
 Optimal Information Processing and Bayes's Theorem

 ARNOLD ZELLNER*

 In this article statistical inference is viewed as information

 processing involving input information and output infor-

 mation. After introducing information measures for the in-

 put and output information, an information criterion functional

 is formulated and optimized to obtain an optimal information

 processing rule (IPR). For the particular information mea-

 sures and criterion functional adopted, it is shown that Bayes's

 theorem is the optimal IPR. This optimal IPR is shown to

 be 100% efficient in the sense that its use leads to the output

 information being exactly equal to the given input infor-

 mation. Also, the analysis links Bayes's theorem to maxi-

 mum-entropy considerations.

 KEY WORDS: Information theory; Maximum entropy;

 Statistical inference.

 1. INTRODUCTION

 Bayes's theorem has been widely used as an inductive

 learning model to transform prior and sample information

 into posterior information in econometrics, statistics, phys-

 ics, and other sciences. Although some works have been

 devoted to rationalizing Bayes's theorem as a coherent learn-

 ing model (e.g., Cox 1961; Jaynes 1974, 1983, 1984; Jef-

 freys 1967, 1973), it does not appear that Bayes's rule has

 been derived as an optimal information processing rule. In

 what follows, this problem is addressed after describing

 some needed information measures and a criterion func-

 tional. This criterion functional is minimized in a calculus-

 of-variations approach to yield an operational, optimal in-

 formation processing rule that is surprisingly identical to

 Bayes's rule. Further, Bayes's rule is informationally ef-

 ficient in a sense defined in Section 2.

 The plan of the article is as follows. In Section 2 needed

 concepts are introduced, the problem is explained, and its
 solution is presented. The derivation of the solution is given
 in Section 3. Some concluding remarks are provided in

 Section 4.

 2. INFORMATION CONCEPTS AND AN

 OPTIMAL INFORMATION PROCESSING RULE

 Let y denote the given data, and let i(01y) denote a like-
 lihood function for 0-a parameter, scalar, or vector con-

 tained in the parameter space 0. Further, let

 vTa(0II) given prior or antedata probability density
 function (pdf) for 0 C 0, based on prior
 information I,

 ira(6II) given prior or antedata probability density
 function (pdf) for 0 C 0, based on prior
 information I,

 7P(O|D) postdata pdf for 0 C 0, where D = (y, I),
 the given sample, y, and prior information, I,

 p(y II) pdf for y, given by
 P (Y II) --J97a(O|I)f(y I O)dO0, (2. 1)
 where f(y 0) is the pdf for y given 0. [The term postdata
 pdf is employed instead of posterior pdf to emphasize that

 the optimal form of 7P(6|D) is to be derived.]
 Note that (2.1) is a definition that does not involve the

 assumption that the product rule of probability theory nec-

 essarily holds. See Jeffreys (1967, pp. 25, 52) for a dis-
 cussion of assumptions needed for the product rule to be
 valid.

 The inputs and outputs of any information processing rule

 (IPR) are depicted graphically in Figure 1, where l(6|y),

 the likelihood function, is f(y I6) viewed as a function of
 0. Thus the information in the likelihood function l(6|y)

 and the prior pdf la(6II) enter the IPR, whose output is the
 information in the postdata pdf 1pT(6|D) and the pdfp(y|I).
 Different IPR's will produce different output information

 from the given input information. Some IPR's may be in-

 efficient in the sense that the output information, measured
 in a suitable metric, is less than the input information. On

 the other hand, some IPR's may add extraneous information

 so that the output information is greater than the given input

 information, an undesirable state of affairs. A good, effi-

 cient IPR will satisfy the following principle.

 Information Conservation Principle (ICP). Input infor-

 mation = Output information.

 An IPR that satisfies the ICP is 100% efficient in the sense

 that the ratio of output to input information is equal to 1.
 An inefficient IPR has efficiency less than 100%. An IPR
 that adds extraneous information is considered unsatisfac-

 tory.

 To implement these concepts, there is a need to measure

 the information in the input and output pdf's. (For discussion
 of information measures, see Kullback 1959.) The following

 postdata measures will be employed:

 Information in I(6|y) f-i9-(6|D)log l(6|y)dO. (2.2)

 Information in 7r(6II) f--7P(6|D)log 7r,(6II)dO. (2.3)

 Information in 7p((ID) -f07p(6ID)Iog 7rP(6ID)dO. (2.4)

 Information in p(y II) f6i-- (6lD)log p(ylI)d6

 = log p(y II). (2.5)

 In each case, information is given as an average of a log

 pdf with 7TP(6ID) used as a "weight function."
 To illustrate some of these measures, suppose l(6|y) =

 (2 7r/n) - 1/2 x exp{ - n(y - 0)2/2}, where y- = sample mean.
 Then log l(61y) = - 1/2 log 2s1/n - n(y~ - 6)2/2, and
 (2.2) yields -I 1/2 log 2r/n - nllvar(61D) + (y - 6)2]!
 2, where 6 and var(6|D) are the mean and variance of
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 Figure 1. Inputs and Outputs of Any Information Processing Rule.

 i,-(6|D), respectively. The larger var(6|D) and (y- )2
 are, the smaller the information in l(6|y) is, which is rea-

 sonable. Further, if Ta(6II) = (27)-)112 exp{-(6 - M)2/
 2}, where m is a given prior mean, log ira(6I) = -1/2
 log 2 7 - (6 - m)2/2 and (2.3) yields -1/2
 log 2i - [var(61D) + (m - 6)2]/2; thus the larger var(6|D)
 and (m - 6)2 are, the smaller the information in the pdf

 7Ta(6I) is. As regards (2.4), if 7P(6|D) = (2<T)- 12 x
 exp{ - (6 - 0)2/2}, the information in this pdf is - 1/2
 log 2 7 - var(61D)/2, again a reasonable result because the
 information diminishes as var(61D) grows larger.

 Using the information measures (2.2)-(2.5), the problem

 is to determine the form of 7P(6|D), given the inputs l(6|y)
 and Ta(6II), so as to minimize a reasonable criterion func-
 tional subject to the condition that -p((6D) is a proper pdf.
 The criterion functional that will be employed is motivated

 by the ICP. That is, 7P(6|D)'s form should be such that the
 output information is as close as possible to the input in-
 formation and, ideally, equal to it. Thus the criterion func-
 tional

 A[7p(6ID)] = foi9P(6ID)log 7p(6ID)dO + log p(y|I)

 - f697P(6|D)[log l(6ly)

 + log Ta (I)] do (2.6)

 will be minimized to f 0rp(6|D)dO = 1. Note from (2.2)-
 (2.5) that the first two terms on the right side of (2.6)

 represent the information in the outputs, 7rp(O ID) and p(y II),
 and from this is subtracted the information in the inputs,

 I(6ly) and 7Ta(WI)-the likelihood function and the prior
 pdf, respectively. Thus (2.6) represents the difference be-
 tween the output and input information, and minimization

 with respect to the choice of -P(6jD), the postdata pdf, will
 make the output information as close as possible to the input
 information.

 It is useful to note that the criterion functional in (2.6)
 can be expressed as

 A [ 7p (O ID)] = 2f 97rp(O ID) log [ P,( f}D) x P(Y II d)]

 (2.7)

 From (2.7), it is seen that minimizing (2.6) involves choos-

 ing 7rp(OID) such that the postdata mean of the logarithm
 of the geometric mean of the ratios 7p(OID)/7,a(OII) and
 p(y'II)/f(yI0) will be as small as possible; in this sense the
 outputs, 7rP(0ID) and p(y II), will be as "close" as possible
 to the inputs, la(0[1) and f(y tO). Equation (2.7) can be
 interpreted as an information-theory divergence measure re-

 lating to the pdf's 1Ta(G|Y, I)p(y|l) and lTa(OVI)f(Y 0) and,
 as a referee suggested, the negative entropy of 1Tp(OID)
 relative to the measure lTa( 6|I)f(y 6)/p(y I).

 As shown in Section 3, the solution, denoted by T (6|D),
 to the minimization problem is

 Tp*(0|D) = C7Ta(0I)l(06y), (2.8)

 with c- f 71a(0|I)l(0|y)d6 = p(y|I). From (2.8), it is

 seen that 7,*- (0ID) is just the postdata or posterior pdf yielded
 by Bayes's IPR, that is, Bayes's theorem. From (2.8),

 f,7p*'(OID)Iog[ tp*(O|D)/ls,(O|I)]dO=f,97p*-(O|D)log l(01y)
 d0-logp(y|I), where the quantity on the left side is the

 negative of the entropy of 7P*(0|D) relative to the measure
 Ta(6II). Thus the negative entropy of the posterior pdf can
 be expressed in terms of the information measures.

 To check the informational efficiency of the rule in (2.8),

 substitute 7P*(6|D) given in (2.8), with c = 1/p(yJI), into
 (2.6) with the result

 \[7P*(0JD)] = 0. (2.9)
 From (2.9), the IPR in (2.8) is 100% efficient and therefore

 satisfies the ICP relative to the information measures in

 (2.2)-(2.5). That is, use of 7i;* (OlID) as a postdata pdf makes
 the input information equal to the output information. No
 information is lost and no extraneous information is intro-
 duced by use of the Bayesian IPR in (2.8).

 3. DERIVATION OF THE OPTIMAL

 INFORMATION PROCESSING RULE

 To minimize the criterion functional A[ TP(6|D)] in (2.6)
 subject to the condition that -P(6ID) be a proper, normalized
 pdf, we consider the class of neighboring functions,

 - (6jD) = 7p(-(D) + Eq(6), where E is a small quantity
 and q(6) is an arbitrary continuous function with a value
 of 0 at the endpoints of the region of integration and with

 f6r(0)2d6 < oo. On substituting - (6ID) in (2.6) and in
 the side condition f 7p(6|D)dO = 1, the Lagrangian expres-
 sion, denoted by L(E), is

 L(?) = f[9[7p(0|D) + Ev(0)]log[7P(0|D) + EV(6)]dO

 - f r[p(6D) + Ev(0)]log[ira(0|I) + log l(0|y)]

 + log p(y|I) + A[f[Lrp(6|D) + Ev(6)]dO - 1],

 (3.1)

 where A is a Lagrange multiplier. On differentiating L(E)
 with respect to E and evaluating the derivative at E = 0,
 the necessary condition for an extremum is

 L'(0) = f6v(6) [log 7I(0|D) + 1 - log Ta(06I)

 - log l(06y) + A]dO = 0.

 For L'(0) to be equal to 0 for any arbitrary v( 0), the quantity
 in brackets in the integrand must be identically equal to 0,
 which leads to

 TP(0ID) = T7P(0|D) = C7a(0JI)l(0Jy), (3.2)

 where c = e-(l +A) is given by c-I = fTra(0VI)l(0Jy)dO =
 p(yJI). Further, d2L(e)/d82, evaluated at e = 0, is given
 by

 d2L(?/d?= f- v(0)2/7rj*(0ID)d0. (3.3)

 Assuming TP*(6|D) ? M, a positive constant, (3 .3) is larger
 than (1/M) x fv(6)2d6 > 0 and the expression for iTP(6|D)
 in (3.2) corresponds to a minimum. It is assumed that the
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 integral in (3.3) converges as would be the case of lim/

 0o - 0q[V(0)2/ 7p (0)] - constant for q > 1. This require-
 ment places a condition on the rate at which v(0)2 -> 0 as

 0o -+ ? o. Alternatively, if the parameter space is finite, the

 integral will usually converge.

 Thus it is seen that (3.2), in the form of Bayes's theorem,

 is a solution to the constrained minimization problem. Fur-

 ther, when r7P(0D) in (3.2) is inserted in (2.6), the result
 is A[7P[(0D)] = 0; therefore, (3.2) is informationally 100%
 efficient.

 4. CONCLUDING REMARKS

 In this article an information processing approach has

 been formulated. This approach is thought to be a useful

 representation of the processing of information in inference

 situations. An optimal information processing rule was de-

 rived that is identical to Bayes's rule and is 100% infor-

 mationally efficient. Further research to consider extended

 variants of the criterion functional used in this study as well

 as alternative measures of information would be valuable.

 [Received October 1986. Revised July 1987.]
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 Comment

 E. T. JAYNES*

 Arnold Zellner's article appears to me a potentially im-

 portant one in two respects, one psychological and one

 theoretical. By looking at Bayes's theorem in a fresh way

 independent of previous arguments, it could make the use

 of Bayesian methods more attractive and widespread, and

 stimulate new developments in the general theory of infer-

 ence.

 In almost all real problems of scientific inference we need

 to take into account our total state of knowledge, only part

 (or sometimes none) of which consists of frequencies. For

 many years I have believed, and taught my students, that

 the fundamental justification for use of Bayes's theorem in

 such applications lies in the logical consistency arguments

 of R. T. Cox, referred to by Zellner. Cox's desiderata ap-

 peared to me more elementary-therefore, more compelling
 logically-than the well-known arguments of De Finetti,

 Jeffreys, and L. J. Savage.

 Recently, however, I was taken aback in a conversation

 with a prominent anti-Bayesian when he opined that logical

 consistency is not an important desideratum at all for in-

 ference, because it gives no reason to believe that our con-

 clusions are in any way sensible from a pragmatic standpoint.

 It appears, then, that the arguments that convinced me

 may have little psychological force for others; perhaps this

 may account for the rather slow growth of Bayesian meth-

 ods, in spite of their easy success in applications where

 sampling-theory methods would be awkward due to nuis-

 ance parameters, nonexistence of sufficient or ancillary sta-

 tistics, or cogent prior information calling for an informative

 prior. It is surely clear to all, however, that inference is

 basically a procedure of information processing; some black

 box receives input information in the form of prior knowl-

 edge and data, and it emits output information in the form

 of parameter estimates, predictive distributions, and so forth.

 Then a derivation of Bayes's theorem directly from de-

 siderata of optimal information processing might have a

 stronger convincing power for many. An acceptable infer-

 ence procedure should have the property that it neither ig-

 nores any of the input information nor injects any false
 information; if this requirement already determines Bayes's

 theorem, the issue would seem to be settled.

 The logarithmic measures of information might appear

 arbitrary at first glance; yet as Kullback showed, this is not

 the case. And Bayes's theorem doubtless has more than one

 information-optimality property; I rather expect that, having

 seen this start, others different in detail and/or background

 conditions may be found. Indeed, the fact that many dif-

 ferent psychological approaches point to the same actual

 algorithm is a major strength of "Bayesianity."

 On the theoretical side, entropy has been a recognized
 part of probability theory since the work of Shannon 40

 years ago, and the usefulness of entropy maximization as a
 tool in generating probability distribution is thoroughly es-

 tablished in numerous new applications including statistical

 mechanics, spectrum analysis, image reconstruction, and

 biological macromolecular structure determination. Grandy
 *E. T. Jaynes is Wayman Crow Professor of Physics, Department of

 Physics, Washington University, St. Louis, Missouri 63130.
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 (1987), Justice (1986), Moore and Scully (1986), and Smith

 and Grandy (1985) provided a wealth of details. This makes

 it seem scandalous that the exact relation of entropy to the

 other principles of probability theory is still rather obscure

 and confused. But now we see that there is, after all, a close

 connection between entropy and Bayes's theorem. Having

 seen this start, other such connections may be found, leading

 to a more unified theory of inference in general. Thus in

 my view Zellner's work is probably not the end of an old

 story, but the beginning of a new one.
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 Comment

 BRUCE M. HILL*

 Professor Zellner has suggested an interesting way to

 think about the nature of the Bayesian approach to the re-
 vision of probabilities. He notes that a certain information
 property is conserved, and that in a certain sense this is

 efficient. This implicitly raises the question of whether, or
 in what circumstances, it may be desirable to conserve such

 a property. This in turn leads to the question of whether

 time coherence should be a part of the Bayesian approach

 at all. In other words, for example, should the Bayesian

 theory allow one to reformulate models and priors distri-
 butions after seeing the data?

 In my opinion, the answer is a clear "yes," and I regard

 this opinion as an essential ingredient in any sensible ap-
 proach to inference and decision making. I call the overall

 process that of Bayesian data-analysis and postdata decision

 making. Some theory for this approach was presented in

 Hill (1985, 1987, 1988). For example, it is argued that the
 restricted likelihood principle of Hill (1987) still holds, even
 when the analysis includes the postdata selection of models,
 as in Hill (1985, p. 223). This does take us, to some extent,
 outside the classical version of Bayesian inference and de-

 cision-theory; however, the classical version often provides
 a first approximation to the data-analytic approach that I
 recommend. In my approach, which allows for data snoop-

 ing of all sorts, it is still possible for one to persist with the

 original model (if any), provided that the data do not suggest

 the need for revision. Some related discussions concerning
 time coherency and/or generalizations of the Bayesian ap-
 proach are in Diaconis and Zabell (1986), Goldstein (1983),
 and Lane and Sudderth (1985).

 A minor technical comment is that an alternative deri-
 vation of the mathematical result of Zellner can be obtained

 from Jensen's inequality, as he suggests in connection with
 information theory.

 Zellner is to be congratulated for clearly formulating the

 conservation property implicit in Bayes's theorem, and holding

 it up for our careful scrutiny. Although I have stated that I

 do not regard this property as essential to the Bayesian

 approach, there is another extremely important point im-

 plicit in Zellner's article, one with which I am in total

 agreement. If one does not wish to conserve this property,

 as is the case in all strictly non-Bayesian analyses of data,

 then it should be incumbent upon the statistician to state

 explicitly from whence the violation arises. Does it arise

 from exploratory data analysis, or is it built in in some other

 way. What does it represent?

 An illustration occurs in the area of statistics known as

 "size-biased sampling," where it is routine for some stat-

 isticians to violate the likelihood principle, and thus also

 the conservation property, without ever changing the model.

 This is done with the purpose of obtaining unbiased esti-

 mates. A Bayesian analysis of the problem suggests, how-

 ever, that to the extent such things are at all reasonable, it

 is because the model being used is not really thought to be

 appropriate. In this case presumably one should put forth a

 better model, one that builds in the effect of "size" explic-

 itly, and then analyze the data using the more realistic model

 in a coherent way, rather than merely make a token ad-

 justment for "size bias."
 By careful consideration of the important questions raised

 by Professor Zellner, perhaps even the time-honored and

 powerful Bayesian approach, which is the only one we have

 that does not have built-in logical contradictions (due to the

 conditioning implicit in the use of model diagnostics), as
 discussed in Hill (1985, pp. 202-213; 1988), can be im-
 proved and made more realistic for applications.
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 Comment

 JOSE M. BERNARDO*

 Professor Zellner provides an information-theoretical ar-

 gument to justify updating beliefs using Bayes's theorem.

 His reasoning may be summarized as follows: Given the

 "input information" l(Gly) and ir(OII) and assuming the
 "output information" to consist of 1T(OID) and p(y I) where,
 by definition, p(ylI) is the standard prior predictive, find
 the 1T(OID) that minimizes an information-based criterion.
 The force of the argument surely depends on the force of

 the assumptions-namely, on the support given for the choice

 of the criterion. I do not find convincing the proposed mea-

 sure (2.2) of the information in l(Oly), because axiomatics
 of information (e.g., see Good 1966) lead to log-probabil-

 ities, not log-likelihoods. Thus, although (2.3), (2.4), and
 (2.5) may be seen as (expected posterior) measures of in-

 formation about 0 in the prior, 0 in the posterior, and y in
 the predictive, I fail to appreciate why (2.2) should be a

 good measure of information (information about what?).

 The mathematics of the article are closely related to the

 following alternative formulation of the same problem: Treat
 inference about 0 as a decision problem where the action

 space consists of the possible 1T(OID)'s, assume a utility

 function u[a, 0] = u[Io(j|D), 0] that describes the utility

 of the information processing rule (IPR) that leads to 1T(0ID),
 and find the IPR that maximizes the expected utility.

 There is a wide class of utility functions for which the

 answer is Bayes's theorem (see Good 1971); these functions

 are usually referred to as proper scoring rules. The best

 known of these is

 u[10(j|D), 0] = A log 1T0(jD) + B(0).

 The proof that the optimal IPR for this utility function is

 the Bayes theorem (Bernardo 1979; Savage 1971) is then a

 variation of the argument given in Section 3 of the article.

 *Jose M. Bemardo is Professor of Statistics, Departamento de Estad-
 fstica, Universidad de Valencia, 46071 Valencia, Spain.
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 Godambe and D. A. Sprott, Toronto: Holt, Rinehart & Winston, pp. 337-
 339.
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 Comment

 SOLOMON KULLBACK*

 The notion of an information conservation principle has
 appeared in the statistical literature as a basis for the sta-
 tistical concept of sufficiency.

 Since one should expect that a measure of statistical in-
 formation be positive, it would be appropriate that in (2.2),

 (2.3), (2.4), and (2.5) a minus sign be used before the

 integral sign. In this case, it is seen that the criterion func-

 tional (2.6) is the difference between input information and

 output information.

 The introduction of Expression (2.7) and the discussion

 thereof is irrelevant. The statement that (2.7) can be inter-

 preted as an information-theory divergence measure relating

 to the pdf's 7Tp(Oly, I)p(ylI) and Tra(OJI)f(yI0) is incorrect.
 *Solomon Kullback is Professor Emeritus of Statistics, George Wash-

 ington University, Washington, D.C. 20052.
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 Section 3, "Derivation of the Optimal Information Pro-

 cessing Rule," is not needed. If one writes the criterion

 function (2.6) as

 f rp X(OID) log (,p (O ID)l -,(OID))dO,

 where -,T(OID) = iTa(OII)f(yIO)lp(yII), then because of (2.1),

 fr T(OID)dO = 1, fJ 0,Tp(OD) = 1,

 and the criterion function as written here is the discrimi-

 nation information between TP (OID) and -T(OID). It is a
 well-known fact in statistical information theory that the
 criterion function is thus nonnegative and equal to 0 iff

 7Tp(OID) = 1T(OID). Consequently, the result (2.8) is im-
 mediate without the argument in Section 3.

 Example 4.6 on page 9 of Kullback (1959) may have
 some relevance to the article under discussion.

 Reply

 ARNOLD ZELLNER

 I thank Professors Jaynes, Kullback, Hill, and Bernardo

 for their thoughtful comments on my article. Jaynes and
 Hill have pointed to the importance of having a framework,
 that of information processing, within the context of which
 it is possible to derive optimal information processing rules
 (IPR's) and to define the efficiency of various IPR's, a point

 also made by Seymour Geisser (personal communication,
 1986). Further, Jaynes mentions that the present analysis

 provides "a close connection between entropy and Bayes's

 theorem" (p. 281), and Hill points out that "If one does not
 wish to conserve this property [the information-conservation

 principle], as is the case in all strictly non-Bayesian analyses
 of data, then it should be incumbent upon the statistician to

 state explicitly from whence the violation arises" (p. 281).
 He goes on to analyze the case of "size-biased sampling."
 I believe that these constructive comments are worthy of
 serious consideration by all.

 Hill and Kullback point out that alternative proofs of the
 major mathematical result of the article are available, a point
 that was brought to my attention earlier by Udi Makov
 (personal communication, 1986), and by Hill and my col-
 league Robert McCulloch in personal conversations. I de-
 cided to publish the calculus-of-variations proof because it
 can be readily generalized to apply to other information
 processing problems, both static and dynamic. For example,
 if the prior and likelihood information are given different
 weights to reflect the possibly differing quality of these

 information inputs, then the information-criterion functional

 can be redefined accordingly and minimized to provide a

 solution that is different from Bayes's theorem. Also, the
 criterion functional in (2.6) can be minimized subject to
 additional side conditions, for example, that the information

 divergence between the output pdf, 7TP(O|D), and the like-
 lihood function and/or prior pdf be less than or equal to

 given constants. The solution will then not be "too far"
 from the likelihood function and/or the prior pdf and will
 be in a form different from Bayes's theorem. Results such

 as these, as well as the possibility of analyzing "temporal
 problems" of the kind mentioned in Hill's comment, led
 me to present the calculus-of-variations proof. Also, al-

 though dynamic information processing problems are im-

 portant and yet to be analyzed within the present approach,

 I believe it is useful to solve various static problems. In

 many disciplines (e.g., economics, engineering, and phys-

 ics) both statics and dynamics play important roles. The

 same seems to be true in the information processing area.

 Kullback points out that an information-conservation

 principle has been discussed in connection with the statis-

 tical concept of sufficiency. Non-Bayesian discussions of

 information and sufficient statistics abstract from informa-

 tion contained in prior distributions and thus differ from the

 discussion in my article. Bayesian discussions of sufficiency

 assume Bayes's theorem, whereas in my article Bayes's

 theorem is derived as an optimal IPR; then it is shown that

 information is conserved by using Bayes's rule. These are,

 in my opinion, very fundamental differences between for-

 mer discussions of sufficiency and the analysis presented in

 my article. Further, I regard negative entropy as a measure

 of information in a distribution, since entropy is usually

 interpreted as a measure of disorder; that is, the higher the

 entropy is, the less informative a distribution is (e.g., see

 Jaynes 1983). For example, a uniform pdf for a scalar pa-

 rameter 0 has higher entropy than a highly peaked density

 for 0. Since the highly peaked density provides more in-

 formation about the possible values of 0, it is more infor-

 mative and thus the negative entropy is an appropriate measure

 of the information contained in a distribution. On the other

 hand, in information theory, entropy measures are employed

 to represent the expected information content of signals or

 messages prior to their arrival, a concept different from the

 information in a distribution. This distinction is important

 even though the solution to min A[rp(0ID)] is the same as
 that for max{ - A[ 1Tp(0jD)]}. Last, Kullback (1959, ex. 4.6)
 presented a measure of the information provided by an ex-

 periment that is somewhat different from the information-

 criterion functional used in my article.

 Bernardo questions (2.2). Directly after (2.2)-(2.5) an

 example is provided showing that (2.2) provides a measure

 of the spread (or information) in a likelihood function. After
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 (2.8), an expression exactly in the form of (2.2) appears as

 a term in the information in Tp*1 (ID) relative to -Ta(OI).
 Further, (2.2) appears in the expression for the information
 in a posterior pdf relative to uniform measure. As regards
 Savage's and others' proofs that Bayes's theorem or the
 Bayesian IPR is an expected utility-maximizing solution,
 this is a fundamentally different result from that in my

 article, where no utility considerations enter and there is no
 assumption that the expected utility hypothesis is in some
 sense "valid" or "rational." My result deals with infor-
 mation processing, not utility-maximizing behavior.

 Again, I thank the discussants for their thoughtful and
 stimulating comments and the editors for their assistance in
 publishing my article and the useful discussion of it.
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