MATH 559: BAYESIAN THEORY AND METHODS
THE DE FINETTI REPRESENTATION THEOREM

Exchangeability

(i) A finite sequence of random variables Y7, Ys, ..., Y, taking values on Y C R? is finitely exchangeable
if, for arbitrary sets Ay, As,..., A, C R?,

n

Pr|()(Vi € Ai)| =Pr |[|(Vi € As) (1)
i=1 i=1
for any permutation (¢(1),0(2),...,0(n)) of indices (1,2,...,n).

(ii) An infinite sequence, Y1, Ys, ..., is infinitely exchangeable if (1) holds for all finite subsets of size n of
the sequence, for all n > 1.

Theorem (The de Finetti 0-1 Representation Theorem)
If Y1, Y5, ... is an infinitely exchangeable sequence of 0-1 variables, then there exists a probability function mo(.)
such that for all n > 1, the joint mass function of (Y1,Ya,...,Y,) can be represented

n

1
yi,Ys,..Y, (ylvaa"'vyn) = / {l—Iey1 (1 _Q)I_yi}ﬂ() (de)
0

i=1

with

Furthermore, we may define
fp = lim R,,
n—o0

that is, R,, =% 0o, so that 0 is the limiting relative frequency that an arbitrary Y takes the value one.

PROOF By exchangeability, for 0 < s, < n, we must have

n

Pr[S, = s,] = < >pY1,Y2,...,Yn (Y1,92, -+, Yn) )

n

n n
with s, = > v, as there are ( ) sequences of ys that have sum s,,.
i=1 Sn

Now consider N > n, with N finite. By the Theorem of Total Probability we may write
N—n+sn
Pr(S, =sn]= Y Pr[S,=s,|Sy=sPr[Sy =4 3)

S=8p,

that is, in light of the information fact that Sy = s, we can identify the conditional probability for
different values of .S,,.



By the exchangeability assumption, Pr [S,, = s,,|Sn = 5], is a hypergeometric probability:

¢ we have a (finite) exchangeable sequence of N binary variables that contain precisely s ones and
N — s zeros; in this sequence, the first n variables contain precisely s,, ones and n — s,, zeros;

¢ alternatively, of the s ones in the sequence of length N, s, are placed somewhere in the first n
positions, the remaining s — s,, are placed in the remaining N — n positions.

()l )
Pr[S, = su|Sn =s] = n/ \B " n 0<s,<n.

N <sp <
n
Writing out the binomial coefficients, we have

) [ W

(N) sul(s — sn)l (n — s)I(N — s —n+ s,)! NI

Therefore

n! s! (N —s)! (N —n)!
spl(n—sp)! (s —sp)! (N —s—n+s,)! NI

For k > [ > 1, define |
k!
kj = =

k(k—1)(k—2)...(k—1+1)

— this is the descending factorial function. In this notation

()G) (7) Ol =,
) N A

Thus
N—n+snp _ s B
Pr [Sn = Sn] = <;> :Z (S)Sn((](vN>n ))n Sn Pr [SN —_ S] ’ (4)

This result holds for any finite V. For the result, we require that the representation holds for the infinitely
exchangeable sequence, and for all n > 1, so we must consider behaviour as N — oc.

The random variable Sy takes values on the set {0, 1, ..., N} with probabilities
PI‘[SN = 0],PI‘[SN = 1], ce ,PI’[SN = N]
respectively. Denote by Fg,, (s) the cumulative distribution for Sy; in the construction, Fis,, (s) is not pre-

specified, but it is a univariate distribution function that induces the form of py; v,.... v, (¥1,y2, .-, Yn)-
Now, let
Sy 1 &
J— N _— .
By="§ =y Y
1=

and denote by Fg, () the cumulative distribution for Ry; Ry takes values on the finite set

Ry = {0,1/N,2/N,... (N —1)/N, 1}



with Pr[Ry = r| = Pr[Sy = Nr], for r € Ry, and zero otherwise. Thus we may re-write (4)

N—n+snp
Pr[S, = sn] = (n> :Z <s>sn<<z(vN—)ns>>nsn Pr Ry = 5/, -
or, by changing variables in the sum from s to r = s/N,
(N )Sn((N -N ))n—sn
Pr[Sn = 8] = (;) y o8 i Pr[Ry = 1]. 6)

reRN

We consider the behaviour of this summation as N — oo. First, note that F, (r) is a step-function
with steps at values in R . By utilizing the Riemann-Stieltjes integral notation we may re-write the sum

aS n\ (' (Nr),, (1—7)N)
8n> /0 (N)

Pr[S, = s,] = ( i By (dr). (7)

n

Now when k£ > [,
(k) =k(k—1)(k—2)...(k—1+1)=Fk

as there are [ terms each of which are approximately equal to k. Thus, in the limit as N — oo for n and
sy, fixed, foreachr € R = {a/b:a,b € Z,a > 0,b > 1,a < b}, we have that

(N7),, (L=7)N)
(V)

Nn—=Sn SN ’I"S" (1 . ,r)n—sn — Hryi (1 o r)l—yi
n =1
with terms in IV cancelling.
Now we consider the behaviour of Fr, (dr) as N — oo; to do this, we appeal to Helly’s Theorem, and
related concepts of weak convergence of measure (see for example, Ash and Doléans-Dade, Probability
and Measure Theory (2nd Edition), section 7.2)

* the sequence of distributions { Fry(.)} 3, has a convergent subsequence {FRN]- (3524
¢ that is, for some distribution function m(.), say, and for each ¢, 0 < ¢ <1

Fry, (¢) — mo (c)
as j — oo.

Hence, limiting form of equation (7) as N — oo is obtained as

Pr[S, = $n] = (”> /O L, (((1N_) N NVomse g (ar) —s (;) /O L (L) g (dr).

Sn n

and the result follows by rearrangement. We may reserve the special notation 6 to represent the inte-
grating variable and thus have

1
DY Yoo Yo (Y15 Y25 - -, Yn) = / 0° (1 —0)" %" mo (dO)
0

Finally, as n — oo, it is evident from the strong law of large numbers that R,, “* 6, say, for some
0o € [0, 1].



Corollary : Posterior Predictive Distributions

For m,n > 1, under infinite exchangeability, the predictive distribution of Y}, 41, ..., Yy+m given
Y1,Ys, ..., Y, takes the form

pYn+1,Yn+2,,..,Yn+m|Y1,Y2,..‘,Yn (yn+17 Yn+25 - - - 7yn+m’y17 Y2, .. 7ym)

n+m
_ Py1.Ys,. . Yoim (yh Y2,..., yn-‘rm) _ /1 { H QY (1 _ 9)1—%} T (de) (8)
0

PY1Yay Yo (Y1592, -+, Yn) Pt

where

{fow -0y} man

i=1

/01 {zﬁl i (1 — t)l‘yi} 7o (dt)

is the posterior distribution, which is effectively and updated version of the prior distribution my(df).

T (dO) =

Finally, for alln > 0,m > 1, let

n+m S
n+1n+m
SnJrl,ner = § Y; Rn+1,n+m = T
i=n+1

so that S}, = S, from above. Then from (8) we can deduce that

m

1
Pr[Sn+1,n+m = S’SI,n = SLn] = / < >ts (1 — t)m_s Tn (dt) S € {0, 1, 2, . ,m}
0

S
using ¢ now as the integrating variable. It follows immediately that
Pr[Ryt1n4+m = 7510 = S1,0n] = Pr[Snt1ntm = mr|Sin = s1.4] r€Rm=1{0,1/m,2/m,..., 1}

We consider the behaviour as m — oo, with n fixed; the set of values that r can take becomes the
interval [0, 1], and we therefore consider the distribution function for Ry, 11 s+ for0 < 6 <1

|mé] 1 .
PI‘I:RnJrl,ner S 9 ‘ Sl,n = Sl,n] = PI‘[Sn+17n+m § m9|517n = Sl,n] = Z / (T]n> tj (1 — t)m_j Tn (dt)
j=0 70
:/ Z ( _)tﬂ (1—t)""7 5w, (dt).
0 =0 J

The term in the central curly bracket can be interpreted as follows: if X ~ Binomial(m,t),

Lmd]

> (ﬂ?)tj (1—t)™ 7 =Pr[X < |mb]].

=0 7

Now, by standard central limit theorem arguments, for large m,

Cp | X mtmB) i | ml—mt (01
max s ) v | s REE o () =0 (v )




where ®(.) is the standard Normal cdf. However, for fixed r and ¢, as m — oo
_ 0 <t
o(ym-=0 ) _,
t(1—1) 1 6>t

0
lim Pr[Rosiim < 0| Sin = s10] = / o (dt).
0

m——>00

Thus

which reveals that the posterior distribution 7, (df) is in fact the limiting predictive distribution for
Ry 41,n+m as m — oo with n fixed.

Interpretation: The de Finetti Representation for binary variables

1 n
PYL Yy Yo (Y1525 -+ Yn) = / {H v (1 - 9)1_%} 7o (d6)
0

i=1
can be interpreted in the following way;

¢ The joint marginal distribution of the observable quantities Y7, Y5, ..., Y, can be represented via a
conditional /marginal decomposition. The conditional distribution is

{ﬁ QY (1 _ 9)1yz}
i=1

formed as if it were a likelihood for data Y7, Y, ..., Y, conditional on a quantity 6.
* (is a quantity that parameterizes the model whose true value 6, is defined by

1 n
IRE
nz’*l

that is, a strong law limit of observable quantities.
¢ 7o(.) defines a probability measure for # which term the prior probability measure.
¢ In the corollary, for the posterior predictive distribution, we have

1 n+m
) 1—y;
DY, Yogm Y1, Y (Ynt1, Ynt+2s - - s Yntml|Y1, - s Ym) _/ { H 0V (1—0)"" }Wn (df)
0 Ui=nt1

where the posterior distribution for 6 is

{Low -0/ man

=1

/01 {13[1 s (1 — t)lyi} 70 (dt)

that is, the prior distribution updated in light of the data y, ..., yn.

T (df) =

Thus, from a very simple and natural assumption (exchangeability) about observable random quan-
tities, we have a theoretical justification for using Bayesian methods, and a natural interpretation of
parameters as limiting quantities. The theorem can be extended from the simple 0-1 case to very general
situations



Theorem The de Finetti General Representation Theorem

If Y1, Y5, ... is an infinitely exchangeable sequence of random variables with joint probability measure Py, then
there exists a distribution function my(.) on F, the set of all distribution functions on R, such that the joint
distribution of (Y1,Ya2,...,Y,,) is specified by

ﬁ(Y<yz]—/{HFyz} dF)

=1

Pr

where F parameterizes the model and is an unknown/unobservable distribution function with true value Fy
where

Fo (y) = lim Fy((—o0,y] —Jgrolo{ Zl< o] (Yi }

is a probability measure on the space of functions F, defined as a limiting measure as n — oo on the empirical
distribution function F,.



