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Part 2

Bayesian Computation



Monte Carlo Methods



Monte Carlo: basic principles

Suppose X1, . . . ,Xn , . . . are a sequence of random variables.
Then as n ÝÑ 8

1

n

n
ÿ

i“1

gpXi q
a.s.
ÝÝÑ

p
ErgpXqs

and

an

˜

1

n

n
ÿ

i“1

gpXi q ´ bn

¸

d
ÝÑ N pµ, σ2q

for suitable choices of the sequences tanu and tbnu, under
mild conditions on the joint distribution of the rvs.
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Monte Carlo: basic principles

For probability density fpxq, we consider approximating

Ef rgpXqs “

ż

gpxqfpxq dx by
1

N

N
ÿ

i“1

gpxi q

where x1, . . . , xN „ f are an i.i.d sample, provided the expec-
tation exists.

We need to establish

‚ the accuracy of the approximation,
‚ how the samples from fpxq are obtained.

Does this ever go wrong ?
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Monte Carlo: basic principles

Consider computing

ż 1

0

1

x
sinp2π{xq dx

by sampling Xi „ Uniformp0,1q, and then computing

1

N

N
ÿ

i“1

1

Xi
sinp2π{Xi q
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Monte Carlo: basic principles

The integral can be computed as

ż 1

0

1

x
sinp2π{xq dx “

ż 8

1

sinp2πtq

t
dt

“

ż 8

0

sinptq

t
dt ´

ż 2π

0

sinptq

t
dt

“ Sip8q ´ Sip2πq

where Sip.q is a special function (the sine integral ).

We have that Sip8q “ π{2 ≏ 0.1526.
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Monte Carlo: basic principles

Run 1:
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Monte Carlo: basic principles

Run 2:
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Î

9



Monte Carlo: basic principles

Occasional large values of

Yi “
1

Xi
sinp2π{Xi q

cause the sample average to not converge as N gets large.

A sufficient condition for strong convergence is

ż

|gpxq|fpxq dx ă 8

which does not hold here.
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Monte Carlo Estimation: Statistical Properties

In situations where the Monte Carlo estimator

pIN pgq “
1

N

N
ÿ

i“1

gpXi q
a.s.
ÝÝÑ

p
ErgpXqs “ µpgq

say, and a central limit theorem applies, we have that

?
NppIN pgq ´ µpgqq

d
ÝÑ N p0,Vpgqq

where

Vpgq “ VarrgpXqs “

ż

pgpxq ´ µpgqq2 fpxq dx

The Monte Carlo estimator exhibits oP p
?

Nq convergence.
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Monte Carlo Estimation

Motivated by the deterministic approximation

ż

gpxqfpxq dx ≏
k

ÿ

j“0

wj gpxj q

where weights are determined by fpxq, to minimize the error
in the approximation, it should be advantageous to choose
design points x0, . . . , xk where g is largest.

In a Monte Carlo setting, it seems clear that the estimator will
converge more quickly and have lower variance for finite N
when fpxq generates points in regions where gpxq is large in
magnitude.
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Monte Carlo Estimation

Example:

See knitr 4
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Importance sampling

If f0 is a pdf with support including the support of f , then

ż

gpxqfpxq dx “

ż

gpxqfpxq
f0pxq

f0pxq
dx “

ż

gpxqfpxq

f0pxq
f0pxq dx.

and so

Ef rgpXqs “ Ef0

„

gpXqfpXq

f0pXq

ȷ

.

An estimator of the expecat

pI
pf0q

N pgq “
1

N

N
ÿ

i“1

gpXi qfpXi q

f0pXi q

where X1, . . . ,XN „ f0p.q.
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Importance sampling

pI
pf0q

N is termed the importance sampling estimator, and f0 is
termed the importance sampling density.

Note that

pI
pf0q

N pgq “
1

N

N
ÿ

i“1

fpXi q

f0pXi q
gpXi q “

1

N

N
ÿ

i“1

w0pXi qgpXi q

say, where

w0pXi q “
fpXi q

f0pXi q

is the importance sampling weight .
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Importance sampling

Note that

Ef0

„

fpXq

f0pXq

ȷ

“

ż

fpxq dx “ 1

so

Ef0

«

1

N

N
ÿ

i“1

w0pXi q

ff

“ 1

although for any realization

1

N

N
ÿ

i“1

w0pxi q ‰ 1

in general.
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Optimal Importance Sampling

We now seek guidelines for choosing f0 optimally. Note first
that the variance of pI

pf0q

N pgq is finite if and only if

gpXqfpXq

f0pXq

has finite variance, that is, if and only if

Ef0

«

"

gpXqfpXq

f0pXq

*2
ff

“

ż 8

´8

"

gpxqfpxq

f0pxq

*2

f0pxq dx

is finite. The optimal choice is then f0pxq 9 |gpxq|fpxq.
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Optimal Importance Sampling

If
fpxq

f0pxq

is unbounded on the support of f , the variance of pI
pf0q

N pgq is
not finite. Therefore, for f with unbounded support, we must
ensure that this ratio stays bounded particularly in the tails.
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Optimal Importance Sampling

Note that, in general, if X1, . . . ,XN , . . . „ f0, then

1

N

N
ÿ

i“1

fpXi q

f0pXi q

a.s.
ÝÑ

ż 8

´8

fpxq

f0pxq
f0pxq dx “ 1

so therefore

rI
pf0q

N pgq “

N
ř

i“1

gpXi qfpXi q

f0pXi q

N
ř

i“1

fpXi q

f0pXi q

a.s.
ÝÑ Ef rgpXqs

also, if the expectation exists. This estimator rI
pf0q

N pgq may have

smaller variance than pI
pf0q

N pgq
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Optimal Importance Sampling

It seems appealing to combine this with the optimality result.
The estimator

rI
pf0q

N pgq “

N
ř

i“1

gpXi qfpXi q

f0pXi q

N
ř

i“1

fpXi q

f0pXi q

“

N
ř

i“1

gpXi q

|gpXi q|

N
ř

i“1

1

|gpXi q|

is feasible. When gp.q is positive

rI
pf0q

N pgq “
N

N
ř

i“1

1

gpXi q

that is, the harmonic mean estimator. Unfortunately, this es-
timator often has poor properties.
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Optimal Importance Sampling

However, to get as close to the variance bound as possible, a
sensible objective is to choose f0 so that

|gpxq|fpxq

f0pxq

is almost constant, such that the variance is finite.

This suggests designing f0 to have high density whenever the
original integrand |gpxq|fpxq is large, subject to the constraint

fpxq

f0pxq
ă M or Ef0

„

fpXq

f0pXq

ȷ

ă M

for some finite bound M .
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Importance Sampling in Higher Dimensions

All of the previous results carry across to the case where the
target integral is an integral in dimension higher than one.

‚ gpxq is a scalar function of vector argument x,
‚ fpxq and f0pxq are multivariate densities.

In higher dimensions, in general, many more random samples
are needed to obtain sufficient accuracy than in the univariate
case.
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Random number generation

Monte Carlo sampling requires ready access to random sam-
ples from univariate or multivariate distributions.

There are many straightforward techniques available to ob-
tain random samples from standard distributions once a ran-
dom sample of Uniform random variables is available.
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Rejection sampling

To sample from fpxq using samples from from the density
f0pxq, where for all x and for some finite M ,

fpxq

f0pxq
ă M i.e. fpxq ă Mf0pxq

we may use the following algorithm:

1. generate x from f0

2. generate u from Uniformp0,1q

3. if

u ď
fpxq

Mf0pxq

accept x as a variate from f ; if this inequality is not met,
return to 1.
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Rejection sampling

Now

PrrX is accepteds “ Pr

„

U ď
fpXq

Mf0pXq

ȷ

“

ż 8

´8

#

ż fpxq{pMf0pxqq

0
du

+

f0pxq dx

“

ż 8

´8

fpxq

Mf0pxq
f0pxq dx

“
1

M

ż 8

´8

fpxq dx “
1

M
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Rejection sampling

For t P R,

PrrX ď t |X is accepteds “
PrrX ď t ,X is accepteds

PrrX is accepteds

“ MPr

„

X ď t ,U ď
fpXq

Mf0pXq

ȷ

“ M

ż t

´8

#

ż fpxq{pMf0pxqq

0
du

+

f0pxq dx

“ M

ż t

´8

fpxq

Mf0pxq
f0pxq dx

“

ż t

´8

fpxq dx

that is, the density of accepted points is precisely fpxq. 26



Rejection sampling

This is the rejection sampling (or accept-reject) algorithm
with proposal density f0; it works for arbitrary multivariate
distributions.

If fpxq is bounded with support a bounded subset X of R, then
f0 can be the Uniform density on X , although this is not nec-
essarily the optimal choice. Recall that

PrrX is accepteds “
1

M

so ideally M should be as small as possible.
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Rejection sampling: Efficiency

Neither f nor f0 need to be normalized for this algorithm to
be valid:

‚ If fpxq “ mgpxq and f0pxq “ m0g0pxq, then

fpxq

f0pxq
“

m

m0

gpxq

g0pxq
ă M

or
gpxq

g0pxq
ă M 1 “

mM

m0

is the rejection sampling bound.
‚ We proceed by bounding gpxq{g0pxq.
‚ The acceptance probability is now indeterminate, how-

ever, by monitoring the empirical acceptance rate, an es-
timate of m{m0 can be obtained.
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Rejection sampling

Example: Normal mixture

Consider sampling from the normal mixture

fpxq “
1

4
ϕpx ` 2q `

3

4
ϕpx ´ 1q

where ϕp.q is the standard normal pdf. Consider rejection
sampling from this density using

f0pxq “
1

σ
ϕ

ˆ

x ´ 1

σ

˙

for some variance σ2.
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Rejection sampling

Example: Normal mixture

Target fpxq (solid) and f0pxq (dashed) with σ “ 2.5.
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Rejection sampling

Example: Normal mixture

fpxq{f0pxq maximized at x “ 0.9863, yielding M “ 1.8821:
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Rejection sampling

Example: Normal mixture

fpxq bounded by Mf0pxq:
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Rejection sampling

If x is a variate from f0, then f0pxq is the value of the density
at that variate, and Mf0pxq is the scaled version. Consider a
vertical slice at x which is the line segment

px,0q ÝÑ px,Mf0pxqq

By assumption fpxq ď Mf0pxq. If u is a Uniformp0,1q variate,
then uMf0pxq is the portion of the vertical slice, and if

fpxq ď uMf0pxq

then fpxq is below the random point on the line segment, and
hence is rejected.

33



Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture

−2 −1 0 1 2

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

D
en

si
ty

36



Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture
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Rejection sampling

Example: Normal mixture

53078 out of 100000 points accepted (1{M “ 0.5313).
Accepted Points
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Rejection sampling and Importance sampling

There is obviously a clear connection between rejection sam-
pling and importance sampling

‚ both rely on choosing a suitable f0pxq

‚ the boundedness of the ratio fpxq{f0pxq is crucial in the
construction of the procedure

The difference is that rejection sampling produces i.i.d. sam-
ples from fpxq, whereas importance sampling approximates
numerical integration with respect to fpxq.
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Sampling Importance Resampling

Sampling Importance Resampling (SIR) can be used to sam-
ple (approximately) from density fpxq by re-weighting and
then resampling samples from f0pxq:

1. Generate variates x1, . . . , xN from f0.
2. Compute renormalized weights w1, . . . ,wN given by

wi “
fpxi q{f0pxi q

N
ř

j“1
pfpxj q{f0pxj qq

i “ 1, . . . ,N .

3. Resample yi from the discrete distribution on tx1, . . . , xN u

with masses tw1, . . . ,wN u.
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Sampling Importance Resampling

Example: Normal mixture

fpxq “
1

4
ϕ px ` 2.5q `

3

4
ϕ px ´ 1q

f0pxq “
1

σ
ϕ px{σq

for some σ ą 0.

Choosing σ poorly can compromise the SIR algorithm.

‚ need to ensure there are samples in the tails of fpxq.
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Sampling Importance Resampling

Example: Normal mixture

SIR with σ “ 2 (N “ 100000, 2000 resampled points):
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Sampling Importance Resampling

Example: Normal mixture

SIR with σ “ 1 (N “ 100000, 2000 resampled points):
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Sampling Importance Resampling

Example: Normal mixture

SIR with σ “ 0.5 (N “ 100000, 2000 resampled points):
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Variance Reduction Methods

Example:

See knitr 5
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Markov chain Monte Carlo



A brief introduction to Markov chains

A Markov chain is a sequence of rvs, tXt u, for which

PrrXt P B |X1 “ x1, . . . ,Xt´1 “ xt´1s “ PrrXt P B |Xt´1 “ xt´1s.

Xt is conditionally independent of X0, . . . ,Xt´2 given Xt´1.

In the simplest case, the tXt u takes values on the finite (dis-
crete) state space

SX “ ts1, . . . , sd u

and the chain is homogeneous, that is, the stochastic proper-
ties of tXt u do not change with time.
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A brief introduction to Markov chains

The Markov chain is characterized by its initial state X0 or its
initial distribution pp0q, and its transition matrix P , a d ˆ d
stochastic matrix whose rows sum to one, such that

Pij “ PrrXt “ sj |Xt´1 “ si s

describes the set of one-step ahead conditional probabilities.
Denote by

pij pkq “ PrrXt0`k “ sj |Xt0 “ si s

the k -step ahead probabilities.
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A brief introduction to Markov chains

If Ppkq is the matrix of k -step ahead probabilities, then

Ppkq “ Pk

and then the k -step distribution is

ppkq “ pp0qPk
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A brief introduction to Markov chains

The properties of the chain depend on P . The chain is

‚ irreducible if pij pkq ą 0, for all i , j , and at least one k .
‚ aperiodic if all states have period 1: that is, for each i ,

returns to state i can occur after any number of steps.

The period of state i is defined as the greatest common
divisor of the set of possible return times, R,

R “ tr : PrrXr “ si |X0 “ si s ą 0u
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A brief introduction to Markov chains

‚ recurrent if all states are recurrent, that is, the probabil-
ity of returning to each state in a finite number of steps
is positive. Let Ti “ inftk : Xk “ i |X0 “ iu. State i is
recurrent if and only if

PrrTi “ 8s “ 0

and transient otherwise. If ErTi s ă 8, state i is termed
positive recurrent , otherwise it is termed null recurrent .
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A brief introduction to Markov chains

A stationary or invariant distribution, π˚, of a homogeneous
Markov chain is the 1 ˆ d vector of probabilities such that

π˚ “ π˚P

that is, for each i ,

π˚
i “

ÿ

j

π˚
j Pji
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A brief introduction to Markov chains

The equilibrium distribution of the chain, π, is defined by

π “ lim
kÝÑ8

ppkq “ pp0q lim
kÝÑ8

Pk

when this limit exists and is independent of pp0q. That is, we
may compute π as

1π “ lim
kÝÑ8

Pk

if the limit exists. The equilibrium distribution is a stationary
distribution.
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A brief introduction to Markov chains

An irreducible chain has an equilibrium distribution if and
only if all of its states are positive recurrent, in which case
π is unique, and can be computed as

lim
kÝÑ8

Pk “ 1π.

where 1 is the d ˆ 1 vector of 1s.

The equilibrium/stationary distribution π can be computed by
solving π “ πP .
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A brief introduction to Markov chains

Key aspects of the stationary distribution are that

(a) As the k -step ahead probability matrix Pk converges to a
matrix with d identical rows, the Markov chain can even-
tually “forget" its initial value X0.

(b) Realized values of tXt u have statistical properties that ex-
hibit convergence to the stationary distribution, that is,
for i “ 1, . . . ,d ,

lim
nÝÑ8

n
ř

k“1
1tsi u

pXk q

n
“ πi
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A brief introduction to Markov chains

A Markov chain is reversible if, for every n ě 1,

X0,X1, . . . ,Xn´1,Xn

and

Xn ,Xn´1, . . . ,X1,X0

have the same joint distribution.
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A brief introduction to Markov chains

It follows that the reverse chain is also Markov and that the
individual Xk have the same marginal distribution: for arbi-
trary state sequence plk`2, . . . , lnq,

PrrXk “ i |Xk`1 “ j ,Xk`2 “ lk`2, . . . ,Xn “ ln s

“
PrrXk “ i ,Xk`1 “ j ,Xk`2 “ lk`2, . . . ,Xn “ ln s

PrrXk`1 “ j ,Xk`2 “ lk`2, . . . ,Xn “ ln s

“
πi Pij Pj ,lk`2 ¨ ¨ ¨ Pln´1,ln

πj Pj ,lk`2 ¨ ¨ ¨ Pln´1,ln

“
πi Pij

πj

which only depends on i and j .
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A brief introduction to Markov chains

A homogeneous Markov chain with stationary distribution π

is reversible if

πi Pij “ πj Pji

for all states i and j . This is also termed the detailed balance
condition.

Note that if this equation holds for a specified π, then this
implies that the P has been specified so as to have stationary
distribution π.
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Discrete Markov chains

Note that the tXt u are dependent random variables, so the
standard frequentist asymptotic laws do not directly apply.

However, the ergodic theorem applies for irreducible, aperi-
odic and positive recurrent Markov chains, in particular

1

N

N
ÿ

t“1

gpXt q
a.s.
ÝÑ EπrgpXqs

for all bounded functions g, provided

Eπr|gpXq|s ă 8
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Discrete Markov chains

A Central Limit Theorem result also holds under mild regular-
ity conditions, specifically,

?
N

˜

1

N

N
ÿ

t“1

gpXt q ´ EπrgpXqs

¸

d
ÝÑ N p0, σ2pgqq

where

σ2pgq “ VarπrgpX0qs ` 2
8
ÿ

t“1

CovπrgpX0q,gpXt qs.
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Discrete Markov chain: example

Example: d “ 2

Consider d “ 2, with

P “

„

0.3 0.7
0.9 0.1

ȷ

Then π “ p9{16,7{16q. Here

π1P12 “
9

16
ˆ

7

10
“

63

160
π2P21 “

7

16
ˆ

9

10
“

63

160

so this chain is reversible.
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Discrete Markov chain: example

Example: d “ 2

Relative frequency of being in state 2 over 10000 steps.
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Constructing reversible chains

In the 2 ˆ 2, for a reversible chain, we require

π1P12 “ p1 ´ π1qP21

or
π1

p1 ´ π1q
“

P21

P12
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Constructing reversible chains

Suppose

P12 “ min

"

1,
1 ´ π1

π1

*

P21 “ min

"

1,
π1

1 ´ π1

*

Then

π1P12 “ π1 min

"

1,
1 ´ π1

π1

*

“ min tπ1,1 ´ π1u

“ min t1 ´ π1, π1u

“ p1 ´ π1qmin

"

1,
π1

1 ´ π1

*

“ p1 ´ π1qP21
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Constructing reversible chains

The above Markov chain we can think of as acting as follows:

‚ If Xt “ 1: propose setting Xt`1 “ 2, but only accept this
move with probability

min

"

1,
1 ´ π1

π1

*

otherwise set Xt`1 “ 1.
‚ If Xt “ 2: propose setting Xt`1 “ 1, but only accept this

move with probability

min

"

1,
π1

1 ´ π1

*

otherwise set Xt`1 “ 2.
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Constructing reversible chains

A generalization of this approach is as follows:

‚ If Xt “ 1: simulate z from t1,2u with probabilities pq11,q12q.
If z “ 2, set Xt`1 “ 2 with probability

α12 “ min

"

1,
π2

π1

q21

q12

*

otherwise set Xt`1 “ 1.

‚ If Xt “ 2: simulate z from t1,2u with probabilities pq21,q22q.
If z “ 1, set Xt`1 “ 1 with probability

α21 “ min

"

1,
π1

π2

q12

q21

*

otherwise set Xt`1 “ 2.
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Constructing reversible chains

The transition probabilities are then

P12 “ PrrXt`1 “ 2|Xt “ 1s “ q12α12

P21 “ PrrXt`1 “ 1|Xt “ 2s “ q21α21

so therefore

π1P12 “ π1q12α12 “ π1q12 min

"

1,
π2

π1

q21

q12

*

“ min tπ1q12, π2q21u

π2P21 “ π2q21α21 “ π2q21 min

"

1,
π1

π2

q12

q21

*

“ min tπ2q21, π1q12u

and
π1P12 “ π2P21.
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Constructing reversible chains

This allows the generalization to the case

SX “ t1,2, . . . ,d , . . .u.

Let π be an arbitrary discrete distribution, and matrix Q de-
fine the proposal probabilities

rQ sij “ PrrZ “ j |Xt “ i s

for all i , j .
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Constructing reversible chains

Define the acceptance probabilities

αij “ min

"

1,
πj

πi

qji

qij

*

and implement the chain as follows: when Xt “ i

‚ set Xt`1 “ Z “ j with probability αij ,
‚ otherwise, set Xt`1 “ Xt “ i .
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Constructing reversible chains

This Markov chain satisfies detailed balance

πi Pij “ πj Pji for all i , j

provided it is irreducible, aperiodic and positive recurrent.

Note that the rows of Q must sum to 1 as

8
ÿ

j“1

PrrZ “ j |Xt “ i s “ 1

so Q defines a stochastic proposal (or transition) matrix.
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Constructing reversible chains: example

Example: Poisson distribution

Suppose, for λ ą 0,

πi “
e´λλi

i !
i “ 0,1,2, . . . .

Suppose

qij “

$

’

’

&

’

’

%

1 i “ 0, j “ 1

1
2 i ě 1, j “ i ´ 1, i ` 1

0 otherwise

Z is proposed uniformly on the finite set txt ´1, xt `1u, unless
Xt “ 0, in which case Z “ 1 is proposed.
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Constructing reversible chains: example

Example: Poisson distribution

First 200 steps of the chain starting at X0 “ 0 with λ “ 2.5.
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Constructing reversible chains: example

Example: Poisson distribution

Histogram of states for N “ 10000 steps (true values +) 
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Discrete Markov chains: Recap

We can sample from target discrete distribution, π,

‚ specify the stochastic matrix Q
‚ initialize the chain by setting X0

‚ for each t , if Xt “ i , use the i th row of Q as a discrete
distribution for proposing Z

‚ If Z “ j , accept Xt`1 “ j with probability αij

αij “ min

"

1,
πj

πi

qji

qij

*

otherwise set Xt`1 “ Xt “ i .
‚ collect the sequence tXt u.
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Discrete Markov chains: Recap

Example:

See knitr 6

76



Continuous State Space Markov Chains

The theory above extends to continuous state spaces, X.

We must specify a transition kernel

Ppx,Bq “

ż

B
Ppx, zq dz

Ppx,Bq determines the probability of making the transition
from current value x into the set B Ă X in any given step.
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Continuous State Space Markov Chains

We retain the discrete time nature of the Markov chain, and
again consider outcome sequences tx1, x2, ..., xn , ...u.

Transitions are implemented using a transition density

P px, zq ” P px Ñ zq

which specifies a conditional probability density in z, given
the current value x, for x, z P X.
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Continuous State Space Markov Chains

By analogy with the discrete case, the stationary distribution
π for the continuous state space chain must satisfy

πpxq “

ż

Ppz, xqπpzq dz

A reversible chain must satisfy detailed balance

πpxqPpx, zq “ πpzqPpz, xq

for all x and z. Given P , we can in theory solve for π.

In the context of sampling from a target probability distribu-
tions, we wish to specify π, and then find a P such that its
equilibrium distribution is π.
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The Metropolis-Hastings Algorithm

We attempt to mimic the construction of a Markov chain with
stationary distribution π used in the discrete case.

Let Q be any proposal (transition) kernel suitable for moving
(exhaustively) around X, with associated transition density q
such that

q pz, xq “ qpz ÝÑ xq ą 0

for all x, z.

In fact, this can be relaxed to the condition that requires
Qn px, zq ą 0 for all x, z P X, separated by n steps in the
chain).
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The Metropolis-Hastings Algorithm

Then, for z ‰ x, define

P px, zq “ q px, zqα px, zq

where

α px, zq “ min

"

1,
π pzq

π pxq

q pz, xq

q px, zq

*

defines an acceptance probability for the move from x to z.
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The Metropolis-Hastings Algorithm

Under this transition kernel or density P with transition den-
sity if the current state of the chain at step n is Xn “ x, then
the next value of the chain is either

‚ a new value Xn`1 “ z, generated from the conditional
density q px, zq,

‚ or the current value Xn`1 “ x.

The value z the proposed or candidate state.

Thus, starting from the n th step when xn “ x, we have the fol-
lowing algorithm for implementing the continuous state space
Markov chain:

82



The Metropolis-Hastings Algorithm

1. Generate z from conditional density q px, ¨q given x;

2. Compute α px, zq;

3. Generate u from Uniform p0,1q

‚ if u ď α px, zq, accept the move to z and set Xn`1 “ z
‚ if u ą α px, zq, reject the move to z and set Xn`1 “ x

4. Return to 1 to generate Xn`2

and so on.

This is the Metropolis-Hastings (MH) algorithm.
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The Metropolis Algorithm

The general algorithm above has some special cases of inter-
est. If q is chosen such that

q px, zq “ q pz, xq

so that q is symmetric in its arguments, then

α px, zq “ min

"

1,
π pzq

π pxq

*

and the move to z is accepted with certainty if the target prob-
ability density at z is higher than at x.
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The Metropolis Algorithm

A simple symmetric transition density has

Z |Xn “ x „ N
`

x, σ2
q

˘

Choosing σ2
q small encourages many small moves.

This is the original Markov chain simulation algorithm, known
as the Metropolis Algorithm.

Many such “local" moves can be proposed. Note that it is im-
portant to respect any parameter constraints in the proposal.
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Independence Metropolis-Hastings

The independence Metropolis-Hastings algorithm uses

q px, zq “ q pzq

that is, independent of the current value of the chain. This
still defines a Markov chain as

p px, zq “ q pzqα px, zq

still depends on x through α px, zq. If π can be approximated
by a density q (as in rejection sampling), then this method can
work well.
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Metropolis-Hastings algorithm

Example: Gamma density

Suppose, for γ ą 0

πpxq “
1

Γpγq
xγ´1e´x x ą 0.

Suppose, first that qpx, zq is specified as a reflected normal
density, that is, we propose z by simulating

Y |Xt “ x „ N px, σ2
qq,

and setting Z “ |Y |.

87



Metropolis-Hastings algorithm

Example: Gamma density

Note that

PrrZ ď z|X “ xs “ Prr|Y | ď z|X “ xs “ Prr´z ď Y ď z|X “ xs

so therefore

PrrZ ď z|X “ xs “ Φppz ´ xq{σqq ´ Φpp´z ´ xq{σqq

and, on differentiation wrt z,

qpx, zq “
1

σq
pϕppz ´ xq{σqq ` ϕpp´z ´ xq{σqqq “ qpz, xq

as ϕ is an even function.
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Metropolis-Hastings algorithm

Example: Gamma density

200 steps starting at X0 “ 0 with γ “ 2.5, σq “ 1.
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Metropolis-Hastings algorithm

Example: Gamma density

Histogram of states visited over N “ 10000 steps 
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Metropolis-Hastings algorithm

Example: Gamma density

200 steps starting at X0 “ 0 with γ “ 2.5, σq “ 0.1.
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Metropolis-Hastings algorithm

Example: Gamma density

Histogram of states visited over N “ 10000 steps 
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Metropolis-Hastings algorithm

Example: Gamma density

200 steps starting at X0 “ 0 with γ “ 2.5, σq “ 3.
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Metropolis-Hastings algorithm

Example: Gamma density

Histogram of states visited over N “ 10000 steps 
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Metropolis-Hastings algorithm

The states generated by the Markov chain are correlated; we
can assess the performance of the Markov chain by examining
the sample autocorrelation function

rpkq “

ˆ

N ´ 1

N ´ k ´ 1

˙

N
ř

t“k`1
pxt ´ xqpxt´k ´ xq

N
ř

t“1
pxt ´ xq2

for k “ 0,1,2 . . ..

A chain with high autocorrelation for large k is typically slow
to converge.
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Metropolis-Hastings algorithm

Example: Gamma density

Autocorrelation function for σq “ 1.
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Metropolis-Hastings algorithm

Example: Gamma density

Autocorrelation function for σq “ 0.1: inferior performance.
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Metropolis-Hastings algorithm

Example: Gamma density

Autocorrelation function for σq “ 3: superior performance.
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Metropolis-Hastings algorithm

If the chain is started away from the high-probability region
of π, then the it can take many steps to return there.

In the following trace plots, the red dashed lines give the
0.025 and 0.975 quantiles of the Gammap2.5,1q distribution
from the example. The chain is initialized at X0 “ 20, and
then run for 20000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: first 1000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: first 10000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: first 20000 steps.
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Metropolis-Hastings algorithm

Example: Gamma density

Starting value X0 “ 20, σq “ 0.1: steps 15000 to 20000.
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Metropolis-Hastings algorithm

In this final section of the chain, the generated values appear
to oscillate, despite the fact that the chain has apparently
reached the stationary phase. This oscillation is a result of
the high autocorrelation present in the chain.

It is often difficult to distinguish such high autocorrelation
from the case where a chain has not converged.

The high autocorrelation results here from the choice σq “

0.1; this value is smaller than is optimal.
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Metropolis-Hastings algorithm

Example:

See knitr 7
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Gibbs Sampler

The Metropolis-Hastings algorithm is valid for univariate and
multivariate probability distributions, but is more complicated
in high dimensions.

The objective is to choose a transition density q that moves
around the space X quickly, which means that we wish to have
the acceptance probability reasonably large.

In high dimensions, this is often difficult to achieve. The Gibbs
Sampler algorithm attempts to solve this problem by break-
ing down a high-dimensional problem into several lower di-
mensional problems that are solved iteratively.
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Gibbs Sampler

Suppose that π is a probability density in K dimensions, and
let the variables be denoted pX1, ...,XK q. Define the condi-
tional density πk p.|.q for

Xk |X1, ...,Xk´1,Xk`1, ...XK

by

πk

`

xk ; xpkq

˘

“
π px1, ..., xK q

π px1, ..., xk´1, xk`1, ...xK q
∝ π px1, ..., xK q

where the denominator is the marginal distribution of Xpkq,
the K ´ 1 variables excluding Xk .
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Gibbs Sampler

The Gibbs Sampler is implemented as follows:

1. Set starting values for the K variables px10, ..., xK0q .

2. Sample the conditional distributions with updating:

(a) sample x11 from π1 px1; x20, x30, ..., xK0q

(b) sample x21 from π2 px2; x11, x30, ..., xK0q

(c) sample x31 from π3 px3; x11, x21, ..., xK0q
...

(K) sample xK1 from πK pxK ; x11, x21, ..., xK´1 1q

This completes one step of the Gibbs sampler.

3. Return to 2 (a), and repeat to obtain, at step t , the sam-
pled variates px1t , x2t , ..., xKt q
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Gibbs Sampler

Each of the updates can be achieved using direct sampling
from the conditional distribution or individual MH steps, with
acceptance probabilities

αk px, zq “ min

#

1,
πk

`

z; xpkq

˘

πk

`

x; xpkq

˘

qk pz, xq

qk px, zq

+

for k “ 1, ...,K . In 2., the steps can also be completed in
random order

The steps can be achieved with the scalar variables X1,...,XK

or with these components as vector variables; deciding on
which blocks of variables to update simultaneously is often a
key issue.

109



Gibbs Sampler as Metropolis-Hastings

The Gibbs sampler is a special case of the MH algorithm: we
can regard the individual updates in 2. as implementing K
separate transition kernels that act on the components of X;
note that these kernels in isolation yield reducible Markov
chains.

A more general form of MH algorithm is based on a mixture
transition kernel

Ppx,Bq “
ÿ

j

ωj Pj px,Bq

where 0 ď ωj ď 1 and
ř

j
ωj “ 1, and the Pj are themselves

transition kernels. This allows for the possibility of choosing
several proposal densities qj .
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Gibbs Sampler: example

Example: Bivariate Normal

Suppose X “ pX1,X2qJ „ N2p0,Σq where

Σ “

„

1 ρ

ρ 1

ȷ

The general result for multivariate normal distribution condi-
tional distributions is that if X “ pX1,X2qJ „ Nd pµ,Σq, where
X1 is pd1 ˆ 1q, and

Σ “

„

Σ11 Σ12

Σ21 Σ22

ȷ

then

X1|X2 “ x2 „ Nd1

`

µ1 ` Σ12Σ
´1
22 px2 ´ µ2q,Σ11 ´ Σ12Σ

´1
22 Σ21

˘
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Gibbs Sampler: example

Example: Bivariate Normal

Therefore, here d “ 2, and

X1|X2 “ x2 „ N pρx2, p1 ´ ρ2qq

X2|X1 “ x1 „ N pρx1, p1 ´ ρ2qq

These distributions are sampled repeatedly with updating of
the conditioning value after each sampling.

Suppose we start at px10, x20q “ p0,0q.
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Gibbs Sampler: example

Example: Bivariate Normal

Initial point: px10, x20q
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Gibbs Sampler: example

Example: Bivariate Normal

After one update: px11, x21q
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Gibbs Sampler: example

Example: Bivariate Normal

After two updates: px12, x22q
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Gibbs Sampler: example

Example: Bivariate Normal

After three updates: px13, x23q
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Gibbs Sampler: example

Example: Bivariate Normal

After four updates: px14, x24q
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Gibbs Sampler: example

Example: Bivariate Normal

After 2000 updates: entire collected sample
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Gibbs Sampler: example

Example: Bivariate Normal

Histogram for X1 with true marginal density (solid): 
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Gibbs Sampler: example

Example: Bivariate Normal

Trace for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

ACF for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

We note that

‚ the Gibbs sampler makes one-step moves along the coor-
dinate axes

‚ the moves can traverse the support of the joint density
fairly well

‚ there is no “tuning" of a proposal parameter (like σq)
‚ the samples of x1 that are collected across steps are (de-

pendent) samples from the correct marginal distribution
for X1; the same result holds for X2

We can re-run the Gibbs sampler from the same starting
value, but now with ρ “ 0.95.
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Gibbs Sampler: example

Example: Bivariate Normal

Initial point: px10, x20q
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Gibbs Sampler: example

Example: Bivariate Normal

After one update: px11, x21q
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Gibbs Sampler: example

Example: Bivariate Normal

After two updates: px12, x22q
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Gibbs Sampler: example

Example: Bivariate Normal

After three updates: px13, x23q
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Gibbs Sampler: example

Example: Bivariate Normal

After four updates: px14, x24q
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Gibbs Sampler: example

Example: Bivariate Normal

After 2000 updates: entire collected sample
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Gibbs Sampler: example

Example: Bivariate Normal

Histogram for X1 with true marginal density (solid):
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Gibbs Sampler: example

Example: Bivariate Normal

Trace for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

ACF for X1:
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Gibbs Sampler: example

Example: Bivariate Normal

With ρ “ 0.95, the Gibbs sampler still performs adequately,
but the moves made are smaller, and exploring the distribu-
tion is much more difficult.

This illustrates a potential general problem with the Gibbs
sampler: although it is straightforward to implement as it in-
volves only sampling variates from univariate densities, the
restriction to moves along the coordinate axes can cause
problems if the variables are highly correlated .
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Gibbs Sampler: example

Example: Weibull posterior distribution

Suppose that Y1, . . . ,Yn are conditionally iid from the Weibull
distribution with density

fY py; γ, λq “ γλyγ´1 expt´λyγu y ą 0

and zero otherwise, for parameters γ, λ ą 0. We seek to per-
form Bayesian inference for the two unknown parameters.

The likelihood for data y1, . . . , yn takes the form

Lnpγ, λq “ γnλn

˜

n
ź

i“1

yi

¸γ´1

exp

#

´λ
n

ÿ

i“1

yγ
i

+
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Gibbs Sampler: example

Example: Weibull posterior distribution

We assume independent Exponentialp0.1q priors for γ and λ

π0pγ, λq “ 0.01e´0.1pγ`λq γ, λ ą 0.

This yields the posterior distribution up to proportionality as

πnpγ, λq ∝ Lnpγ, λqπ0pγ, λq γ, λ ą 0

which is a non-standard distribution.
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Gibbs Sampler: example

Example: Weibull posterior distribution

We seek to produce a sample from this joint posterior distri-
bution for data pn “ 15q.

10.3959 6.2281 6.5331 10.7086 7.6138
8.9423 8.8254 6.1461 7.2988 8.8081
7.5316 8.2238 8.9831 6.4174 9.7648
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Gibbs Sampler: example

Example: Weibull example

Joint posterior (up to proportionality)
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Gibbs Sampler: example

Example: Weibull example

In this case, neither full conditional posterior

πnpγ|λq πnpλ|γq

is a standard distribution, and cannot be sampled from easily.

We adopt a Metropolis-within-Gibbs strategy; this uses MH
accept-reject steps for each parameter and its full conditional.

Specifically, as both parameters are positive, we use the re-
flected normal proposal distribution from the previous exam-
ple with σq “ 1 for γ and σq “ 10´3 for λ proposals.
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Gibbs Sampler: example

Example: Weibull example

First 2000 Gibbs sampler steps.

4 5 6 7 8

0e
+

00
2e

−
06

4e
−

06
6e

−
06

8e
−

06
1e

−
05

γ

λ

●

●●●●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●●
●

● ●●●●

●●

●●
●

●●●

●

●

●
●●●●●●●

●●●●●
●●

●●

●●

●●● ●●●●●●●

●●●

●●●●●●

●

●

●●●

●

●

●

●●● ●●

●●
●●● ●

●
●●●

●●●

●

●

●

●●

●●
●●●

●● ●

●

●●

●
●●

●

●●●

●

●

●●●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●●

●●

●

● ●

●

●

●

●● ●

●

●●

●

●

●

●●

●
●●●●

●

●

●

●

●●

●

●●●●●

●

●

● ●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●●

●

●
●

●

●

●

●● ●

●●

●

●●

● ●

●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

● ●●

●●●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●●

●●●●

●●

●

● ●

●●

●

●

●●

●●

●

●
●●

●

●●

●

●
●●●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●

●

●

●

● ●

●●
●●●

●●

●

●

●●

●

●

●

●

●

●

●●●●
●

●

● ●

●

●●

●

●

●

●

●●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●
●

●
●●●●●

●
●
●●

●

●

●●
●

●●
●

●
●

●

●

●

●●

●

●●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●●●●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●●●●●●

●

●

●

●●

●

●

●

●● ●●●

● ●

●

●●

●

●

●
●●●●●
●

●

●

●●

●●

●

●

●●
●●

●

●

●●

●

●●

●

●●
●●●●

●

●

●

●●

●●

●

● ●

●●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●●●●●

●

●
●

●●

●

●●
●
●

●

●

●

●●●

●●●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●●

●
●●
●

●
●

●

●

●●●

●

●

●

●

●●

●●●●●
●

●

●
●

●●

●

●●

●

●

●

●

●

●●●

●●●

●●● ●●

●

●

●●●●●●●●●●●●●●●●●●
●
●

●●●●

●●

●●

●●●●

●

●

●●●●●

●

●●●

●●

●●
●●

●●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

● ●●

●●●

●●●●●

●

●

●●●

●●
●

●

●

●

●

●

●●

●●

●

●

● ●

●

●●

●

●

●

●●
●●●

●●●

●

●●●●

●

●

●●

●

●

●●●

●

● ●●

●

●

●

●

●

●●●

●
●

●

●

●
●●

●●

●●

●

●●●

●●

●

●●

●●●

●

●●●

●●

●●

●

●●●●

●

●●

●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●●
●

●

●
●●

●

●●

●●

●

●

●

●

●●●

●●

●

●●

● ●●●

●

●

●●●

●●●

●

●

●

●
●

●●
●

●●●●●
●
●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●●
●●
●

●●

●

●

●●

●
●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●●
●

●

●

●

●●●

●●●

●

●●

●
●

●

138



Gibbs Sampler: example

Example: Weibull example

Trace plots:
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Gibbs Sampler: example

Example: Weibull example

Acf:
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Gibbs Sampler: example

Example: Weibull example

The posterior correlation here is approximately 0.86; this
severely affects the performance of the Gibbs sampler.

A reparameterization helps with this problem: define ϕ by

ϕ “

ˆ

1

λ

˙1{γ

6 λ “

ˆ

1

ϕ

˙γ

For this new parameterization, we must remember to include
the Jacobian in the prior for the new parameters

π0pγ, ϕq “ π0pγ, λpγ, ϕqq|Jpγ, ϕq|

We again must use Metropolis-within-Gibbs.
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Gibbs Sampler: example

Example: Weibull example

Joint posterior for new parameterization
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Gibbs Sampler: example

Example: Weibull example

Sample from joint posterior for new parameterization
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Gibbs Sampler: example

Example: Weibull example

Trace plots: new parameterization
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Gibbs Sampler: example

Example: Weibull example

Acf: new parameterization
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Gibbs Sampler: example

Example: Weibull example

The posterior correlation here is approximately 0.25, and the
Gibbs sampler can effectively traverse the parameter space.

Parameter estimates for the new parameters can be obtained
from the posterior samples: the mean and 95% credible inter-
val for each parameter is

γ : 4.079 p2.455,6.038q

ϕ : 8.446 p7.310,9.593q

It is also possible to obtain posterior summaries for other
functions of the posterior parameters.
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Gibbs Sampler: example

Example: Weibull example

For example, the survivor function, Spyq, is defined by

Spyq “ PrrY ą ys “ expt´py{ϕqγu.

For each y P R`, we can compute this function for each pair
of generated points pγ, ϕq obtained from the Gibbs sampler.
We can then compute the pointwise credible intervals.
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Gibbs Sampler: example

Example: Weibull example

Posterior survivor function: Bayes estimate and 95 % credible
interval (shaded). Solid line is empirical survivor function.
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Effective sample size

We seek to measure the adequacy of the collected samples
for estimating parameters, in particular, we wish to assess
the variance of the estimators.

For an iid sample of size N , the variance of the Monte Carlo
estimator pIN pgq is

VarrgpXqs

N
.

However, for a dependent sample, the variance is

VarrgpXqs

Neff

where Neff is the effective sample size.
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Effective sample size

We have that, for a series of N observations from a dependent
stochastic process, the effective sample size is given by

Neff “
N

1 ` 2
8
ř

k“1
ρpkq

where ρpkq is the true lag-k autocorrelation for the Markov
chain. The denominator is the integrated autocorrelation time.

The true autocorrelations are typically not known, so must be
estimated from the data. Most typically this is achieved using
spectral methods. The calculation is available in R from the
library coda, in the function

effectiveSize.
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Effective sample size

For the Weibull example, with N “ 2000 in runs shown above

Neff

γ λ

pγ, λq parameterization 8.46 4.14
pγ, ϕq parameterization 217.20 393.69

From this we can tell that the second MCMC run, in the pγ, ϕq

parameterization, has larger effective sample sizes.
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Rejection sampling for the Weibull example

Note that we could attempt to address the problem of sam-
pling from the posterior distribution in the Weibull problem
above by rejection sampling. In the pγ, ϕq parameterization,
we have

πnpγ, ϕq ∝ Lnpγ, ϕqπ0pγ, λpγ, ϕqq|Jpγ, ϕq|

where π0p., .q is the product of independent Exponentialp0.01q

priors.
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Rejection sampling for the Weibull example

We use proposal function f0 which is the product of Gamma
densities; we choose

Gammap2,1{2q Gammap4,2q

for proposing pγ, ϕq, and then use numerical maximization to
find the bound M .
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Rejection sampling for the Weibull example

Example: Weibull example

Rejection sampling: acceptance rate is approximately 0.116.
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Examples

Example: Weibull

See knitr 8

Example: Non-linear regression

See knitr 9
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Metropolis-Hastings in higher dimensions

The MH algorithm can be used for probability distributions in
arbitrary dimension. Note that it is always the case that, for
the full conditional distributions, if

‚ x1 is a sub-vector of the entire vector x of variables, and
‚ xp1q is x with the components x1 removed,

then
πpx1|xp1qq ∝ πpxq

as the normalizing constant πpxp1qq does not depend on x1.

Knowing πpx1|xp1qq up to proportionality is sufficient.
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Examples

Example: Auxiliary variable methods

See knitr 10

Example: Missing data problems

See knitr 11
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Examples

Example: Multi-level models

See knitr 12

Example: Hierarchical linear regression

See knitr 13

Example: Hierarchical non-linear regression

See knitr 14
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Bayesian nonparametrics



Bayesian non-parametric inference

In Bayesian statistical inference, we compute and summarize
the posterior distribution of the unknown parameters in the
probability model, in light of observed data.

‚ In Bayesian parametric inference, the parameter is the
usual θ, λ, µ say that appears in the presumed (condi-
tional) data generating model.

‚ In Bayesian non-parametric inference, the parameter is
the distribution from which the data are drawn.

As part of Bayesian inference, we need to specify the prior
probability distribution for these parameters.
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Random Discrete Distributions

In the discrete univariate case, a pmf is constructed by

(I) choosing some locations x1, x2, x3, . . . on the real line
(II) placing a probability mass p1,p2,p3, . . . at the locations,

where the probabilities sum to 1.

Then the function

fpxq “

8
ÿ

i“1

piδxi pxq

is a discrete probability distribution on the set tx1, x2, x3, . . .u.
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Random Discrete Distributions

How do we make this random ?

(I) Choose the locations randomly (and independently) from
some distribution GX ; denote them x1, x2, x3, . . ..

(II) Choose the probabilities randomly in such a way such
that they sum to 1; denote them π1, π2, π3, . . ..

Then

rfpxq “

8
ÿ

i“1

πiδxi pxq

is a random mass function.
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Random Discrete Distributions

If the number of locations is finite, equal to K say, then we
can generate the probabilities π1, . . . , πK from a Dirichlet dis-
tribution

DirichletpK ;α1, . . . , αK`1q

where the αs are fixed constants.

In this case, the xi s are fixed, or the xi s simulated from GX .
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Random Discrete Distributions

If the number of locations is infinite, it is helpful to order the
πi in descending order

π1 ě π2 ě π3 ě ¨ ¨ ¨

so that the terms in the infinite sum become negligible, so
that the truncation

rfpxq ≏ rfN pxq “

N
ÿ

i“1

πiδxi pxq

can be computed.
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Random Discrete Distributions

For example, consider for α ą 0

V1,V2,V3, . . . „ Betap1, αq

independently distributed, and

π1 “ V1

π2 “ p1 ´ V1qV2

π3 “ p1 ´ V1qp1 ´ V2qV3

...
...

...

so that the πi sequence are decreasing in expectation.
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Random Discrete Distributions

‚ Two hyperparameters α,GX .
‚ α small gives a few large masses
‚ α large gives many small masses
‚ α large reproduces a distribution much like GX

Thus α is like a precision parameter, GX is like a location
parameter for the distribution.
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Random Discrete Distributions

The method described above is the stick-breaking construc-
tion of the Dirichlet Process with parameters pα,GX q.

rf „ DPpα,GX q

For any partition of R into disjoint subsets B1,B2, . . . ,BK ,BK`1

the Dirichlet process assigns random probabilities

p “ pp1,p2, . . . ,pK ,pK`1qJ

to the subsets, where

p „ DirichletpK ;α1, α2, . . . , αK , αK`1q

and αk “ αGX pBk q for each k
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Posterior Calculation

Suppose a priori rf „ DPpα,GX q. What is the posterior if data
y1, y2, . . . , yn are independent draws from rf?

We have a conjugate model: a posteriori

rf „ DPpα‹,G‹
X q

where

α‹ “ α ` n

G‹
X “

αGX `
n
ř

j“1
δyj

α ` n
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Posterior Calculation

For any partition of R into disjoint subsets B1,B2, . . . ,BK ,BK`1

with associated probabilities

p “ pp1,p2, . . . ,pK ,pK`1qJ

‚ in the prior

p „ DirichletpK ;α1, α2, . . . , αK , αK`1q

and αk “ αGX pBk q.

‚ in the posterior

p „ DirichletpK ;α‹
1, α

‹
2, . . . , α

‹
K , α

‹
K`1q

and α‹
k “ α‹G‹

X pBk q.
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Posterior Calculation

It follows that

α‹
k “ α‹G‹

X pBk q “ GX pBk q ` nk

where

nk “ Number of yj in the set Bk .

Therefore we have the usual kind of Bayesian updating rule.

Also

‚ α small: posterior looks like empirical cdf
‚ α large: posterior looks like GX .

So, overall, things proceed much like parametric inference !
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Dirichlet Process: Some issues

1. How do we report the inference ?

‚ Which partition, that is, which sets B1,B2, . . . ,BK ,BK`1

should we choose to report the posterior ?

2. In this formulation, the posterior can only support dis-
crete distributions

‚ that is, any estimate of the true f obtained from the
model is almost surely a discrete distribution.

We solve 1. by using simulation methods.

We solve 2. by extending the model .
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Simulating from a Dirichlet Process Model

To sample data from DPpα,GX q: sample Z1 „ GX , and for
j “ 2, . . . ,n, sample

Zj |Z1,Z2, . . . ,Zj´1 „
α

α ` j ´ 1
GX p¨q `

1

α ` j ´ 1

j´1
ÿ

l“1

δZl p¨q

i.e. sample Zj from

GX with probability α{pα ` j ´ 1q.

or from the discrete set

tZ1, . . . ,Zj´1u with probability 1{pα ` j ´ 1q for each element.
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The Dirichlet Process and Clustering

This algorithm is a Polya Urn scheme.

It demonstrates that the Dirichlet process model induces a
clustering mechanism: in the simulated Z sample, we have
many identical values due to the sampling of Zj uniformly on

tZ1, . . . ,Zj´1u

at each j .
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The Dirichlet Process and Clustering

In a sample of n items from a DPpα,GX q model, the probability
of having k clusters is

PrrK “ k s “
αk Bpn, kq

Anpαq

where Bpn, kq is the Stirling number of the first kind .

Anpxq “

n
ÿ

j“1

Bpn, jqx j
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The Dirichlet Process and Clustering

The expected number of clusters a priori is

n
ÿ

j“1

α

α ` j ´ 1
“ Opα log nq

For n “ 200:

α ErK s

0.5 3.631
2.0 9.766
4.0 16.238

10.0 30.930
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Extension to The Continuous Case

We add another stage that brings in a continuous distribution.

For example, could treat each xi as the location of a normal
density, and consider generating a y for each

x1, x2, . . . „ GX

π1, π2, . . . generated by stick-breaking.

y „ ϕppy ´ xi q{σq i “ 1,2, . . .

Then,

rfpyq “

n
ÿ

i“1

πiϕppy ´ xi q{σq

that is, an infinite mixture model .
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Dirichlet Process Mixture

This construction is called the

Dirichlet Process Mixture (DPM)

with a Normal kernel. Any continuous kernel gY can be used
in place of ϕ.

Under this model, rf is almost surely continuous.

‚ α small implies less bumpy
‚ α large implies more bumpy.
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Bayesian Inference

Suppose we have the usual de Finetti construction

‚ a prior model for f that is DPMpα,GX ,gY ; θq where θ are
parameters that appear in GX and gy .

‚ conditional on f , data y1, y2, . . . , yn „ f

We wish to compute the posterior for f . We use the hierarchi-
cal formulation

yj |xj
ind.
„ gY pyj |xj , θq j “ 1, . . . ,n

x1, . . . , xn „ DPpα,GX ; θq

θ „ ppθq.
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Bayesian Inference: Algorithm 1

The latent variables x1, . . . , xn are also treated as parameters.
They can be sampled using an MCMC Gibbs sampler scheme.

For j “ 1, . . . ,n, we sample

xj | xpjq, y „ w0ppxj |yj q `
ÿ

l‰j

wlδxl

where

‚ y “ py1, . . . , ynqJ

‚ xpjq “ px1, . . . , xj´1, xj`1, . . . , xnqJ.
‚ w0 is proportional to α times the prior predictive of yj

‚ wl is proportional to the likelihood of yj |xl

‚ ppxj |yj q is the posterior for xj given yj .
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Bayesian Inference: Algorithm 2

We can use the clustering property: suppose that at a given
iteration of the MCMC, there are K clusters labelled 1 to K,
where K ď n.

Label the K distinct x values

z1, . . . , zK

and for each j , define the corresponding cluster label cj where

cj “ k ðñ xj “ zk

We can update the cj s instead of the xj s which will be more
computationally efficient; we are clustering xs to the cluster
centres at the z values.
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Bayesian Inference: Algorithm 2

For i “ 1, . . . ,n, let

‚ n1piq, . . . ,nK piq denote the number of items in clusters
1, . . . ,K

‚ y1piq, . . . , yK piq denote the vectors of y values currently
allocated to the K clusters

if the i th data point is removed.
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Bayesian Inference: Algorithm 2

For i “ 1, . . . ,n, we sample the cluster labels in a Gibbs sam-
pler with conditional probabilities

Prrci “ k | cpiqs 9
nk piq

n ´ 1 ` α
ppyi |yk piqq k “ 1, . . . ,K

and

Prrci “ K ` 1 | cpiqs 9
α

n ´ 1 ` α
ppyi q
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Bayesian Inference: Algorithm 2

In this expression

‚ ppyi |yk piqq is the posterior predictive density for yi in the
DPM model, assuming that yi comes from cluster k .

‚ ppyi q is the prior predictive density for yi in the DPM
model, assuming that yi comes from a new cluster not
currently represented in the data.

We have integrated out the Dirichlet process.

Thus we can simply sample the cluster labels in turn, and then
sample the z1, . . . , zk values; this will allow us to do density
estimation.
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Bayesian Inference: Algorithm 2

By the usual calculation

ppyi |yk piqq “

ż

gY pyi | xqppx | yk piqq dx

where

ppx | yk piqq 9 ppyk piq | xqppxq “

#

ź

l‰i

gY pyl | xq

+

ppxq

gives the posterior distribution for the k th cluster centre.

Similarly

ppyi q “

ż

gY pyi | xqppxq dx
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Bayesian Inference: Algorithm 2

In the earlier Gaussian model, suppose for simplicity that GX

is the Np0, λ2q density:

xi „ Np0, λ2q

yi | xi „ Npxi , σ
2q

Then

ppyi |yk piqq ” N

ˆ

nk piqyk piq

nk piq{σ2 ` 1{λ2
,

pnk piq ` 1q{σ2 ` 1{λ2

nk piq{σ2 ` 1{λ2
σ2

˙

and

ppyi q ” N
`

0, σ2 ` λ2
˘

185



Extensions

Easy to extend to

‚ unknown σ2

‚ non-Gaussian conjugate models
‚ blocked Gibbs sampler
‚ Metropolis-Hastings MCMC for cluster labels
‚ multivariate conjugate models

Not so easy to do non-conjugate models.
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Resampling Approaches to Inference

Resampling methods allow the study of frequentist properties
of statistical quantities by producing pseudo-replicate data
sets of the same size as the observed data, and examining
the statistical variation across these replicate data sets.
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Notation: independence case

Suppose Y1, . . . ,Yn „ F are a random sample, and let θ “ θpFq

be the target parameter. For example

θpFq “

ż

y dFpyq or θpFq “ inf
y

tFpyq ě pu

etc. Let y1, . . . , yn be the observed data.

If pFn is the empirical cdf,

pFnpyq “
1

n

n
ÿ

i“1

1ryi ,8qpyq d pFnpyq “
1

n

n
ÿ

i“1

1tyi u
pyq

then a natural ’plug-in’ estimator of θpFq is Tn “ θppFnq,

188



Notation: independence case

For each y, under mild regularity conditions

pFnpyq
p

ÝÑ Fpyq

but also

sup
y

|pFnpyq ´ Fpyq|
p

ÝÑ 0

as n ÝÑ 8. Therefore

θppFnq
p

ÝÑ θpFq

which justifies (asymptotically) the use of the plug-in estima-
tor.
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Notation: independence case

The bias and variance of the estimator are

bTn pFq “ EF rTn s ´ θpFq

vTn pFq “ VarF rTn s

both of which depend on the true F .

190



Notation: independence case

We wish to study these properties of the estimator. In some
cases, it is possible to study these quantities analytically. Sup-
pose, however, pθ is the solution of

n
ÿ

i“1

mpyi ; θq “ 0

for some m-estimating function.

The corresponding estimator is not analytically available, so
its finite sample properties are hard to study.
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The Bootstrap

Suppose we wish to summarize an aspect of the sampling dis-
tribution of Tn “ θppFnq. Let

spFq ” spTn ;Fq

denote the statistical summary of interest; it is written as a
function of F as the statistical properties of Tn are entirely
dictated by F .
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The Bootstrap

The quantity spFq can again usually be expressed in terms of
an integral with respect to F

spFq “

ż

sptpyqqdFpyq.

for function tp.q that defines the estimator. Occasionally, this
expression can be computed analytically.
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The Bootstrap

The key idea of the bootstrap is to replace calculations wrt F
by calculations wrt pFn , and to compute

sppFnq

numerically, that is

sppFnq “

ż

sptpyqqd pFnpyq.
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The Bootstrap

For a random sample, y1, . . . , yn , the bootstrap proceeds as
follows:

1. Set B (the number of bootstrap resamples)

2. For b “ 1, . . . ,B ,

(a) generate a sample of size n y
pbq

1 , . . . , y
pbq
n at random

with replacement from pFn

(b) form the statistic of interest t
pbq
n

3. Summarize the resampled estimates

t
p1q
n , . . . , t

pBq
n

using the desired statistical summary, sp.q.
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The Bootstrap is a Bayesian procedure

Recall Bayesian inference based on the Dirichlet process:

‚ Y1, . . . ,Yn „ rf (conditionally independent)
‚ a priori rf „ DPpα,GY q.

‚ α ą 0
‚ GY p.q some distribution on R

‚ a posteriori
rf „ DPpα‹,G‹

Y q

where

α‹ “ α ` n G‹
Y “

αGY `
n
ř

j“1
δyj

α ` n
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The Bootstrap is a Bayesian procedure

The Dirichlet Process is a distribution on distributions that
are discrete (with probability 1), that is,

‚ mass function of the form

rfpyq “

8
ÿ

i“1

πiδYi pyq

‚ random locations Y1,Y2, . . . „ GY ;
‚ random probabilities π1, π2, . . . constructed according to

the stick-breaking mechanism with parameter α.
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The Bootstrap is a Bayesian procedure

We can easily produce an iid sample Y1,Y2, . . . ,„ rfp.q as it is
merely a discrete distribution: this construction ensures that
tYnu is an exchangeable sequence by de Finetti’s theorem.

‚ rf „ DPpα,GY q

‚ Y1,Y2, . . . ,Yn | rf „ rf , independently.
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The Bootstrap is a Bayesian procedure

In light of observed data y1, . . . , yn , if the prior is DPpα,GY q,
then the posterior is

DP

¨

˚

˚

˝

α ` n,

αGY `
n
ř

i“1
δyi p.q

α ` n

˛

‹

‹

‚

.

Denote the posterior parameters where

α‹ “ α ` n

G‹
Y “

αGY `
n
ř

j“1
δyj p.q

α ` n
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The Bootstrap is a Bayesian procedure

Recall the predictive calculation given by de Finetti:

pnpypn`1q:pn`mqq “

ż n`m
ź

i“n`1

fpyi q πnpdfq.

To sample from pn , we

‚ sample f „ πn ;
‚ sample Yn`1, . . . ,Yn`m independently from f .

We sample a random f from πn , and then obtain a sample
Yn`1, . . . ,Yn`m from the predictive distribution using this f .

This may be achieved using the Polya urn.
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The Bootstrap is a Bayesian procedure

The posterior mean of the DP is the measure

αGY `
n
ř

i“1
δyi p.q

α ` n
.

Instead of using the full Polya urn scheme, consider a plug-in
procedure that replaces a sample of f by this posterior mean.

Independently for j “ n ` 1, . . . ,n ` m,

‚ w.p. α{pα ` nq: draw from GY ;
‚ w.p. 1{pα ` nq: draw yi , for each i “ 1, . . . ,n.
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The Bootstrap is a Bayesian procedure

In the limit as α ÝÑ 0, this procedure becomes

‚ sample yi w.p. 1{n, i “ 1, . . . ,n

independently for j “ n ` 1, . . . ,n ` m. This is identical to the
bootstrap.

Therefore bootstrap calculations are Monte Carlo calculations
made with respect to the predictive distribution computed for
a Dirichlet process prior and posterior, in the limit as α ÝÑ 0,
using a plug-in approach.
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Predictive distributions

Recall the frequentist justification of maximum likelihood: in
a potentially mis-specified model fpy; θq, we identify the true
value of θ, θ0 as

θ0 “ argmin
θ

KLpf0, fp.; θqq “ argmin
θ

ż

log

"

f0pyq

fpy; θq

*

f0pyq dy
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Predictive distributions

The corresponding estimator is obtained when we replace the
integral by a ‘Monte Carlo’ version based on an i.i.d. sample

pθ “ argmax
θ

n
ÿ

i“1

log fpyi ; θq “ argmax
θ

ℓnpθq

where the (Monte Carlo) sample is the data drawn from f0. In
alternative form, pθ is the solution to the estimating equation

9ℓnpθq “

n
ÿ

i“1

B log fpyi ; θq

Bθ
“ 0

204



Predictive distributions

A Bayesian version of the calculation replaces the original
sample by a sample from the predictive distribution

pnpypn`1q:pn`mqq.

However, we are not restricted to use the ‘score’ function as
the basis of an estimation procedure
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Predictive distributions

‚ we may use any loss function Lpy, θq say, and define the
Bayesian estimator as

argmin
θ

ż

Lpy, θqpnpyq dy “ argmin
θ
Epn rLpY , θqs

‚ this is a valid fully Bayesian estimator as it minimizes an
expected posterior loss;

‚ via this route, we may achieve fully Bayesian inference in
a semi-parametric fashion.
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The Bayesian Bootstrap

The Bayesian bootstrap replaces the 1{n weights in the boot-
strap by repeated draws of W “ pW1, . . . ,Wnq

W „ Dirichletpn ´ 1;1,1, . . . ,1q

where

ErWi s “
1

n

and uses this as the predictive distribution pnp.q.
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The Bayesian Bootstrap

That is, pnp.q is the predictive distribution derived from a
Dirichlet process model, in the limiting case with α ÝÑ 0,
so that, given that we have an observed draw

w “ pw1, . . . ,wnq

of W „ Dirichletpn ´ 1;1,1, . . . ,1q, the predictive distribution
takes the form

pnpyq “

n
ÿ

i“1

wiδyi pyq.
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The Bayesian Bootstrap

This yields the calculation

Epn rLpY , θqs “

n
ÿ

i“1

wi Lpyi , θq

and in the specific case of the log-density loss

Epn rLpY , θqs “ ´

n
ÿ

i“1

wi ℓpyi ; θq

209



The Bayesian Bootstrap

Hence, we must perform the calculation of

θOPT “ argmax
θ

n
ÿ

i“1

wi ℓpyi ; θq

to minimize the loss.

The quantity θOPT is a functional of the Dirichlet process pos-
terior, and so we may build up a posterior distribution for it by
repeatedly sampling the Dirichlet weights, and recomputing
θOPT for each sample.
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Example

Example: Bayesian bootstrap

See knitr 21
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Extensions & Open Problems

‚ Extensions :

‚ Polya Tree Models
‚ Hypothesis Testing
‚ Spatial Problems
‚ Normalized Random Measures
‚ Connections with Lévy Processes

‚ Technical challenges:

‚ Properties of Estimators (consistency etc.)
‚ Model Selection
‚ Comparison with Bayesian Semi-Parametrics
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