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MATH 559: BAYESIAN THEORY AND METHODS

THE DE FINETTI REPRESENTATION THEOREM

Exchangeability

(i) A finite sequence of random variables Y1, Y2, . . . , Yn taking values on Y ⊆ Rd is finitely exchangeable
if, for arbitrary sets A1, A2, . . . , An ⊆ Rd,

Pr

[
n⋂

i=1

(Yi ∈ Ai)

]
= Pr

[
n⋂

i=1

(Yi ∈ Aσ(i))

]
(1)

for any permutation (σ(1), σ(2), . . . , σ(n)) of indices (1, 2, . . . , n).

(ii) An infinite sequence, Y1, Y2, . . ., is infinitely exchangeable if (1) holds for all finite subsets of size n of
the sequence, for all n ≥ 1.

Theorem (The de Finetti 0-1 Representation Theorem)
If Y1, Y2, . . . is an infinitely exchangeable sequence of 0-1 variables, then there exists a probability function π0(.)
such that for all n ≥ 1, the joint mass function of (Y1, Y2, . . . , Yn) can be represented

pY1,Y2,...,Yn (y1, y2, . . . , yn) =

∫ 1

0

{
n∏

i=1

θyi (1− θ)1−yi

}
π0 (dθ)

where π0(.) is defined for 0 ≤ θ ≤ 1 by ∫ θ

0
π0 (dt) = lim

n→∞
Pr [Rn ≤ θ]

with

Sn =
n∑

i=1

Yi Rn =
Sn

n
.

Furthermore, we may define
θ0 = lim

n→∞
Rn,

that is, Rn
a.s.−→ θ0, so that θ0 is the limiting relative frequency that an arbitrary Y takes the value one.

PROOF By exchangeability, for 0 ≤ sn ≤ n, we must have

Pr [Sn = sn] =

(
n

sn

)
pY1,Y2,...,Yn (y1, y2, . . . , yn) (2)

with sn =
n∑

i=1
yi, as there are

(
n

sn

)
sequences of ys that have sum sn.

Now consider N ≥ n, with N finite. By the Theorem of Total Probability we may write

Pr [Sn = sn] =

N−n+sn∑
s=sn

Pr [Sn = sn|SN = s] Pr [SN = s] (3)

that is, in light of the information fact that SN = s, we can identify the conditional probability for
different values of Sn.
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By the exchangeability assumption, Pr [Sn = sn|SN = s], is a hypergeometric probability:

• we have a (finite) exchangeable sequence of N binary variables that contain precisely s ones and
N − s zeros; in this sequence, the first n variables contain precisely sn ones and n− sn zeros;

• alternatively, of the s ones in the sequence of length N , sn are placed somewhere in the first n
positions, the remaining s− sn are placed in the remaining N − n positions.

Therefore

Pr [Sn = sn|SN = s] =

(
s

sn

)(
N − s

n− sn

)
(
N

n

) 0 ≤ sn ≤ n.

Writing out the binomial coefficients, we have(
s

sn

)(
N − s

n− sn

)
(
N

n

) =
s!

sn!(s− sn)!

(N − s)!

(n− sn)!(N − s− n+ sn)!

n!(N − n)!

N !

=
n!

sn!(n− sn)!

s!

(s− sn)!

(N − s)!

(N − s− n+ sn)!

(N − n)!

N !
.

For k ≥ l ≥ 1, define

(k)l =
k!

(k − l)!
= k (k − 1) (k − 2) . . . (k − l + 1)

– this is the descending factorial function. In this notation(
s

sn

)(
N − s

n− sn

)
(
N

n

) =

(
n

sn

)
(s)sn((N − s))n−sn

(N)n

Thus

Pr [Sn = sn] =

(
n

sn

)N−n+sn∑
s=sn

(s)sn((N − s))n−sn

(N)n
Pr [SN = s] , (4)

This result holds for any finite N . For the result, we require that the representation holds for the infinitely
exchangeable sequence, and for all n ≥ 1, so we must consider behaviour as N −→ ∞.

The random variable SN takes values on the set {0, 1, . . . , N} with probabilities

Pr[SN = 0],Pr[SN = 1], . . . ,Pr[SN = N ]

respectively. Denote by FSN
(s) the cumulative distribution for SN ; in the construction, FSN

(s) is not pre-
specified, but it is a univariate distribution function that induces the form of pY1,Y2,...,Yn (y1, y2, . . . , yn).
Now, let

RN =
SN

N
=

1

N

N∑
i=1

Yi

and denote by FRN
(r) the cumulative distribution for RN ; RN takes values on the finite set

RN = {0, 1/N, 2/N, . . . , (N − 1)/N, 1}
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with Pr[RN = r] ≡ Pr[SN = Nr], for r ∈ RN , and zero otherwise. Thus we may re-write (4)

Pr [Sn = sn] =

(
n

sn

)N−n+sn∑
s=sn

(s)sn((N − s))n−sn

(N)n
Pr [RN = s/N ] , (5)

or, by changing variables in the sum from s to r = s/N ,

Pr [Sn = sn] =

(
n

sn

) ∑
r ∈ RN

(Nr)sn((N −Nr))n−sn

(N)n
Pr [RN = r] . (6)

We consider the behaviour of this summation as N −→ ∞. First, note that FRN
(r) is a step-function

with steps at values in RN . By utilizing the Riemann-Stieltjes integral notation we may re-write the sum
as

Pr [Sn = sn] =

(
n

sn

)∫ 1

0

(Nr)sn ((1− r)N)n−sn

(N)n
FRN

(dr) . (7)

Now when k ≫ l,
(k)l = k(k − 1)(k − 2) . . . (k − l + 1) ≏ kl

as there are l terms each of which are approximately equal to k. Thus, in the limit as N −→ ∞ for n and
sn fixed, for each r ∈ R ≡ {a/b : a, b ∈ Z, a ≥ 0, b ≥ 1, a ≤ b}, we have that

(Nr)sn ((1− r)N)n−sn

(N)n
−→ rsn (1− r)n−sn =

n∏
i=1

ryi (1− r)1−yi

with terms in N cancelling.

Now we consider the behaviour of FRN
(dr) as N −→ ∞; to do this, we appeal to Helly’s Theorem, and

related concepts of weak convergence of measure (see for example, Ash and Doléans-Dade, Probability
and Measure Theory (2nd Edition), section 7.2)

• the sequence of distributions {FRN
(.)}∞N=n+1 has a convergent subsequence {FRNj

(.)}∞j=1;
• that is, for some distribution function π0(.), say, and for each c, 0 ≤ c ≤ 1

FRNj
(c) −→ π0 (c)

as j −→ ∞.

Hence, limiting form of equation (7) as N −→ ∞ is obtained as

Pr [Sn = sn] =

(
n

sn

)∫ 1

0

(Nr)sn ((1− r)N)n−sn

(N)n
FRN

(dr) −→
(
n

sn

)∫ 1

0
rsn(1− r)n−sn π0 (dr) .

and the result follows by rearrangement. We may reserve the special notation θ to represent the inte-
grating variable and thus have

pY1,Y2,...,Yn(y1, y2, . . . , yn) =

∫ 1

0
θsn(1− θ)n−sn π0 (dθ)

Finally, as n −→ ∞, it is evident from the strong law of large numbers that Rn
a.s.−→ θ0, say, for some

θ0 ∈ [0, 1].
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Corollary : Posterior Predictive Distributions
For m,n ≥ 1, under infinite exchangeability, the predictive distribution of Yn+1, . . . , Yn+m given
Y1, Y2, . . . , Yn takes the form

pYn+1,Yn+2,...,Yn+m|Y1,Y2,...,Yn
(yn+1, yn+2, . . . , yn+m|y1, y2, . . . , ym)

=
pY1,Y2,...,Yn+m (y1, y2, . . . , yn+m)

pY1,Y2,...,Yn (y1, y2, . . . , yn)
=

∫ 1

0

{
n+m∏
i=n+1

θyi (1− θ)1−yi

}
πn (dθ) (8)

where

πn(dθ) =

{
n∏

i=1
θyi (1− θ)1−yi

}
π0 (dθ)∫ 1

0

{
n∏

i=1
tyi (1− t)1−yi

}
π0 (dt)

is the posterior distribution, which is effectively and updated version of the prior distribution π0(dθ).

Finally, for all n ≥ 0,m ≥ 1, let

Sn+1,n+m =
n+m∑
i=n+1

Yi Rn+1,n+m =
Sn+1,n+m

m

so that S1,n ≡ Sn from above. Then from (8) we can deduce that

Pr[Sn+1,n+m = s|S1,n = s1,n] =

∫ 1

0

(
m

s

)
ts (1− t)m−s πn (dt) s ∈ {0, 1, 2, . . . ,m}

using t now as the integrating variable. It follows immediately that

Pr[Rn+1,n+m = r|S1,n = s1,n] = Pr[Sn+1,n+m = mr|S1,n = s1,n] r ∈ Rm ≡ {0, 1/m, 2/m, . . . , 1}

We consider the behaviour as m −→ ∞, with n fixed; the set of values that r can take becomes the
interval [0, 1], and we therefore consider the distribution function for Rn+1,n+m: for 0 ≤ θ ≤ 1

Pr[Rn+1,n+m ≤ θ | S1,n = s1,n] = Pr[Sn+1,n+m ≤ mθ|S1,n = s1,n] =

⌊mθ⌋∑
j=0

∫ 1

0

(
m

j

)
tj (1− t)m−j πn (dt)

=

∫ 1

0


⌊mθ⌋∑
j=0

(
m

j

)
tj (1− t)m−j

πn (dt) .

The term in the central curly bracket can be interpreted as follows: if X ∼ Binomial(m, t),

⌊mθ⌋∑
j=0

(
m

j

)
tj (1− t)m−j ≡ Pr[X ≤ ⌊mθ⌋].

Now, by standard central limit theorem arguments, for large m,

Pr[X ≤ ⌊mθ⌋] = Pr

[
X −mt√
mt(1− t)

≤ ⌊mθ⌋ −mt√
mt(1− t)

]
≏ Φ

(
mθ −mt√
mt(1− t)

)
= Φ

(
√
m

(θ − t)√
t(1− t)

)
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where Φ(.) is the standard Normal cdf. However, for fixed r and t, as m −→ ∞

Φ

(
√
m

(θ − t)√
t(1− t)

)
−→

{
0 θ < t

1 θ > t

Thus

lim
m−→∞

Pr [Rn+1,n+m ≤ θ | S1,n = s1,n] =

∫ θ

0
πn(dt).

which reveals that the posterior distribution πn(dθ) is in fact the limiting predictive distribution for
Rn+1,n+m as m −→ ∞ with n fixed.

Interpretation: The de Finetti Representation for binary variables

pY1,Y2,...,Yn (y1, y2, . . . , yn) =

∫ 1

0

{
n∏

i=1

θyi (1− θ)1−yi

}
π0 (dθ)

can be interpreted in the following way;

• The joint marginal distribution of the observable quantities Y1, Y2, . . . , Yn can be represented via a
conditional/marginal decomposition. The conditional distribution is{

n∏
i=1

θyi (1− θ)1−yi

}

formed as if it were a likelihood for data Y1, Y2, . . . , Yn conditional on a quantity θ.
• θ is a quantity that parameterizes the model whose true value θ0 is defined by

1

n

n∑
i=1

Yi
a.s.−→ θ0

that is, a strong law limit of observable quantities.
• π0(.) defines a probability measure for θ which term the prior probability measure.
• In the corollary, for the posterior predictive distribution, we have

pYn+1,...,Yn+m|Y1,...,Yn
(yn+1, yn+2, . . . , yn+m|y1, . . . , ym) =

∫ 1

0

{
n+m∏
i=n+1

θyi (1− θ)1−yi

}
πn (dθ)

where the posterior distribution for θ is

πn(dθ) =

{
n∏

i=1
θyi (1− θ)1−yi

}
π0 (dθ)∫ 1

0

{
n∏

i=1
tyi (1− t)1−yi

}
π0 (dt)

that is, the prior distribution updated in light of the data y1, . . . , yn.

Thus, from a very simple and natural assumption (exchangeability) about observable random quan-
tities, we have a theoretical justification for using Bayesian methods, and a natural interpretation of
parameters as limiting quantities. The theorem can be extended from the simple 0-1 case to very general
situations
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Theorem The de Finetti General Representation Theorem
If Y1, Y2, . . . is an infinitely exchangeable sequence of random variables with joint probability measure PY , then
there exists a distribution function π0(.) on F , the set of all distribution functions on R, such that the joint
distribution of (Y1, Y2, . . . , Yn) is specified by

Pr

[
n⋂

i=1

(Yi ≤ yi)

]
=

∫
F

{
n∏

i=1

F (yi)

}
π0(dF )

where F parameterizes the model and is an unknown/unobservable distribution function with true value F0

where

F0 (y) = lim
n→∞

Fn((−∞, y]) = lim
n→∞

{
1

n

n∑
i=1

1(−∞,y](Yi)

}
is a probability measure on the space of functions F , defined as a limiting measure as n −→ ∞ on the empirical
distribution function Fn.


