Course Summary

- 1. Exchangeability & de Finetti's representation;
 - prior predictive
 - combining likelihood & prior
 - limit interpretation of parameters
 - prior to posterior updating formula
 - posterior predictive
 - prior as limit of prior predictive
 - posterior as limit of posterior predictive

Key skills: understanding and implementing the components of the de Finetti representation.

- 2. Parametric methods;
 - inference for parametric models
 - derivation of posterior and posterior predictive
 - Bayesian updating rules
 - sufficiency
 - computations for standard models

Key skills: computing posterior distributions from likelihood and prior, assessing sufficiency, summarizing posterior distributions through credible intervals.

- 3. Methods of prior specification;
 - conjugate priors
 - non-informative priors
 - Jeffreys prior

Key skills: computing with these priors, special results for location/scale families

- 4. Bayesian optimal decisions;
 - Estimation via minimum expected posterior loss
 - Estimates under standard loss functions

Key skills: computing estimates under these losses

- 5. Approximation methods;
 - Classical/frequentist theory
 - Taylor approximation
 - Asymptotic normality & the Bayesian posterior

Key skills: utilizing these classical results for Bayesian computations

- 6. Modelling extensions;
 - linear regression
 - GLMs & non-linear regression
 - latent variables & missing data
 - hierarchical models

Key skills: analytical computations for the linear model, knowledge of the structures of the other models sufficient to construct likelihoods/posteriors

- 7. Model selection;
 - principles of model selection

Key skills: understanding the principles

- 8. Other interpretations of Bayes
 - variational justifications
 - information processing identities
 - Gibbs posterior

Key skills: understanding the principles and formulations

- 9. Monte Carlo methods;
 - principles
 - importance sampling & variance reduction
 - rejection sampling
 - sampling-importance resampling

Key skills: understanding the key computations, constructing solutions for Bayesian problems

- 10. Markov chain Monte Carlo methods;
 - basic principles of Markov chain sampling algorithms
 - Metropolis-Hastings
 - Gibbs sampler

Key skills: principles of MCMC, knowledge of how to construct and implement algorithms

- 11. Nonparametric Bayesian inference.
 - basic principles for constructing random distributions
 - the Dirichlet process
 - Polya Urn sampling

Key skills: understanding basic principles and algorithms