MATH 559: BAYESIAN THEORY AND METHODS
SELECTION WITH THE NORMAL MODEL

Suppose that a model is to be constructed under an assumption of exchangeability with the following components:

e Datayy,...,y, recorded;
* fy(y;0) = Normal(u,1) —here 0 = p.
* 7o(u) a prior density on R.

We consider the true, data-generating scenario where the true value of the single parameter is ;o = 2, that is, the
data are drawn independently from f*(y) = Normal(2,1). If we specify the prior mo(u) = Normal(n, 1/X) for some
fixed n € Rand A > 0, then from knitr 01 we have that the posterior distribution is 7, (1) = Normal(n,,1/An),
where

ny,, + A
nn:7;+)\n A =1+ A
We may similarly consider the random posterior 7, (¢), a function of 6 that is random because its inputs are
Y1,...,Y, instead of y1, ..., y,; denote the (random) mean of this distribution 7,,, where
- nY , + A\n
M =" -

n—+ A

The posterior predictive distribution for the ‘next’ data point is

D) = Frnrvrve W11, ) = / Fy (4:0)ma(6) dB

We may consider also the random version of this expression

then the predictive distribution itself is a random function, as it is a function of the random variables Y7, ..., Y, not
the data 1, . . ., yn. For the predictive distribution in the Normal problem, p,, (y) = Normal (un,l, )\;’11) where

An n+ A

T 1t ntlta

Thus here we have 7,, (1) and p, (y) as random functions, specifically

Hn,1 = Tin )\n,l

nY, + \n 1
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() = Normal ( P ¥ AT ) .
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To illustrate the random nature of these functions, we consider five replicate data sets generated from the true
model f*(y) = Normal(2, 1), and plot the derived posterior in each case; under this data generating model

Y, ~ Normal(2,1/n).
We take the prior hyperparameters to be = 0 and A = 0.1.

set.seed(2134)

n<-20;nreps<-5

mu0<-2;sigma0<-1

eta<-0; lambda<-0.1

lambda.n<-n+lambda; lambda.nl<-lambda.n/(1+lambda.n)

par (mar=c(3,3,2,0))

xv<-seq(0,3,by=0.01)

yv<-dnorm(xv,0,1)

plot(xv,yv,type='n',main='Random sample of posterior densities',ylim=range(0,2))

for(irep in 1:nreps){
ybar<-rnorm(1,mu0,sqrt(1/n))
eta.n<-(n*ybar+lambda*eta)/(n+lambda)
yv<-dnorm(xv,eta.n,sqrt(1/lambda.n))
lines(xv,yv)


https://www.math.mcgill.ca/dstephens/559/knitr/knit-01-NormalModel.pdf
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The posterior predictive distribution p,(y) can be regarded as a Bayesian estimate of the true data generating
distribution f*(y). In this Normal model, and by standard arguments, as Y7, Y5, . . . are drawn independently from

f*(y) = Normal(2,1), we have that Y,, “% 2, and so as n increases we can see that 7, (y) converges (pointwise
almost surely, and weakly) to f*(y).

xv<-seq(-1,5,by=0.01)

yv<-dnorm(xv,2,1)

par (mar=c(4,4,4,0))

plot(xv,yv,type='1l',main='Random sample of predictive densities (n=20)',
ylim=range(0,0.6) ,col='red',xlab='y',ylab=expression(pi[n](y)))

set.seed(2134)

for(irep in 1:nreps){
ybar<-rnorm(1,mu0,sqrt(1/n))
eta.n<-(n*ybar+lambda*eta)/(n+lambda)
yv<-dnorm(xv,eta.n,sqrt(1/lambda.nl))
lines(xv,yv)

legend(-1,0.6,c('True distn','Predictive distns'),col=c('red', 'black'),lty=1)
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For n = 500, we practically recover f*(y) in each replicate.
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The KL divergence between f*(y) and p,(y) is

KL(f*,pn) = /log (f*(y)> [ (y) dy = /log(f*(y))f*(y) dy—/log(pn(y))f*(y) dy. )

Pn(Y)

The first term in () is a constant which does not depend on the inference model. The random variable version
KL(f*,pn) can also be considered.

The following statistics can be used for model selection:

¢ Training loss: The training loss, T}, is a measure that approximates the KL divergence based on the sample
1 n
T,=TMY:,....Y,) =—— ) logp,(V;
(Y1 )=- ; 0g pn(Y3)
which can be regarded as a sample-based estimator of the second term in ({), with the data drawn independently

from f*. In this form, 7,, is random variable as it depends on p,.

We have in the Normal case that

(y - 7~7n)2
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so therefore
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* Generalization loss: The generalization loss, G, is the second term in ():

GnECXEy-wKJ=—:/bm%@HWwdy

This can only be computed precisely if f*(y) is known. In our Normal example, using the calculation above
and denoting by ¢(y) the standard Normal density, we have that
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Writing
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we have that

1 1 ~
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e Entropy: The first term in () is often denoted —S, where

s == [1os(F" )1 () dy
and is termed the entropy of f*. With f*(y) = Normal(2,1), we have that
1 1
S = 5 log(27) + 3= 1.418939.

and 1 A+1 1 A 1
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The quantity G,, — S is termed the generalization error: note that G,, > S (with probability 1) as the KL

divergence is non-negative. Note that as n — oo, G, 2%,

Gn—S=




¢ Cross-validation loss: The cross-validation loss, C,,, is defined by
LN og 50
i=1

where ﬁfi) (y) is the posterior predictive distribution derived from the random variables with Y; omitted.

From above, we have
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We have for arbitrary y that
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Completing the square

An
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and so therefore computing the integral (the integrand is the kernel of a Normal density) we get
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so therefore as \,, = n + A\, we have
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and so we have verified that



* WAIC: The widely applicable information criterion (or WAIC), W,,, is defined by

1 n
W,=T,+ =) Varz [l Y0
+n; arz, [log fy (Yi; 0)]

where T, is the training loss. It can be shown that W,, = C,, + O,(n~2) and so W,, provides the basis of a
tractable approximation strategy.

Studying the properties of W,, as a random variable is not easy, but we can compute the numerical version
of this statistic. However, it is not always straightforward to compute Var,, [log fy (v;; ;)] analytically, so
instead it is often approximated by sampling the posterior distribution 7, (¢), and using the samples to
compute the variance numerically. That is, if we sample N times from m,(u) to obtain sampled values

p® . u™), we can approximate
N
Vary, [log fy (y; )] Z p) —5(y))?
where
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* Marginal likelihood (or prior predictive): The normalizing constant that appears in the denominator of the
(random) posterior 7, (6) is

Zn=ZY1,...,Y, /nyyl,ewo de.

which is the value of the (random) joint pdf fy,,,(Yi:n) = fyi,..v, (Y1,...,Y,). The quantity Z,, is termed
the marginal likelihood, or prior predictive distribution. Here, by the usual complete-the-square calculations

%) n/2 n 1/2 A
le,...,Yn(yl,n-;yn) Z[ (2177) eXP{—;Z(yi—M)Q} (;) exp{—2(,u—77)2}du
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Therefore, recalling that A,, =n + A
n 1 1 1 |« 9 nA,_ 9
log Z,, = —3 log(2m) + 3 log A — 3 log Ay, — = [Z(Z/z — )"+ E(y" /) 1

We have by definition that p,, (yn+1) = 2n+1/2, and hence

log p, (yn-‘rl) =logzpt1 —logz,

Finally F}, = —log Z, is the free energy. We can also report

— 1
F, =——logZ,.
n

In large samples, the quantities 7;,, G, C), and W,, are numerically very similar, and have the same limiting value.



Simulation Study:

set.seed(2134)
n<-20;nreps<-1000
mu0<-2;sigma0<-1
eta<-0; lambda<-0.1
lambda.n<-n+lambda; lambda.nl<-lambda.n/(1+lambda.n)
lambda.ni<-n-1+lambda; lambda.nil<-lambda.ni/(1+lambda.ni)
Y<-matrix(rnorm(n*nreps,2,1) ,ncol=n)
const<-0.5*1og(2*pi)-0.5*%1log(lambda.nl)
eta.n<-(n*apply(Y,1,mean)+eta*xlambda)/lambda.n
Tn<-const+0.5%lambda.nl*apply((Y-eta.n)"2,1,sum)/n
Gn<-const+0.5*1lambda.nl1* (1+(eta.n-mu0) "2)
dsq<-function(xv,ev,1v){

dv<-xv*0

for(j in 1:length(xv)){

dv[jl1<-xv[jl-(sum(xv[-j])+ev*lv)/(length(xv)-1+1v)

return(sum(dv~2))
}
Cn<-const+0.5%lambda.nil*apply(Y,1,dsq,ev=eta,lv=1lambda)/n
Cn2<-const+0.5*apply ((Y-eta.n)~2,1,sum)/(n*xlambda.nil)
ssq<-function(xv){

return (sum((xv-mean(xv)~2)))
}

variance.term<—function(xv,ev,lv,N=1000O){

#Monte Carlo calculation
en<- (sum(xv)+ev*lv)/(length(xv)+1v)
1n<-length(xv)+lv

mu<-rnorm(N,en,sqrt(1/1n))
d<-outer (xv,mu, '-"')

return(mean (apply (dnorm(d,log=T),1,var)))
}
Wn<-Tn+apply(Y,1,variance.term,ev=eta,lv=1lambda)
logZn<--0.5*n*1log(2*%pi)+0.5%1log(lambda)-0.5%1log(lambda.n)-0.5%apply(Y,1,ssq)-
0.5*n*xlambdax (apply(Y,1,mean)-eta)~2/lambda.n
Fn<--logZn
Fnbar<-Fn/n
1bl<-c(expression(T[n]) ,expression(G[n]),expression(C[n]),expression(C[n2]),expression(W[n]))
par(mar=c(4,4,3,0))
boxplot (cbind(Tn,Gn,Cn,Cn2,Wn),labels=1bl,ylim=range(0,2.5))
title('Boxplot of sampled statistic values over 1000 replicates (n=20)"')
abline (h=0.5%(log(2*pi)+1),col="red")
legend(1,2.5,c(expression(paste('Limit value :',(log(2%pi)+1)/2))),col='red',lty=1)



Boxplot of sampled statistic values over 1000 replicates (n=20)

Lo
0]
—— Limit value :(log(2m) +1) /2
(e} (e} @)

o | o)
: i T
o' i . —_— —_— —_—
—
Lo
L
o
S

T T T T T

Tn Gn Cn Cn2 Wn

Boxplot of sampled statistic values over 1000 replicates (n=500)
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Means across the 1000 replicate data sets for n = 500: each is approximately (log(27) + 1)/2 = 1.418939.
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+ 1.416024 1.421383 1.420992 1.420992 1.421005



