\documentclass{beamer} \usepackage{verbatim} \usecolortheme{seagull} \usepackage{pstricks,pst-node,pst-tree,amscd,amsfonts,verbatim,geometry,bbm} \usepackage{fancyvrb,fancybox} \usepackage{color} \usepackage{xcolor} \usepackage{colortbl} \usepackage{graphicx} %\RequirePackage{etex} %\usepackage{etex} %\usepackage{xypic} \usepackage[all,color]{xy} \usepackage{natbib} \usepackage{tkz-graph} \usepackage{tikz} \usetikzlibrary{arrows,automata} \usetikzlibrary{graphs,arrows.meta} \usetikzlibrary{positioning} \usepackage{caption} \captionsetup[figure]{labelfont={it},textfont={color=black,it},labelformat={default},labelsep=period,name={}} \usepackage[latin1]{inputenc} \usepackage{undertilde} \usepackage{bm} \usepackage{amssymb} \usepackage{amsmath} %\usepackage{lastpage} \usepackage{rotating} \usepackage{multirow} \usepackage{graphicx} \usepackage{bbm} \usepackage{bbold} \usepackage{upgreek} \usepackage{fancybox} \usepackage{fancyhdr} \usepackage{amsfonts} \usepackage{dsfont} %\usepackage{arydshln} \usepackage{listings} \usepackage{courier} \lstloadlanguages{R} \usepackage[scaled=.85]{DejaVuSerifCondensed} \usepackage[T1]{fontenc} \usefonttheme{serif} \DeclareFontFamily{OT1}{pzc}{} \DeclareFontShape{OT1}{pzc}{m}{it}{<-> s * [1.30] pzcmi7t}{} \DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it} %\theoremstyle{myNote} %\newtheorem{myNote}{Note} \usepackage{mathtools} \usepackage{bookmark} \usepackage{amsthm} \usepackage{ulem} \usepackage{soul} \usepackage{hanging} \setbeamertemplate{footnote}{\hangpara{2em}{1}\makebox[2em][l]{\insertfootnotemark}\footnotesize\insertfootnotetext\par} \addtobeamertemplate{footnote}{}{\vspace{5ex}} \hypersetup{% unicode =false, % non-Latin characters in Acrobat’s bookmarks pdftoolbar=true, % show Acrobat’s toolbar? pdfmenubar=true, % show Acrobat’s menu? %bookmarks=false, bookmarksopen=false } \usepackage{calc} \newsavebox\CBox \newcommand\hcancel[2][0.25pt]{% \ifmmode\sbox\CBox{$#2$}\else\sbox\CBox{#2}\fi% \makebox[0pt][l]{\usebox\CBox}% \rule[0.5\ht\CBox-#1/2]{\wd\CBox}{#1}} \newcommand{\msout}[1]{\text{\sout{\ensuremath{#1}}}} \makeatletter \newcommand*{\shifttext}[2]{% \settowidth{\@tempdima}{#2}% \makebox[\@tempdima]{\hspace*{#1}#2}% } \makeatother \newcommand\oldmyzeta[1]{{\textcolor{red}{\protect\mathpzc{z}_{#1}} \shifttext{-10pt}{\raisebox{0.1ex}{\tiny{\sim}}}}} \newcommand\firstmyzeta[1]{\textcolor{black}{{\protect\mathpzc{z}_{#1}}}} \newcommand\myzeta[1]{{\textcolor{mcgillred}{{\protect\textsf{z}_{#1}}}}} \newcommand\tildemyzeta[1]{\textcolor{mcgillred}{{\protect\widetilde{\textsf{z}}_{#1}}}} \theoremstyle{plain} \newtheorem{thm}{Theorem} % reset theorem numbering for each chapter \theoremstyle{definition} \newtheorem{defn}[thm]{Definition} % definition numbers are dependent on theorem numbers \newtheorem{Note}{Note} % same for example numbers \setbeamertemplate{theorems}[numbered] \def\U{\mathcal{U}} \def\u{\upsilon} \def\Ind{\mathds{1}} \def\transpose{\top} \def\Xvec{{\skew0\bm{X}}} \def\Xveca{{\skew0\bm{X}}_1} \def\Xvecb{{\skew0\bm{X}}_2} \def\Yvec{{\skew0\bm{Y}}} \def\xvec{{\skew0\bm{x}}} \def\xveca{{\skew0\bm{x}}_1} \def\xvecb{{\skew0\bm{x}}_2} \def\mvec{{\skew0\bm{m}}} \def\muvec{{\skew0\bm{\mu}}} \def\cvec{{\skew0\mathbf{c}}} \def\Xbar{\overline{X}} \def\xbar{\overline{x}} \def\ybar{\overline{y}} \def\yhat{\widehat{y}} \def\betahat{\widehat{\beta}} \def\betavec{\utilde{\beta}} \def\betahatvec{\skew3\widehat{\utilde{\beta}}} \def\sigmahat{\widehat{\sigma}} \def\ehat{\widehat{e}} \def\zhat{\widehat{z}} \def\nhat{\widehat{n}} \def\xbarA{\overline{x}_A} \def\xbarB{\overline{x}_B} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calE{{\mathcal{S}_{e}}} \def\calB{\mathcal{B}} \def\calU{\mathcal{U}} \def\calI{\mathcal{I}} \def\B{\mathcal{B}} \def\Qbb{\mathbb{Q}} \def\Pbb{\mathbb{P}} \def\E{\mathbb{E}} \def\Ehat{\widehat{\mathbbm{E}}} \def\Var{\mathbb{V}ar} \def\Cov{\mathbb{C}ov} \def\Corr{\mathbb{C}orr} \def\bhatint{\widehat{\beta}_0} \def\bhatsl{\widehat{\beta}_1} \def\d{\:\textrm{d}} \def\ps{{\textsf{e}}} \def\bs{{\textsf{b}}} \def\bX{\bm{X}} \def\Ident{\mathbf{I}} \def\One{\mathbf{1}} \def\Zero{\mathbf{0}} \def\bY{\mathbf{Y}} \newcommand\xbarBi[1]{\overline{x^{\text{\tiny{(B)}}}_{#1}}} \newcommand\xbarib[1]{\overline{x^{\text{\tiny{(B)}}}_{#1}}} \def\Fstat{\frac{(SSE_R - SSE_C)/(k-g)}{SSE_C/(n-k-1)}} \def\approxsim{\sim \! \! \! : \;} \def\hsp{\vspace{0.1 in}} \def\fsp{\vspace{0.2 in}} %\def\dfrac#1#2{{\displaystyle {#1 #2}}}% \def\dint{\mathop{\displaystyle \int}}% \def\dsum{\mathop{\displaystyle \sum}}% \newcommand\betaZ{$\beta_{1}$} \newcommand\betaA[1]{$\beta_{#1}^{(A)}$} \newcommand\betaB[1]{$\beta_{#1}^{(B)}$} \newcommand\gammaAB[1]{$\gamma_{#1}^{(AB)}$} \def\SST{\mathit{SST}} \def\MST{\mathit{MST}} \def\SSE{\mathit{SSE}} \def\MSE{\mathit{MSE}} \def\SSB{\mathit{SSB}} \def\MSB{\mathit{MSB}} \def\SSI{\mathit{SSI}} \def\MSI{\mathit{MSI}} \def\SS{\mathit{SS}} \def\Ztilde{{\widetilde Z}} \def\ztilde{{\widetilde z}} \def\bmu{\boldsymbol\mu} \newcounter{Lecture} \def\calA{\mathcal{A}} \renewcommand{\thelecture}{\arabic{lecture}} \newcommand\xbari[1]{\overline{x}_{#1}} \newcommand\subsectnum[1]{\textbf{\arabic{section}.\arabic{subsection}} \textbf{\uppercase{#1}}} \newcommand\textsclarge[1]{\fontshape{sc}\fontsize{14}{15} \selectfont{#1}} \renewcommand\emph[1]{\textcolor{mcgillred}{\textit{#1}}} \def\Exp{\mathcal{E}} \def\Ex{\mathcal{E}} \def\Exzero{\mathcal{E}_0} \def\Obs{\mathcal{O}} \def\Ob{\mathcal{O}} \usepackage{tikz} \newcommand*\circled[1]{\tikz[baseline=(char.base)]{ \node[shape=circle,draw,inner sep=1pt] (char) {#1};}} \def\WideSpacing{\itemsep=2.0ex\topsep=0.5ex\partopsep=0.0ex\parskip=0.0ex\parsep=0.0ex} \makeatletter \let\orig@Enumerate =\enumerate \newenvironment{enumerateWide}{\orig@Enumerate\WideSpacing}{\endlist} \makeatother \definecolor{midgray}{rgb}{0.75,0.75,0.75} \definecolor{lightgray}{rgb}{0.85,0.85,0.85} \definecolor{darkgray}{rgb}{0.654,0.724,0.795} \definecolor{lightdarkgray}{rgb}{0.727,0.805,0.883} \definecolor{purpleblue}{rgb}{0.50,0.50,1.00} \definecolor{lightblue}{rgb}{0.90,0.90,1.00} \definecolor{kugreen}{RGB}{50,93,61} \definecolor{kugreenlys}{RGB}{132,158,139} \definecolor{kugreenlyslys}{RGB}{173,190,177} \definecolor{kugreenlyslyslys}{RGB}{214,223,216} \definecolor{mcgillred}{rgb}{.926,0.105,0.184} \definecolor{mcgillreddark}{rgb}{0.617,0.035,0.094} \definecolor{mcgillredlight}{rgb}{0.926,0.153,0.241} \definecolor{verylightred}{rgb}{1,0.95,0.95} \definecolor{darkgreen}{rgb}{0.008, 0.294, 0.188} \definecolor{lightgreen}{rgb}{0.75,1.0,0.75} \definecolor{verylightgreen}{rgb}{0.90,1.0,0.90} \definecolor{darkblue}{rgb}{0.00, 0.00, 0.444} \definecolor{lightblue}{rgb}{0.933,0.933,1.00} \definecolor{psyc}{rgb}{0.87, 0.0, 1.0} \definecolor{mayablue}{rgb}{0.45, 0.76, 0.98} \definecolor{paleblue}{rgb}{0.69, 0.93, 0.93} \definecolor{spirodiscoball}{rgb}{0.06, 0.75, 0.99} \definecolor{lightcyan}{rgb}{0.88, 1.0, 1.0} \definecolor{frenchblue}{rgb}{0.0, 0.45, 0.73} \definecolor{bubbles}{rgb}{0.91, 1.0, 1.0} \definecolor{azurewm}{rgb}{0.94, 1.0, 1.0} \definecolor{airforceblue}{rgb}{0.36, 0.54, 0.66} \definecolor{darkmidnightblue}{rgb}{0.0, 0.2, 0.4} \definecolor{darkpastelblue}{rgb}{0.47, 0.62, 0.8} \definecolor{bleudefrance}{rgb}{0.19, 0.55, 0.91} \definecolor{babyblue}{rgb}{0.54, 0.81, 0.94} \setbeamercolor{background}{bg=red!15!white} \setbeamercovered{transparent} \setbeamercolor{title in sidebar}{fg=lightgray} \setbeamercolor{sidebar}{bg=lightgray,fg=purpleblue} \setbeamercolor{author in sidebar}{fg=lightgray} \setbeamercolor{section in sidebar}{fg=white,bg=mcgillred} \setbeamercolor{title}{fg=white,bg=mcgillred} \setbeamercolor{author}{use=structure,fg=black,bg=darkgray} \setbeamercolor{part name}{fg=black,bg=blue!30!white} \setbeamercolor{institute}{use=structure,fg=black,bg=lightdarkgray} \setbeamercolor{frametitle}{fg=white,bg=mcgillred} \setbeamercolor{subsection in sidebar}{fg=purpleblue} \setbeamercolor{block title}{use=structure,fg=black,bg=blue!30!white} \setbeamercolor{block body}{use=structure,fg=black,bg=blue!20!white} \setbeamertemplate{navigation symbols}{} \setbeamercovered{transparent} \mode \setbeamertemplate{part page} { \begin{centering} %\begin{beamercolorbox}[sep=16pt,center]{author} % \usebeamerfont{part title}\partname~\insertpartnumber \par %\end{beamercolorbox} \vskip1em\par \begin{beamercolorbox}[sep=16pt,center]{institute} \usebeamerfont{part title} \insertpart\par \end{beamercolorbox} \end{centering} } \makeatletter \AtBeginPart{% \beamer@tocsectionnumber=0\relax \setcounter{section}{0} \numberwithin{section}{part} {% start a group to keep the template change local \setbeamertemplate{background canvas}{% \color{white}\rule{\paperwidth}{\paperheight}% }% \setbeamercolor{frametitle}{fg=white,bg=white} \setbeamertemplate{footline}{ \leavevmode% \hbox{\begin{beamercolorbox}[wd=.5\paperwidth,ht=2.5ex,dp=1.125ex,leftskip=.3cm plus1fill,rightskip=.3cm]{author in head/foot}% \usebeamerfont{author in head/foot} \end{beamercolorbox}% \begin{beamercolorbox}[wd=.5\paperwidth,ht=2.5ex,dp=1.125ex,leftskip=.3cm,rightskip=.3cm plus1fil]{title in head/foot}% \usebeamerfont{title in head/foot}\hfill\insertpagenumber \end{beamercolorbox}}% \vskip0pt% } %\addtocounter{framenumber}{-1} \begin{frame}[noframenumbering,c]{\partpage}\end{frame}% }% end group } \makeatother \setbeamercolor{author in head/foot}{bg=white, fg=mcgillred} \setbeamercolor{title in head/foot}{bg=white, fg=mcgillred} \setbeamertemplate{footline} {% %\rule{\paperwidth}{0.025cm} \leavevmode% \hbox{\begin{beamercolorbox}[left, wd=.5\paperwidth,ht=2.5ex,dp=1.125ex,leftskip=.3cm]{title in head/foot}% \usebeamerfont{author in head/foot}\insertpartnumber.\insertsectionnumber: \insertsection \end{beamercolorbox}% \begin{beamercolorbox}[wd=.5\paperwidth,ht=2.5ex,dp=1.125ex,leftskip=.3cm,rightskip=.3cm plus1fil]{title in head/foot}% \usebeamerfont{title in head/foot}\hfill\insertpagenumber \end{beamercolorbox}}% \vskip0pt% } %\usecolortheme[named=kugreen]{structure} %\useinnertheme{circles} %\setbeamercovered{transparent} %\setbeamertemplate{blocks}[rounded][shadow=true] \setbeamertemplate{blocks}[default] \setbeamerfont{itemize/enumerate subbody}{size=\footnotesize} \setbeamertemplate{itemize items}[circle] \newenvironment<>{Ex}[1]{% \begin{actionenv}#2% \def\insertblocktitle{Example: #1}% \par% \mode{% \setbeamercolor{block title}{use=structure,fg=darkmidnightblue,bg=babyblue} \setbeamercolor{block body}{use=structure,fg=black,bg=bubbles} \setbeamertemplate{itemize item}{\scriptsize\raise1.25pt\hbox{\donotcoloroutermaths$\bullet$}} }% \usebeamertemplate{block begin}\justifying} {\par\usebeamertemplate{block end}\end{actionenv}} \newenvironment<>{Thm}[1]{% \begin{actionenv}#2% \def\insertblocktitle{Theorem: #1}% \par% \mode{% \setbeamercolor{block title}{use=structure,fg=white,bg=darkgreen} \setbeamercolor{block body}{use=structure,fg=black,bg=lightgreen} \setbeamercolor{itemize item}{fg=orange!20!black} \setbeamertemplate{itemize item}[circle] }% \usebeamertemplate{block begin}\justifying} {\par\usebeamertemplate{block end}\end{actionenv}} \newenvironment<>{Nt}[1]{% \begin{actionenv}#2% \def\insertblocktitle{Note}% \par% \mode{% \setbeamercolor{block title}{use=structure,fg=white,bg=darkblue} \setbeamercolor{block body}{use=structure,fg=black,bg=azurewm} \setbeamercolor{itemize item}{fg=orange!20!black} \setbeamertemplate{itemize item}[circle] }% \usebeamertemplate{block begin}\justifying} {\par\usebeamertemplate{block end}\end{actionenv}} \newcounter{myNote} \newcommand{\myNote}{\arabic{myNote}} \setcounter{myNote}{1} \renewcommand*{\thefootnote}{[\arabic{footnote}]} \renewenvironment<>{Note}{% \begin{actionenv}% \def\insertblocktitle{Note \myNote.}% \par% \mode{% \setbeamercolor{block title}{use=structure,fg=white,bg=darkblue} \setbeamercolor{block body}{use=structure,fg=black,bg=lightblue} \setbeamercolor{itemize item}{fg=orange!20!black} \setbeamertemplate{itemize item}[circle] }% \usebeamertemplate{block begin}\addtocounter{myNote}{1}\justifying} {\par\usebeamertemplate{block end}\end{actionenv}} \date{ } % % The following info should normally be given in you main file: % \usepackage{tikz} \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[midgray] ([yshift=-1cm]current page.north west) -- ([yshift=-1cm,xshift=\paperwidth]current page.north west);}} \setbeamertemplate{frametitle}{% \nointerlineskip \begin{beamercolorbox}[sep=0.3cm,ht=1.8em,wd=\paperwidth,rightskip=0cm]{frametitle}% \usebeamerfont{frametitle}\usebeamercolor[fg]{frametitle} \vbox{}\vskip-2ex% \strut\insertframetitle\strut \vskip-1.2ex% \end{beamercolorbox}% } \newcommand\mypart[1]{#1} %\setbeamertemplate{frametitle continuation}[from %second][(\lowercase{\insertcontinuationcountroman})] \setbeamertemplate{frametitle continuation}[from second][] \setbeamertemplate{section in toc}{\insertpartnumber.\inserttocsectionnumber\hspace*{1em}\inserttocsection} \title{Propensity Score Methods, Models and Adjustment} \author{Dr David A. Stephens} \institute{ Department of Mathematics \& Statistics\\ McGill University\\ Montreal, QC, Canada. \vspace{0.1 in} \texttt{david.stephens@mcgill.ca}\\ \texttt{\texttt{www.math.mcgill.ca/dstephens/SISCER2020/}} } \titlegraphic{\includegraphics[width=1.93cm,height=2cm]{McGillLogo}} \setbeamertemplate{itemize item}{\scriptsize\raise1.25pt\hbox{\donotcoloroutermaths$\bullet$}} \setbeamertemplate{itemize subitem}{\tiny\raise1.25pt\hbox{\donotcoloroutermaths$\blacktriangleright$}} \usepackage{etoolbox} %\usepackage{setspace} %\addtocontents{toc}{\protect\setstretch{0.9}} \usepackage{ragged2e} \apptocmd{\frame}{}{\justifying}{} % Allow optional arguments after frame. %\usepackage[bookmarks=true]{hyperref} \lstset{basicstyle=\ttfamily\tiny, numbers=left, numberstyle=\tiny, stepnumber=1, numbersep=5pt} \begin{document} %\part{NHANES Example} \setbeamercolor{author in head/foot}{bg=white, fg=mcgillred} \setbeamercolor{title in head/foot}{bg=white, fg=mcgillred} { \setbeamertemplate{footline} {% \leavevmode% \hbox{\begin{beamercolorbox}[wd=.5\paperwidth,ht=2.5ex,dp=1.125ex,leftskip=.3cm plus1fill,rightskip=.3cm]{author in head/foot}% \usebeamerfont{author in head/foot} \end{beamercolorbox}% \begin{beamercolorbox}[wd=.5\paperwidth,ht=2.5ex,dp=1.125ex,leftskip=.3cm,rightskip=.3cm plus1fil]{title in head/foot}% \usebeamerfont{title in head/foot}\hfill\insertpagenumber \end{beamercolorbox}}% \vskip0pt% } <>= library(knitr) # global chunk options opts_chunk$set(cache=TRUE, autodep=TRUE, size = "tiny") options(scipen=5) options(repos=c(CRAN="https://cloud.r-project.org/")) @ %\frame{\titlepage} \begin{frame}[fragile,allowframebreaks]\frametitle{Exchangeability: Variance components model} A \emph{variance components} model is a form of `random effects' model for observable quantities that takes the form \[ Y_i = M + \epsilon_i \] for $i=1,\ldots,n$, where \begin{itemize} \item $M$ is a random variable \item $\epsilon_1,\ldots,\epsilon_n$ are identically distributed random variables with \[ \E[\epsilon_i] = 0 \] \end{itemize} with \emph{all variables independent}. \framebreak Suppose \begin{itemize} \item $M \sim Normal(0,\tau^2)$, \item $\epsilon_1,\ldots,\epsilon_n \sim Normal(0,\sigma^2)$, \end{itemize} so that \emph{conditional} on $M=m$ \[ Y_1,\ldots,Y_n|M=m \sim Normal(m,\sigma^2) \] are independent. \framebreak Then, by a standard marginalization calculation, {\scriptsize \begin{align*} f_{Y_1,\ldots,Y_n}&(y_1,\ldots,y_n) = \int_{-\infty}^\infty \prod_{i=1}^n f_{Y_i|M}(y_i|m) f_M(m) \ dm \\[6pt] & = \int_{-\infty}^\infty \left\{ \prod_{i=1}^n \left(\dfrac{1}{2 \pi \sigma^2}\right)^{1/2} \exp\left\{-\dfrac{1}{2 \sigma^2} (y_i-m)^2 \right\} \right\} \left(\dfrac{1}{2 \pi \tau^2}\right)^{1/2} \exp\left\{-\dfrac{1}{2 \tau^2} m^2 \right\} dm \\[6pt] & = \left(\dfrac{1}{2 \pi}\right)^{(n+1)/2} \left(\frac{1}{\sigma^2} \right)^{n/2} \left(\frac{1}{\tau^2} \right)^{1/2} \int_{-\infty}^\infty \exp\left\{-\dfrac{1}{2} \underbrace{\left[ \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - m)^2 + \frac{1}{\tau^2} m^2 \right]} \right\} \ dm. \end{align*}} We need to integrate with respect to $m$. \framebreak By a standard sums-of-squares decomposition \[ \sum_{i=1}^n (y_i - m)^2 = \sum_{i=1}^n (y_i - \ybar)^2 + n (\ybar - m)^2. \] Also, recall the completing-the-square formula \[ A(t-a)^2 + B(t-b)^2 = (A+B) \left( t - \frac{Aa+Bb}{A+B} \right)^2 + \frac{AB}{A+B} (a-b)^2. \] \framebreak Therefore we may rewrite \[ \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - m)^2 + \frac{1}{\tau^2} m^2 \] as \[ \frac{1}{\sigma^2}\sum_{i=1}^n (y_i - \ybar)^2 + \frac{n}{\sigma^2} ( m - \ybar)^2 + \frac{1}{\tau^2} m^2 \] and then to combine the second and third terms, take \[ A = \frac{n}{\sigma^2} \quad a = \ybar \qquad B = \frac{1}{\tau^2} \quad b = 0 \] in the above formula. \framebreak We have {\scriptsize \[ \frac{n}{\sigma^2} ( m - \ybar)^2 + \frac{1}{\tau^2} m^2 = \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2} \right) \left(m - \frac{n \ybar/\sigma^2}{(n/\sigma^2) + (1/\tau^2)} \right)^2 + \frac{n/(\sigma^2 \tau^2)}{(n/\sigma^2)+(1/\tau^2)} \ybar^2 \]} which we may rewrite as \[ \frac{1}{\lambda^2} \left(m - \mu \right)^2 + \frac{n}{n \tau^2 + \sigma^2} \ybar^2 \] where \[ \mu = \frac{n \ybar/\sigma^2}{(n/\sigma^2) + (1/\tau^2)} = \frac{n \tau^2 \ybar }{n \tau^2 + \sigma^2} \qquad \lambda^2 = \left(\frac{\sigma^2 \tau^2}{n \tau^2 + \sigma^2} \right) \] \framebreak Therefore, for the integral {\scriptsize \begin{align*} \int_{-\infty}^\infty &\exp\left\{-\dfrac{1}{2} \left[ \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - m)^2 + \frac{1}{\tau^2} m^2 \right] \right\} \ dm \\[6pt] & = \exp\left\{-\frac{1}{2} \left[\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \ybar)^2 + \frac{n}{n \tau^2 + \sigma^2} \ybar^2 \right] \right\} \int_{-\infty}^\infty \exp\left\{ -\frac{1}{2 \lambda^2} (m-\mu)^2 \right\} \ dm \\[6pt] & = \exp\left\{-\frac{1}{2} \left[\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \ybar)^2 + \frac{n}{n \tau^2 + \sigma^2} \ybar^2 \right] \right\} \left( 2 \pi \lambda^2 \right)^{1/2} \end{align*}} as the integrand is proportional to a Normal pdf. \framebreak Thus for $(y_1,\ldots,y_n) \in \mathbb{R}^n$, {\scriptsize \begin{align*} f_{Y_1,\ldots,Y_n}& (y_1,\ldots,y_n) \\[6pt] & = \left(\dfrac{1}{2 \pi}\right)^{n/2} \left(\frac{1}{\sigma^2} \right)^{n/2}\left(\frac{1}{\tau^2} \right)^{1/2} \lambda \exp\left\{-\frac{1}{2} \left[\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \ybar)^2 + \frac{n}{n \tau^2 + \sigma^2} \ybar^2 \right] \right\} \end{align*}} which also relies only upon the summary statistics \[ s_1 = \ybar \qquad s_2 = \sum\limits_{i=1}^n (y_i - \ybar)^2 \] and so we may deduce \emph{exchangeability}, as the statistics are invariant to the indexing of the $y$s. \framebreak Simulation: $n=5$, $\tau^2=3$, $\sigma^2 = 1$ <>= set.seed(213) n<-5 sim.exch01<-function(nv,tauv,sigv){ #Sample the exchangeable variables. Mv<-rnorm(1)*tauv Yv<-rnorm(nv,Mv,sigv) } tau<-sqrt(3) sig<-sqrt(1) Ymat<-t(replicate(2000,sim.exch01(n,tau,sig))) #2000 replicate draws of Y @ <>= par(pty='s',mar=c(4,4,3,1)) labs<-c(expression(Y[1]),expression(Y[2]),expression(Y[3]),expression(Y[4]),expression(Y[5])) boxplot(Ymat,names=labs,pch=19,cex=0.5) pairs(Ymat,pch=19,cex=0.5,labels=labs) @ We have that for $i=1,\ldots,n$, \[ \E_{Y_i}[Y_i] = \E_{M}[M] + \E_{\epsilon_i}[\epsilon_i] = 0 \] and by independence \[ \Var_{Y_i}[Y_i] = \Var_{M}[M] + \Var_{\epsilon_i}[\epsilon_i] = \tau^2 + \sigma^2 = 3 + 1 = 4. \] <>= apply(Ymat,2,mean) apply(Ymat,2,var) @ \framebreak For the covariances, using iterated expectation we have \begin{align*} \Cov_{Y_i,Y_j}[Y_i,Y_j] & \equiv \E_{Y_i,Y_j}[Y_i Y_j] \\[6pt] & = \E_M \left[ \E_{Y_i,Y_j|M}[Y_i Y_j|M] \right] \\[6pt] & = \E_M \left[ \E_{Y_i|M}[Y_i|M] \E_{Y_j|M}[Y_j|M] \right] \end{align*} as $Y_i$ and $Y_j$ have expectation zero, and are conditionally independent given $M$. \framebreak Thus, as $\E_{Y_i|M}[Y_i|M] = M$ for each $i$, we have \[ \Cov_{Y_i,Y_j}[Y_i,Y_j] = \E_M [ M^2 ] = \Var_M[M] + \{ \E_M[M]\}^2 = \tau^2 \] and hence \[ \Corr_{Y_i,Y_j}[Y_i,Y_j] = \frac{\Cov_{Y_i,Y_j}[Y_i,Y_j]}{\sqrt{\Var_{Y_i}[Y_i]\Var_{Y_j}[Y_j]}} = \frac{\tau^2}{\tau^2 + \sigma^2} = \frac{3}{4}. \] <>= round(cor(Ymat),3) @ \framebreak Note: if $\tau \longrightarrow 0$, \[ \Corr_{Y_i,Y_j}[Y_i,Y_j] \longrightarrow 0 \] and the $Y$s are \emph{uncorrelated}. In fact, in this case the $Y$s are \emph{independent} as \[ M = 0 \] with probability 1, so $Y_i \equiv \epsilon_i$. \framebreak In vector form, we have \[ \bY = M \One_n + \epsilon \] where \begin{itemize} \item $\One_n= (1,1,\ldots,1)^\top$ is the $n \times 1$ vector of 1s. \item $\epsilon = (\epsilon_1,\epsilon_2,\ldots,\epsilon_n)^\top$. \end{itemize} That is \[ \begin{bmatrix} Y_1 \\ Y_2 \\ \cdots \\ Y_n \end{bmatrix} = M \begin{bmatrix} 1 \\ 1 \\ \cdots \\ 1 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \cdots \\ \epsilon_n \end{bmatrix}. \] \framebreak By properties of vector random variables, we have that marginally \[ \bY \sim Normal_n(\Zero,\Sigma) \] where \[ \Sigma = \tau^2 \One_n \One_n^\top + \sigma^2 \Ident_n. \] with \begin{itemize} \item $\One_n \One_n^\top$ an $n \times n$ matrix of 1s \item $\Ident_n$ the $n \times n$ identity matrix \end{itemize} \end{frame} \end{document}