is the k x 1 vector score function with jth element

0 ;
J

and ¥(Y;0) is the k x k matrix of second partial derivatives
with (j, I)th element

2

26,00,

log fy (y; 0)
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Construction of Prior Distributions

Example: Binomial(m,6)

We have

log fy(y; 0)

S(y;0)

U(y;0)

log (?) + ylogf + (m — y)log(1 — 6)

y (m-y)
0 (1-0)

y (m-y)

02~ (1—0)

107



Construction of Prior Distributions

Example: Binomial(m,6)

Therefore

Y (m-Y)| mod m(l-0) m
]_92+(1—9)2 81 —9)

Zy(0) = _[EY|9 [—02 - m =
and hence

mo(9) o |Zo (0) V% = {6(1 — 6)} /2
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Construction of Prior Distributions

Lemma

Jeffreys’s prior is invariant under 1-1 transformations, that is,
if ¢ = ¢(0), then the prior for ¢ obtained by reparameteriza-
tion from 6 to ¢ in the prior for 6, is precisely Jeffreys’s prior
for ¢.
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Construction of Prior Distributions

Proof.

Let ¢ = ¢(f) be a 1-1 transformation. Denote by ¢y(y;6) and
l4(y; ¢) the log pdfs in the two parameterizations. Then by
the rules of partial differentiation

j=1,....k

oy _ 5 2o 20
05 4 001 09

so that
S(y;¢) = A0,¢)S(y; 0)
where A(0, ¢) is the k x k matrix with (j,1)th element

o
0p;
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Construction of Prior Distributions

Proof.

In fact, A(6, ¢) is just the Jacobian of the transformation from
0to ¢, J(0 — ¢). Hence

Ts(9) = MO, 9)To(0)A(0, )
and so
IZo(¢)] = |A(0, 9)To(0)A(6, ¢) | = |A(6, ¢)*|Zo(6)]

and
IZs(8) /2 = |A(0, 6)||Zo(6)] /2.
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Construction of Prior Distributions

Proof.
Thus

mo(¢) & [Zy()V2 = A8, 9)IZo(8)]"/? = |A (6, $)|mo(6)

and Jeffreys’ prior for ¢ is identical to the one that would be
obtained by constructing Jeffreys’ prior for § and reparame-
terizing to ¢. O
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Construction of Prior Distributions

Example: Binomial (m, )

Suppose that ¢ = 6/(1 — 0) (so that § = ¢/(1 + ¢)). Then

log fy(y;¢) = log (?) + ylog ¢ — mlog(1l + ¢)

X m
S(y;¢) = 5 19
Vi) =~ ayap
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Construction of Prior Distributions

Example: Binomial(m, )

Therefore
Zy(¢) = —Eg [—; g +¢)2,¢}
mao m
T 1+ 9P (T+9P
m
~ 6(1+¢)?
and hence

mo(¢) o |Z4 () V2 = {(1 + ¢)*} /2.
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Construction of Prior Distributions

Example: Binomial(m, )

Now, recall that Jeffreys’ prior for 6 takes the form
mo(6) o {6(1 — 6)} '/

The Jacobian of the transformation from 6 to ¢ is (1 + ¢)?, and
thus using the univariate transformation theorem

mo(@)oc{d/(1 + ¢)2} V2 (1 + ¢)? = {p(1 + ¢)?} /2

matching the result found above.
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Location and Scale Parameters

Parameter 6 is a location parameter if
fy(y;0) = f(y — 0)

and is a scale parameter if

y:0) = 5t

<

)

for some pdf f.

A ‘non-informative’ prior can be constructed using invariance
principles in the location and scale cases.
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Location and Scale Parameters

» For a location parameter, for a non-informative prior, it is
required to have, forset A — ©

Lm(e) d@:f ro(0) 0

Ac

where A, = {0 : § — c € A} for scalar c. Therefore, for all
¢, we must have

Jc ro(6) dO L (6 — c) df

mo(0) = mo(0 — ¢) = m(0) = constant.
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Location and Scale Parameters

» For a scale parameter, it is required to have, for arbitrary
setA c ©

Lwo(e) d@:f 0(0) do

-C

where now A. = {6 : cf € A} for scalar c. Therefore, for
all ¢, we must have

fc ro(0) df L cro(ch) do

mo(0) = cmo(ch) = mp(0) %
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Location and Scale Parameters

This follows by the usual ‘scale invariance’ definition: a
function g(y) is scale invariant if

g(cy) < g(y)

and all scale invariant functions are power laws; for some
a >0,
gly) ccy .

Here, the condition 7 (f) = cmp(cf) means that we must
have o = 1.
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1.3 Bayesian Optimal Decisions

Many statistical procedures involve decision-making, that is,
taking actions in light of observed data.

» parameter estimation;
» hypothesis testing;
» prediction/classification;

» model selection.
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1.3 Bayesian Optimal Decisions

Define
» T(.) as a function of data Y = (Y1,...,Yy);

T:R"—T
For example
1 &
T(Y) = 0 1221 Y; sample mean
T(Y) = (Y, - Yim) | order statistics
1 &
Ty (Y) = o Z F_o0,v,1(¥) empirical cdf

» Model space F;
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1.3 Bayesian Optimal Decisions

» Loss function, L(.,.),
L : T xF—R"_J{o}.

Defines the loss in reporting T when the truth is defined
by F € F.
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1.3 Bayesian Optimal Decisions

Example:
For cdf Fy, let
p= Jy Fy(dy).
Then could define
L(T,Fy) = (T — p)?

as the loss in reporting ‘estimator’ T when the true functional
of interest is u.
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1.3 Bayesian Optimal Decisions

The optimal decision is one that minimizes the expected loss,
where the expectation is taken with respect to the distribution
of random quantities in the calculation.

For a parametric analysis parameterized by 0

*» in a frequentist analysis, 6 is a fixed constant and the data
are treated as random;

» in a Bayesian analysis, the data y1,...,yn are fixed, and
# is a random variable.
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1.3 Bayesian Optimal Decisions

Example: Frequentist calculation

For cdf Fy, let
p= Jy Fy(dy).

with
L(T,Fy) = (T — p)?

we have that
arg minE (T — 4)?]
= argmin {Ep, [(T — Er,[T])*] + (Er, [T] — 1)}
= Varg, [T] + (Ep, [T] — p)°
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1.3 Bayesian Optimal Decisions

Example: Frequentist calculation

This does not define the optimal T, but it does tell us that we
need to take into account

e the variance of T, Varg, [T]

* the squared bias, br,(T)

be(T) = [EFY[T] —H
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Kullback-Leibler loss

The Kullback-Leibler (KL) loss is used when measuring the
discrepancy between distributions. For two distributions with
cdfs Fo, Fq

_ Fo(dy)
KL(Fo, F1) = JIOg{F(l)(dy) } Fo(dy)

which is defined when Fj is absolutely continuous with re-
spect to Fp, that is for the corresponding probability measures

P()(B)ZO ﬁpl(B)ZO

for any set B.
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Kullback-Leibler loss

» Discrete case:

L (po, p1) Zk’g{ i} (y):[Ep"[log{g?g;H'

» Continuous case:

- o 82} - (85}

=h
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Kullback-Leibler loss

1. KL(Fy, F1) > 0;
2. KL(Fy, F1) # KL(F, Fy)

3. KL(Fy,F;) = 0 if and only if the two distributions are
identical.
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Kullback-Leibler loss

Example:

In a parametric problem, we might have pdf
£(y;0)

with 8 = 0y presumed to be the data generating model. Then
we may write

KL (6o,0) = Jlog{f}(};;?; } fo(y; 0o) dy

and we seek to use data to report an estimator 0 = T(Yy.n) of
the true value 6.
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Decision theory concepts

The key components of a decision problem are as follows;
» a decision d is to be made, and the decision is selected
from some set D of alternatives.

» atrue state of nature, v(#), lying in set T, defined by the
data generating model, Fy(y;0).

» a loss function, L(d,v), for decision d and state v, which
records the loss (or penalty) incurred when the true state
of nature is v and the decision made is d.

We aim to select the decision to minimize the expected loss.
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Decision theory concepts

In an estimation context, the decision is the estimate of the
parameter, and the true state of nature is the true value of the
parameter, v(f) = 6.

If data y = y1., are available, the optimal decision will intu-
itively become a function of the data. Suppose now that the
decision in light of the data is now in the form of an estimate,
denoted d(y) = 6y, say, with associated loss L (fy, )
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Decision theory concepts

(i) The frequentist risk or loss associated with decision de-
noted d(Y) (given by estimator §n) is the expected loss
associated with d(Y), with the expectation taken over the
distribution of Y given 6

Ru(d,6) = Exy[L(6n,0)] = LL@,e)fY(y; 0) dy
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Decision theory concepts

(ii) The Bayes risk for d(Y) is the expected risk over the prior
distribution of 0

Rn (d) = [Eﬂ'o [RH (d7 0)]

~ Ex [Er [LG0n.0)]]

J@ {L L (0, 0)f(y:6) dY} 7o (6) d6

J f L(0y,0)f(y)ma(0) dy dO
eJy

L {f@ L(Bn, 0)7n(0) da} f(y) dy

where by Bayes theorem fy(y; 0)mo(0) = fy(y)mn(0).
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Decision theory concepts

(iii) With prior 7(6) and fixed data y the optimal Bayesian
decision, termed the Bayes rule is

dp = in R(d
p = argmin R(d)

so that, for the Bayes estimate §nB

~

Onp = argmin j U L(0n,0)ma(0) de} fy(y) dy
deD y <)

= arg min f L(é\n,H)ﬂn(G) dé
0,c® JO

as only the inner integral depends on the decision and
the data.
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Decision theory concepts

That is, the decision that minimizes the Bayes risk mini-
mizes posterior expected loss in making decision d, with

expectation taken with respect to the posterior distribu-
tion 7, ().
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Results for Different Loss Functions

(I) Under squared-error loss
L(0y,0) = (0, — 0)?

the Bayes rule for estimating 6 is

~

dp(y) = Oup(y) = Ex, [0] = f O (60) O

that is, the posterior expectation.
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Results for Different Loss Functions

The expected posterior loss for any Bayes estimate §n is
fL(én,e)wn(e) o — J(én — 0)2ma(0) d6

which needs to be minimized with respect to én.
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Results for Different Loss Functions

Write t = §n. Then

% U (t — 0)2 7n(6) da} - fjt {(t - 9)2} ma(6) d6
_ JZ(t—Q)wn(H) do
and equating this to zero gives
£ = fewn(e) df = E, [0]

and hence the optimal t = 5,1 is the posterior expectation
as stated.
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Results for Different Loss Functions

(IT) Under absolute error loss
L(6,,0) = |6, — 0]

the Bayes estimate for 6 is the solution of

On 1

—00

that is, it is the posterior median.
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Results for Different Loss Functions

The expected posterior loss is
JL@@HW“@d@-Jﬁ%—GMJ@dG

which needs to be minimized with respect to 5,1. Lett =
0,. Then

ft—ﬂwﬂ@d@

[ eom@ars [(@- om0

t
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Results for Different Loss Functions

Differentiating with respect to t the first term using the
product rule yields

% U_too (t — 0) 7a(0) de}

% {t ftw T (0) dO — Jtm O (0) d@}

_ mn(t)+f (0 dO — trn(t).
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Results for Different Loss Functions

Similarly

4
dt

Thus, equating the original derivative to zero yields

0

JOO (0= t)7a(6) da} _ —twn(t)—ft 7 (6)d0-+ tra (1)

t

ftooﬂn(e) do — fcwn(e) do =0

so that
t Q0 1
f 7 (0) d@zf mn(0) dO = =
—o 2

t

and hence the optimal t = §n is the posterior median.
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Results for Different Loss Functions

(ITI) Under zero-one loss

the Bayes rule for estimating 6 is

dp(y) = Onp (y) = argmax € © m,(0)

that is, the posterior mode.
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Results for Different Loss Functions

To see this, note that the expected posterior loss is

JL(@I,H)WH(G) deJ (0 dO

O\0y

which needs to be minimized with respect to the choice
of #,. Consider the loss function

. 0 0nc(0—6,0+0)
L5(9H79): ~
1 On ¢ (0—0,0+0)

for § > 0. That is, the loss is zero if |, — 0| < §, and one
otherwise.

145



Results for Different Loss Functions

The expected loss is therefore

fLé(én, 0)n(0) dO = f m(0) d6

O\(6n—6,0n+0)
=1-—Pr[0e (0, — 6,0, +6)ly].
Thus we need to choose §n so that
Pr{f € (6 — 8,00 + 0)|y]

is as large as possible, that is, we need to choose 5,1 as the
centre of the highest posterior probability region of width
20. As 6 — 0, this interval shrinks to be the posterior
mode, as stated.
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1.4 Likelihood Considerations

We have seen in the Bayesian calculation that the posterior
distribution is highly dependent on the likelihood for its prop-
erties; on the log scale, we have in the iid case

n
logmp(0) = Z log fy(yi; 0) + log mo(6) + constant
i=1

and so as n grows, we expect the log-likelihood
n
£a(0) = > log fy(yi; 0)
i=1

to be the dominant term. Because of this it is useful to study
the properties of the likelihood as n gets larger.

147



Asymptotic Theory of the Likelihood

Suppose that

» data y1., = (y1,...,¥n) are realizations of iid random
variables Y7,...,Y, drawn from distribution with pdf
fo(y). We term this model the true model.

» we wish to represent the data using a parametric pdf
fy(y;0), where 6 is d dimensional parameter. We term
this model the working model.
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Asymptotic Theory of the Likelihood

Typically, the analysis assumes that, for some 6,

fo(y) = fy(y; 00)

that is, the parametric model is correctly specified.

However, if fy(y) # fy(y;0) for any 6, the model is incorrectly
specified, and the theory needs to be reconsidered.
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Asymptotic Theory of the Likelihood

1. Interpreting 6y in the working model: We define the
‘true’ value of 6, as

0o = argmein KL (fy,fy(.;0)) (3)
Note that
KL(f £(:6)) = [ log f(3)6(y) dy — | log fr(y: ) ) dy
or equivalently, denoting log fy(y; 0) by 4(y;0),

fp = arg maax Er [£(Y;0)]. (4)
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Asymptotic Theory of the Likelihood

2. Maximum likelihood: We maximize the sample-based
expectation (or sample mean) to produce an estimator.
Specifically, the estimator based on (4) will be

~ 1 &
On = arg max — ;Z(Yj; 6).
This follows by the weak law of large numbers:
1 n
— 2 U(Yi:0) = Egy [£(Y30)] (5)
i=1

as n — oo for any fixed 6, if the expectation exists.
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Asymptotic Theory of the Likelihood

We will assume that the log density ¢(y; ) is at least three
times differentiable with respect to §; under this assump-
tion, the estimate is defined as the solution to the score
equations, the system of d equations given by

0|1
Q{Hj_z‘iﬁ(yi;e)} =0

J 1<
nzae{f(%;e)}zn;S(Yi;H)ZOd (6)

or equivalently,

say, where S(y;0) = ((y;0) = d1(y;0)/00. Denote the

solution of (6) by 0,
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Asymptotic Theory of the Likelihood

3. Taylor expansion: We consider a Taylor expansion of the
function ¢(x; 0) with respect to 6 around 6.

U(y;0) = £(y;00) + £(y;00) (0 — o)

1 ;
+ 5(9 —00) " U(y;00)(0 — 6o) + R3(y;0%) (7)
where )
sy 0U(y;0)

and R3(y;6*) is a remainder term, for some 6* such that
160 — 0| < [|6o — 0.
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Asymptotic Theory of the Likelihood

Evaluating (7) for each of y1, ..., y, and summing the re-
sult, we have

0n(0) = £n(00) + £ (60)" (6 — bo)

1
+ 5(9 —00) " n(00)(0 — o) + Rs. (8)

where R3 = Rg(yl;n;e*) for H90 — 9*“ < H90 — 9“
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Asymptotic Theory of the Likelihood

At 0 = gn and rearranging we have

ln(0n) = €a(00) = £n(00)" (O — 00)

1 ~ ~
+ 5(9” —00) " 00(00)(0n — 60) + R3
(9)
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Asymptotic Theory of the Likelihood

4. Asymptotic behaviour: Consider (9) written in terms
of random variables, with 0, = 0,(Y1.n):

ln(0n) — €a(80) = €a(00) " (6 — 60)

1 ~ . ~
+ 5(en —00) " 0n(00) (8 — 00) + R3
(10)
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Asymptotic Theory of the Likelihood

First consider for arbitrary 6, the quantity

'.3\'—\

(£n(0) —

5

n
Z (Yi;0) — £(Yi:00)) -
We may rewrite this expression with terms involving the

true density fy that cancel :

18 1
*g (Yi;0) — £o(Y; *Hg (Yi;00) — £o(Yi)) (11)

b

where (o (x) = log fo(y).

157



Asymptotic Theory of the Likelihood

For any 0, as n — o0, we have by the weak law of large
numbers that

é(ﬂ(Yi;H) — lo(Yy)) Ey, [log <ﬁ;§?17/)9))]

1
n
= —KL(fo, fY(-; 0))

as Yl,...,YHNf().
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Asymptotic Theory of the Likelihood

Therefore

S e
b\'—\

n
> UYi6) —
i=1

converges in probability to

n
Z (Yi;60)

KL (fo, fy(-;60)) — KL(fo, fy (5 6))
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Asymptotic Theory of the Likelihood

By definition of 6y via (3), KL(fy, fy(6)) attains its mini-
mum value at § = 6, so

KL(fo, fy(-;60)) — KL(fo, fy(:;6)) < 0

and hence

S
.‘3\'—\

n n
DY 0) — Z (Yi; 60)
i=1 i=1

converges in probability to a non-positive constant.
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Asymptotic Theory of the Likelihood

Therefore, we have that
Prg[n(60) = (n(0)] — 1 (12)

as n — oo0. That is, with probability tending to 1, the log
likelihood ¢, () is not less than ¢, (6) for any other 6.
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Asymptotic Theory of the Likelihood

If we make an identifiability assumption, this statement
may be strengthened: the model fy(y;0) is identifiable if,
for two parameter values 0 = 6%,

fy(y;0") = fy(y;0%) forally — 67 = 6%

If the model is identifiable, then the “true" value 6 is
uniquely defined, and we have

PI‘fO [En(go) > En(e)] — 1 0 # 90. (13)
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Asymptotic Theory of the Likelihood

This theory holds for fixed 6y in the expression

1
- (En (0) - En (90))

n

However, we need to study En(gn(Yl;n)), that is, where
the parameter at which the log-likelihood is evaluated is
itself a random variable, namely the estimator 6, (Y1.,).
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Asymptotic Theory of the Likelihood

It can be shown that én(len) L, 6, and §H(Y1:n) is con-
sistent for 6y, and by “continuous mapping” (as ¢,(0) is a
continuous function in )

1

0 {fn(é\n(len)) — En(eo)}' 2.0

so that, from (5), asn — ®

.’:s\»—\

Z 2 (Y1) = Eg, [£(Y;600)] (14)
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Asymptotic Theory of the Likelihood

5. Asymptotlc Normality: For a continuous function such
as /,(0), with defined second derivative /,(6), it is guar-
anteed by the Mean Value Theorem that there exists an
‘intermediate value’

0 = cly + (1 —c)bo

for some c, 0 < ¢ < 1, such that

Un(0n) = a(00) + a(0)(6a — bo)

» The left hand side is zero as 5,1 is the mle.
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Asymptotic Theory of the Likelihood

» Provided /,(6) is non-singular, we may write after rescal-
ing and rearrangement that

V(@ — 0) = {ién()}_l {va(Giem)} a9
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Asymptotic Theory of the Likelihood

» In its random variable form, second term on the right
hand side of (15) is

1 n
Vn (n; S(Yi;eo)>

that is, a sample average quantity scaled by /n. But by
definition of 6,

Eq[S(Yi; )] = f i(y:00)f0(y) dy = 04

as, by definition 6y minimizes KL(fy, fy(;#)), and therefore
must be a solution of this equation.
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Asymptotic Theory of the Likelihood

Therefore, by the Central Limit Theorem

vn (111 Z S(Yi; 90)> 4, Normaly (04, J5,(60))  (16)
izl

where
T (00) = E4[S(Y;00)S(Y;00) "] = Vary, [S(Y;60)]

isa (d x d x d) quantity.
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Asymptotic Theory of the Likelihood

> As én -2, 6y, we have that

~

1 I a.s.
——n(0) = T4, (00).

Therefore we write for an asymptotic approximation to
(15)

V(B — 60) = {ié’n(ao)} {\}an(eo)} +op(1)

where the distribution of the second term given by (16),
and where o,(1) denotes a term that converges in proba-
bility to zero.
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Asymptotic Theory of the Likelihood

We therefore have that
Va0, — 0) % Normalq(04,3(6p))

where
3(60) = {Zt,(60)} " T, (60){Z5, (60)} ™
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Asymptotic Theory of the Likelihood

6. Correct specification: Under correct specification

fo(y) = fr(y; 0o),

and we have from earlier results that

Jo,(80) = Zg, (6o)

and hence from the general result we deduce that

V(0 — 60) ~ Normalg(0g4, {Zy, (60)} ).
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Implications for Bayesian analysis

Using the same quadratic approximation for the likelihood at
# around 0, we have

~ N ~ 1 ~ v o~ A
0 (0) = £ (0y) + £n(0n)T (0 — 0) + > (On = 0) 0, (0n)(0n — 0)
but noting that (n (§n) = 0, we have that

expita(0)} = explta(Ba)} xp {50 — 0) in(Ba) 0 — )}

& exXp {_;(0 - é\n)—l—{_gn(é\n)}(e - é\n)} .
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Implications for Bayesian analysis

Thus, when the regularity conditions apply, the likelihood can
be approximated by one arising from a Normal distribution

Normaly (5,1, {—gn(én)}_1> .

This approximation can be used in a wide variety of models.
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1.5 Modelling Extensions

Beyond the iid case, Bayesian methods can be used for
» regression models (linear, non-linear, generalized linear);
» latent variable models;

» hierarchical models.
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Regression models

We consider the infinite sequence {(X,, Yy),n = 1,2,...} such
that foranyn > 1

fX1,...,Xn,Y1,...,Yn (Xlu s Xn, Y1, 7yn)
is factorized

fX17...7Xn (Xl, . 7XH>fY1,...,YH|X1,.‘.,Xn (y17 . 75/11|Xl, . 7XH)

where each term has a de Finetti representation.
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Regression models

le 77777 Xn(X17 >Xn)
J{an X1, }71'0 d¢)
le ..... Yn|X1,..., Xn(y17--->YI1|X1>~--7Xn>

-| {Hfm(yﬂxf;e)}m(de)
i=1
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Regression models

Inference for (¢, 0) is required:

» inference for ¢ via the marginal model for the X vari-
ables;

» inference for 6 via the conditional model for Y given that
X = x was observed.

In the latter case, the fact that X is random is immaterial as
we perform a conditional on x analysis.

When considering the statistical behaviour of Bayesian (or
frequentist) procedures, we must remember that X and Y
have joint structure.
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Regression models

Example: Prediction

To predict Y41,

fYn+1|X1:n7Y1:n (YH+1 |X11H7 y1:n)

= ffxn%y,,mxlm,ylm (Xn+1, Yn+1/X1:0, Y1:n) dXn 41

= JfYn“le,Xn“,Ym (Yn+1|X1:n, Xn 11, Y1:n)

an+1|X1:,,,Y1:,, (Xa+1(X1:0, Y1:0) dXny1
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Linear regression

Suppose that we have the linear regression model
Yi =X +¢;

where fori =1,...,n
» Y; is a scalar
» x; is (1 x d)
» Bis(d x 1)
» ¢; ~ Normal (0, 02), independently.

This describes the model for the partially exchangeable Y;
conditional on the X; = x;.

» There may or not be a need to model the distribution of
the Xj.
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Linear regression

In vector form
Y=X3+¢

where Y and ¢ are (n x 1), Xis (n x d).

We then have that in the conditional model

le,...,Yn|X1,...,Xn (y17 o ayH’Xh -+ Xn; /8702) = Normaln(Xﬁ,UZIn)

where I, is the (n x n) identity matrix.
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Linear regression

Therefore the likelihood is

1
2o

aet) = (57) " o] sho %9 -xa)).

A conjugate prior in this setting can be factorized
m0(8,0%) = mo(0?)mo(Blo?)
where
mo(0%) = InvGamma(ag/2, by/2)
7o(B|0?) = Normalg(mg, 02My)

where ag, by, mg and My are fixed constant hyperparameters.
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Linear regression

ro(0?) = (1110(/6120)/*”‘;;2 <012>ao/2+1exp{_b0}

2 1 \% 1 1 Tar—1
mo(B|o ):< > WGXP{—M(/B—IHO) M, (5—1110)}

27w

To compute the joint posterior 7, (3, 02) up to proportionality

Ln(/ﬁv 0-2)71-0(570-2)

we need to examine the exponent as a quadratic form.
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Linear regression

The expression
(v —XB)"(y = XB) + (8 —mo) "My ' (8 — myo)

equates to
(6 - mn>TM;1(6 - mn) + Cp

where we need to find expressions for m,, M, and c;.

» Quadratic term:
BTMII8T = BTXTXBT + ﬁTMalﬁT
so therefore
M;'=X"X+M;! . M,=X'X+M;H!
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Linear regression

» Linear term:
ATM; my = 81Xy + 5TM; 'mg
so therefore
m, = M,(X"y + M, 'm,)

= X'X+M;H) ' (X y + My my)
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Linear regression

» Constant term:
m M, 'm, +c, =y'y+m{M; ' mg
so therefore

T Tar—1 Tar—1
Ch =y y+tmyM, my—m, M, ‘m,
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Linear regression

Therefore for the joint posterior up to proportionality is

exp {_ (cn + bo) }

1 (n+a20+d)+1
<02> 202

X exp {—2;(5 —m,) ML (8 — mn)}

from which we can conclude directly that for the
conditional posterior

7a(B8|0?) = Normaly (my, 0°>M,,)
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Linear regression

Integrating out g from the joint posterior, we obtain that
up to proportionality

(n+ag) 1
n(0?) & 1Nt exp _(en +bo)
g o2 202
that is
ma(0%) = InvGamma(a, /2, b, /2)
where

an =N+ ag b, =cn + by
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Linear regression

Finally, we can compute the marginal posterior for j3.
From the arguments above we have that the joint
posterior takes the form

Tn (6|02)7Tn (02)

which equates to
(by/2)® (AN by
T(an/2) \o2 P 7202
1\ 1 1 _
X (> Wexp{—(ﬂ_mn>TMnl(ﬂ—mn>}
n

27w 202
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Linear regression

The constant term is

(bu/2)™/2 (1\? 1
[(an/2) (27r> M, [172

and to marginalize we must compute

J, ()

an+d
2

+1 1
{ 5 — [bn + (B—my) M, (B—mn)]} do?
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Linear regression

The integrand is the kernel of an Inverse Gamma pdf so
therefore we have that the integral equates to

I'((an +d)/2)

an+d
2

{; [bn + (8 — ) M (8 — mnﬂ}
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Linear regression

Combining terms together, we have that

7711(5):
by 1 I((an +d)/2)
Dlan/2m ™ Mal' (1 (5 ) MG (5 - mi)} T

which is a multivariate Student-t distribution.
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Linear regression

We may express prior ignorance concerning 5 by considering
M,' — 0, in which case

m, — (X'X) X'y

and
M, — (X'X)7!
yielding results equivalent to those of maximum likelihood.

This “uniform’ prior for § is in line with the earlier non-
informative constructions.
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Linear regression

An alternative is the g-prior: for hyperparameter A > 0
M, = A }(XTX)!

in which case
M, = (1+)\)'Xx'x)"?
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Linear regression

If, for hyperparameter A > 0
my = 04 My = AId

then
m, = (X'X + \ly) X"y

and
M, = (X'X + \g)~?

yields the ridge regression procedure
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Linear regression

The log density is

1 1
{(B,0%) = =5 log 0% — ﬁ(y — xf3)? + constant

so therefore

ol 2

(gba ) = ;ZXT(Y_X/B)
206,02 1 -
“opepT | o2 %
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Linear regression

Also
oU(B,0?) 1
8020 T 202 + 20? (v —x8)*
9*4(B, 1
0(02; ) - 204 —G(y—xﬁ)z
and 6’22(,8 2)
oot = ~gaX v =)
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Linear regression

Hence the (unit) Fisher information is
1 +

, — X X 0 1\ (d+1)/2 -
I(B,0%) = |- 1 = <02> |x X|

which implies that Jeffreys’s prior for linear regression is

1\ ([@+1)/2
(8,0 o ( 73 )

g
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Linear regression

This prior depends on dimension d. It is common instead to
use the prior

1

2
q J—
mo(B,0°) e

as an invariant prior for linear regression.
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Non-linear regression

> Generalized Linear Models: fyx(y|x) follows an Expo-
nential Family Model with

[EY\X[Y|X =x; ] = g_l(xﬁ) =M

Varyx[Y[X = x; 8] = V(u)

that is

for some link function, g.
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Non-linear regression

Example: Poisson regression

Y;i|X; = x; ~ Poisson(y;)
Eyix[YilXi = x5 8] = exp(x;3) = p
Varyx[Y[X; = xi; 8] = pi

so that

n n

exp{yi log i — pi} exp{yiX;i 8 — exp{x;B}}
Ln(B) :H y;i! :H yi!
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Non-linear regression

Example: Poisson regression

- 2 (vixi3 — exp{x;3}) + const.

—.
-

n

(vix] — exp{xiB}x]) Z — exp{xif})

RIE

en(ﬂ) =

o
Il
-

n(B) = = D exp{xi 1% x;

i=1
that is, writing D(X$) = diag(x1 5, ...,Xn/3).
(B =XT(y— ) ia(B) = —X'DXB)X
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Non-linear regression

Example: Binary regression

Yi|X; = x; ~ Bernoulli(u;)

epif)
1+exp(x;f8) Hi

Varyx[Yi[X; = x;; 8] = pi(1 — )

Eyix[YilX = xi; 8] =
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Non-linear regression

Example: Binary regression

La(B) = | [exp {yilog i + (1 = yi) log(1 — )}
i=1

i

n
= Hexp {yj log ( il ) +log(1 — /_,Lj)}
i=1 L=

= H exp {yl‘Xj,B - log(l + eXp{XiB})}
i=1
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Non-linear regression

Example: Binary regression

= > (7ixi8 — log(1 + exp{x;/3})

i=1
Ny T (v o8l
- j—Z;Xi (M 1+ exp{xfﬂ}>

- exp{xi 3}
- Z (1 + exp{x;8})? 2% Xi = Z = )%

[

that is, now writing D(Xp) = diag(u1(1 — p1), -, n(1 — pn)).

0B =XT(y—p)  in(8) - X' DXB)X
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Non-linear regression

Using the quadratic approximation theory, we have that

£ald) = calBn)exp { ~5(6 - Ba) 55 B3 - )}

where .
Z:n (//B\n) = (XTD(X/B\H)X>

This approximate likelihood can be combined with a Nor-
mal prior on 3.
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Non-linear regression

Example: GLM

See knitr 3.
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Non-linear regression

» Non-linear regression:
Yi = g(xi;0) +&;

where g(.;.) is some non-linear function of its arguments,
and ¢; ~ Normal (0, 02).

n/2 n
Ln(9702) = <27T102> exp{—zi2 Z(Yi—g(xiﬂg))z}‘
i=1
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Non-linear regression

Example: Exponential decay models

For 0 = (61,02,03,04)" with §; > 0 forj = 1,2,3,4
g(xi;6) = 01070% 4 930~ (O2+b)x

where x; > 0 is a scalar quantity.

> én found nquerically;
> ((0,0°) and £(6, 0*) straightforward to compute;
> similar Normal(f,,>,(0,) approximation available.
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Latent variable models

Latent (or auxiliary) variables can be introduced to simplify
calculations in a model.

Suppose fy(y;0) is intractable, but

fe(y:0) = jfy,z<y,z; 0) dz

for some other variable Z, where the augmented joint distri-
bution

fY,Z (.Y> Z; 0)

is tractable.
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Latent variable models

Example: Mixture model

Suppose
fy(y;0) = (1 —w)fo(y; 0o) + whi(y; 01)

so that § = (w,01,6,), so that 0 < w < 1. Then

1 1
fr(v;60) = Y, fr.z(v,2:60) = Y fyz(v|2;0)pz(2; 6)
z=0 z=0

where
1—-w z=0

pz(z;H)zPr[Zzz]:{ " ;-1

and
fyz(y]2;0) = f(y;0.) z=0,1.
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Latent variable models

Example: Mixture model

Then
fy z(¥i, 2i;0) = WA (1 — w) "% £y (yi; 00)7 i (yi; 61)' 7

and the sum in the original pdf fy(y; #) has become a product.
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Latent variable models

Example: Mixture model

Then
n n
H (v3;0) = [ [{(1 — w)fo (33 60) + whi (y; 61)}
i=1 i=1

which is not very tractable, but

n
HfY,Z(Yj,ZI, _Hn{wzz ¥:0,)} )
i=1

i=12z=0

where wp = (1 —w) and w; = w, which is more tractable.
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Latent variable models

Example: see also

e data with censoring;

® state space models.
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Hierarchical models

Hierarchical or multi-level models are built by ‘stacking’ lev-
els of variables.

» random effects (or mixed) models;

» multi-level models

» hospital/physician or school league tables;
» multi-arm clinical studies;
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Hierarchical models

Example: Multi-centre models

K centres, labelled 1,2,..., K

e STAGE 3: For centre k, data Yxq,..., Yk, partially ex-
changeable, and conditionally independent given centre
parameter 0. For each k

ny
H fi (Yi; Ok )-

i=1

e STAGE 2: Parameters 61, ..., 0k exchangeable,

%) (0kc|9).-

||::|>:

e STAGE 1: Prior on ¢, w(()l)(gb).
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Hierarchical models

Example: Multi-centre models

Data generating model:
o Pick ¢ ~ 7" (¢)

* Pick 0y, ...,0k ~ 752 (0k|0)

e Foreachk =1,... K, pick

Ykl; ) Yknk ~ fk(79k>
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Hierarchical models

Example: Multi-centre models

i
STAGE 1 )

STAGE 2 ﬂ_éz)wkw))

STAGE 3 fie (Yii;0k)
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Hierarchical models

The posterior distribution 7, (¢, 61, ..., 60x) is given, up to pro-
portionality, by

K
7Tn(¢,91,..., {H
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Neural network models

Input Hidden Output
layer layer layer
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Neural network models

Hidden Layer:

= J11 (Z Wlk Xk+b(1), ) I1=1,...
k=1

with €1,...,¢; residual errors.

Output Layer:

L
Yq = g2d (Z W((ﬁ)Zz +b§2),5d> d=1,...

I=1

with €1,...,ep residual errors.
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Neural network models

» Dataon Xj,...,Xg and Yi,..., Yp observed;
» Parameters are

Weights : w\),1 =1,...,L,k=1,...,K

C@ _
wi)d=1,...,D,1=1,...,L

Biases : bl(l),l =1,...,L

» Link functions gy;(.),1 = 1,...,L and gyq(.),d = 1,...,D.
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Neural network models

The complete data likelihood £,(w,d) is given, up to propor-
tionality, by

- 1]

1

:l"

{fzhlx (ziixi; W), a" ))} (hidden)
1

Il
—_

o

{fydj|zj(Ydi|Zi;w(2),d(z))}} (output)

d=1

where the hidden variables
Zi,l=1,...,L,i=1,...,n

are treated as auxiliary quantities.

222



1.6 Model selection approaches

It is often necessary to consider model selection and evalua-
tion approaches

» in-sample validity;

» generalization;
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Assumptions

Consider the exchangeable, continuous case.
» For the inference model
» e R4,
» likelihood model fy(y;6),
> prior 7w (6).
» posterior 7, (6).

» Suppose that the data-generating model is
*(y) = £ (yi9)
with ¢ a fixed (but unknown to the modeller) value, so

that exchangeability reduces to independence.
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Predictive performance

The predictive distribution for the ‘next’ data point is

Pn(¥) =Py, v, e VY15 Yn) = ffy(y; 0)mn(6) do

and is the usual Bayesian estimator of f*(y). It is used to
assess the quality of a proposed model.
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Predictive performance

If we consider instead

pa(y) = Py, 1|11,...,Yn (y|Y1,...,Yn)

then the predictive distribution itself is a random function, as
it is a function of the random variables Y7, ..., Y,, not the data

Yi,---5¥Yn-
We may similarly consider the random posterior 7, (6), a func-

tion of # that is random because its inputs are Yi,..., Y, in-
stead of y1,...,¥n.
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Predictive performance

The KL divergence between f*(y) and p,(y) is

KL(f*, pn) = flog (;:((5;))) *(y) dy

= flog(f*(Y))f*(Y) dy — Jlog(pn (y)f*(y) dy.
(>

The first term in (<}) is a constant which does not depend on
the inference model.

A random variable version KL (f*, p,) can also be considered.
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Predictive performance

» Training loss: The training loss, Ty, is a measure that
approximates the KL divergence based on the sample

1 & N
T, = T(Yla---aYn) = “n Z Ingn(Yj)
i=1

which can be regarded as a sample-based estimator of
the second term in (<}), with the data drawn indepen-
dently from f*.

In this form, T, is random variable as it depends on pj,.
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Predictive performance

» Generalization loss: The generalization loss, Gy, is the
second term in ():

Gn = G(Y17 ey Yn) - — flogﬁn(y)f*(y) dy.
This can only be computed precisely if f*(y) is known.
However, we can interpret G, as a measure of proximity

of the predictive model to the data-generating distribu-
tion.
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Predictive performance

The first term in ({}) is often denoted S

5 = | o( (9)£° () ay
and is termed the entropy of f*. The quantity
Gy, —S

is termed the generalization error: note that G, > S as the
KL divergence is non-negative.
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Predictive performance

» Cross-validation loss: The cross-validation loss, Cp, is
defined by

1 & (i
Cn = —nglogpﬁ (v;)

where ﬁg_j)(y) is the posterior predictive distribution de-

rived from the random variables
Yl(;;) = (Y1,...,Yi_1,Yi1,...,Yp)

that is, the original collection with Y; removed.
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Predictive performance

Taking expectations of G, and C, with respect to the joint
pdf of Yy, ..., Yy, which by independence reduces to

[[f)

i=1

we can establish connections between the losses.
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Predictive performance

Provided all expectations are finite

E[Cy] = [—Elogw( Ay, ]

i Eyi-n [[EYi [10g51(fi)(1@)“

Il

|
S
=

A
-~

where the second line follows using iterated expectation.
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Predictive performance

But fori =1,2,...,n the terms
|oeBt w5 dy

are identically distributed random variables, so

1 & ~(—1i) *

—— Y Eyn | | logBn ' (y)f(y) dy

n i=1 1:n

is equal to
Eyin {— flogﬁﬁ_”(Y)f*(Y) dY] = E[Gn1]

again as Y1, ..., Y, are iid from f*.
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Predictive performance

Note also that
pi) = |ty 0)nf ) (0) ao

[1fr(y;0)

J#I

mo(6)

= ffY(Y§ 0)
fﬂ fy(yj; t)mo(t) dt

J#i

so therefore

df

ffy Yi;0) | [ fr(Yj;0)mo(6) do

J#i

fnfy Y},t 7T()

J#i
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Predictive performance

Numerator:

ny (Yi:0) | [ £r(Yj:0)mo(6) dO = fﬂfy(yj;e)mw) de

J#i Jj=1
Denominator:
1 n
fy( = fy(Y;; t t) dt
JHY ffY(Ylyt)U Y(J )WO()
J#i j=1
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Predictive performance

Therefore

1< i
Cn =~ Lloehs (¥)
i=

1 & fﬁ,(}lfj-t)nfi’(yﬁt)ﬂo(t) dt

Jj=1

= o log =
= JHfY(Yﬁ@)Wo(Q) do
j=1

et
=

(Yj; t)mo(t)

1 & 1 ;
“n dt
n 1; gffY(Yi;t)
fy(Yj;0)mo(0) dO

=

I
-

J
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Predictive performance

But t and # are merely dummy integrating variables, so
we may exchange them and write

ﬁ F(Y;;0)mo ()
Cn = zngfY;“G i do

5 JH ) dt

1 & 1
= - NlogEsr |——
2 e £

as the term in red is merely the random variable version
of the posterior 7, (0).
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Predictive performance

This identity may be useful as it gives an expression for
computing the numerical value of C, which does not de-
pend on the leave-one-out posterior distributions:
> the original formula requires n separate posterior calcu-
lations of the quantities pl(fi)(y) ;
» the new formula requires only the computation of 7, (),
the full posterior;
» the new formula does require the computation of

= | 559

fori=1,...,n.
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» WAIC: The widely applicable information criterion (or
WAIC), W,, is defined by

1 n
Wy = To + — ) Varz, [log fy(Y;; 0)]
n i=1

where, recall, T, is the training loss

14, o
Ty = _H ;logpn(Yi)
i=
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It can be shown that if Y;,...,Y, are independently drawn,
then

1
Wn = Cn +Op <1‘12>

and so W, provides a tractable approximation strategy.
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» Marginal likelihood (or prior predictive): The nor-
malizing constant that appears in the denominator of the
(random) posterior 7, (0) is

Zn = Z(Yl,.. .,Yn) = JﬁfY(YuH)WO(H) do.
i=1

and, by de Finetti, this can be interpreted as the value of
the (random) joint pdf

v, (Yim) = fry, v, (Y1, o, Ya).
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The quantity Z, is termed the

» marginal likelihood,
» prior predictive distribution.

In this form, Z, = Z(Y1,...,Yy) is a random variable:

Zn =Z(V1,---,¥Vn)

can also be computed.
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Note that

1?4 (Y1:n)
KL(fy,, fr,) = Jlog (M) fy,, (Vi) dy1n
1:n .

measures the divergence between the data-generating
joint pdf
n
Yl n Y 1: n H f}ﬂ:’ Y1
i=1

and the modelled joint pdf fy,, (yi.n)-
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Thus

KL(f;;Ln7fY1:n) = J‘Ingﬂn (len)f;;ljn (¥1:n) dy1:n

- j log fy,., (5"1:11)16;;1:,1 (yi:n) dy1:n
for which the term being subtracted is

[Ef;‘ [log fy,,, (Y1:n)] = E[log Zy].

1:n
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The random variable
F, = —logZ,

that is, minus the log marginal likelihood, is sometimes
termed the free energy.
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We have that

fy (yi; 0)mo(0)

[t

do

Pn(Ynt1) = JfY(YH+1?9) :

n+1

JHfY yi; 0 7rO do
JHfY y17 7T()

Zn+1
Zn

fy(y'j; t)ﬂ'o(t) dt

—

Il
-

1
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Therefore

IOgﬁn(Yn—H) =logZny1 —logZy = Fp — Fpy1.
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(Note

Note that by direct calculation, we have
E[Ga] = E[Fa+1] — E[Fa]

or equivalently

E[Fn] = E[F1] + E[Gi]
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The quantities
> T,
> Gy
> Cp
> W,
» F,

can all be used for model evaluation and comparison.
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