
Chapter 4 

Modelling 

Summary 
The relationship between beliefs about observable random quantities and their 
representation using conventional forms of statistical models is investigated. It 
is shown that judgements of exchangeability lead to representations that justify 
and clarify the use and interpretation of such familiar concepts as parameters, 
random samples, likelihoods and prior distributions. Beliefs which have certain 
additional invariance properties are shown to lead to representations involving 
familiar specific forms of parametric distributions. such as normals and expo- 
nentials. The concept of a sufficient statistic is introduced and related to rep- 
resentations involving the exponential family of distributions. Various forms of 
partial exchangeability judgements about data structures involving several sam- 
ples, structured layouts. covariates and designed experiments are investigated, 
and links established with a number of other commonly used statistical models. 

4.1 STATISTICAL MODELS 

4.1.1 Beliefs and Models 

The subjectivist. operationalist viewpoint ha. led us to the conclusion that, if we 
aspire to quantitative coherence, individual degrees of belief, expressed as proba- 
bilities. are inescapably the starting point for descriptions of uncertainty. There can 
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be no theories without theoreticians; no learning without learners: in general. no 
science without scientists. It follows that learning processes. whatever their par- 
ticular concerns and fashions at any given point in time. are necessarily reasoning 
processes which take place in the minds of individuals. To be sure, the object of 
attention and interest may well be an assumed external, objective reality: but the 
actuality of the learning process consists in the evolution of individual. subjective 
beliefs about that reality. However. it is important to emphasise, as in  our earlier 
discussion in Section 2.8. that the primitive and fundamental notions of irrrhsid- 
u d  preference and belief will typically provide the starting point for irirrrpersotrtil 
communication and reporting processes. In what follows, both herc. and more 
particularly in Chapter 5 ,  we shall therefore often be concerned to identify and 
examine features of the individual learning process which relate to interpersonal 
issues, such as the conditions under which an approximate consensus of beliefs 
might occur in a population of individuals. 

In Chapters 3, and 3, we established a very general foundational framework for 
the study ofdegreesofbeliefand their evolution in the light of new information. We 
now turn to the detailed development of these ideas for the broad class of problems 
of primary interest to statisticians; namely. those where thc events of interest are 
defined explicitly in terms of rundotn yuunrities, X I .  . . . .  . I , , ,  (discrete or continuous. 
and possibly vector-valued) representing obscrved or experimental data. 

In such cases, we shall assume that an individual‘s degrees of belief for 
events of interest are derived from the specification of a joint distribution func- 
tion P(.r, ..... s,,), which we shall typically assume. without systematic reference 
to measure-theoretic niceties. to be representable in terms ofa joint density function 
p(.rl.. ... . r l , )  (to be understood as a mass function in the discrete case). 

Of course, any such specification implicitly defines a number of other degrees 
of belief specifications of possible interest: for example, for 1 (1 I ) )  < 1). 

provides the marginal joint density for .I.]. . . . .  .I’ .... and 

. = ) ) ( . I . ! .  . . . .  . l . , , ) / p ( . t ’ I .  . . . .  J ’ , , , )  

gives the joint density r , , .  conditional on 
having observed . I * (  = .rl . . . . .  .r,,, = . I *  .... Within the Bayesian framework. this 
latter conditional form is the key to “learning from experience“. 

yet unobserved . I . , , ,  , I .  

Werecall that. throughout, we shall use notation such as I’andp in a,qrrreric.sense. 
rather than as specifying particular functions. In particular. P may sometimes 
refer to an underlyinp probability measure. and sometimes refer to implied distri- 
bution functions. such as P ( . I , ~ ) .  P[.rI. . . .  . . I , , ,  1 or P!.r,,, . . . .  . . I . , ,  I .rI. . . .  . . I , , , ,  i .  
Siinilarly. we may write p(.rl ). /J(.I . ,  . . . . .  x,, ). etc. w that. for example. 

/ J ( I  . . . . . . . . . . .  I . ,  , . I . ,  . . . .  . . I . , ,  J -- / ) I . I . ~ .  . . .  . . I  .. ) : / ) ( . I  . . . . .  . . I . . , ,  i 
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simply indicates that the conditional density for . r : , , , + l . .  . . . x , ~  given X I . .  . . . T,,, 

is given by the ratio of the specified joint densities. Such usage avoids notational 
proliferation, and the context will always ensure that there is no confusion of 
meaning. 

Thus far. however, our discussion is rather “abstract”. In actual applications 
we shall need to choose specific, concrete forms for joint distributions. This is 
clearly a somewhat daunting task, since direct contemplation and synthesis of the 
many complex marginal and conditional judgements implicit in such a specification 
are almost certainly beyond our capacity in all but very simple situations. We shall 
therefore need to examine rather closely this process of choosing a specific form 
of probability measure to represent degrees of belief. 

Definition 4.1. (Predictive probability model). A predictive model for a se- 
quence of rundom quanrities x!, x?, . . . is a probability measure P ,  which 
muthemutically specijies the form of the joint belief distribution for any subset 
ofx,,x.L: . . .  . 

In some cases, we shall find that we are able to identify general types of 
belief structure which “pin down”, in some sense, the mathematical representation 
strategy to be adopted. In other cases, this “formal” approach will not take us very 
far towards solving the representation problem and we shall have to fall back on 
rather more pragmatic modelling strategies. 

At this stage, a word of warning is required. In much statistical writing, the 
starting point for formal analysis is the assumption of a mathematical model form, 
typically involving “unknown parameters”, the main object of the study being to 
infer something about the values of these parameters. From our perspective, this 
is all somewhat premature and mysterious! We are seeking to represent degrees 
of belief about observables: nothing in our previous development justifies or gives 
any insight into the choice of particular “models”, and thus far we have no way of 
attaching any operational meaning to the “parameters” which appear in conventional 
models. However, as we shall soon see, the subjectivist, operationalist approach 
will provide considerable insight into the nature and status of these conventional 
assumptions. 

4.2 EXCHANGEABILITY AND RELATED CONCEPTS 

4.2.1 Dependence and Independence 

Consider a sequence of random quantities xl  . .r2, . . .. and suppose that a predictive 
model is assumed which specifies that, for all 11.  the joint density can be written in 
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the form 
il 

p(.r 1 .  . . . .  .r,, ) = n p(.r, 1. 

so that the .r, are independent random quantities. It then follows strdightfonvardiy 
that, for any 1 5 t i /  < 1 1 .  

I 1  

p(.r,,,+1. . . . .  .(.,, I . / ’ I .  . . . .  .r , , , )  = p(.(./‘,, 1 . .  . .  ../.,,I 

so that no leurning.frci?r e.vperience can take place within this sequence of obser- 
vations. In other works, past data provide us with no additional information about 
the possible outcomes of future observations in the sequence. 

A predictive model specifying such an independence structure is clearly inap- 
propriate in contexts where we believe that the successive accumulation of data will 
provide increasing information about future events. In such cases. the structure of 
the joint density p ( . r l .  . . . .  .I./,) must encapsulate some form ofdepcnrlunce among 
the individual random quantities. In general. however, there are a vast number of 
possible subjective assumptions about the form such dependencies might takc and 
there can be no all-embracing theoretical discussion. Instead. what we can do is 
to concentrate on some particular simple forms of judgement about dependence 
structures which might correspond to actual judgements of individuals in certain 
situations. 

There is no suggestion that the structures we are going to discuss in subse- 
quent subsections have any special status. or oirght to be adopted in most cases, or 
whatever. They simply represent forms of judgement which may often be felt to 
be appropriate and whose detailed analysis provides illuminating insight into the 
specification and interpretation of certain classes of predictive models. 

4.2.2 Exchangeability and Partial Exchangeability 

Suppose that, in thinking about P ( . r , .  . . . .  . r l , ) .  his or her joint degree of bclief 
distribution for a sequence of random quantities . r i .  . . . .  .r,, ,  an individual makes 
the judgement that the subscripts. the “labels” identifying the individual random 
quantities. are ”uninformative”. in the sense that he or she would specify all the 
marginal distributions for the individual random quantities identically, and similarly 
for all the marginal joint distributions for all possible pairs. triples. etc.. of the 
random quantities. I t  is easy to see that this implies that the form of the joint 
distribution must be such that 

for any possible permutation ~i of’ the subscripts { 1..  . . .  I ) } .  We formalise thi\  
notion of “symmetry” of  beliefs for the individual random quantities as follo~v\. 
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Definition 4.2. (Finite exchangeability). The random quantities 11, . . . , x,, 
are said to be judged yiniteiy) exchangeable under a probability measure P 
if the implied joint degree of belief distribution satisjes 

for ull permututions 7r defined on the set { 1, . . . , n}. In terms of the corre- 
sponding density or mass function, the condition reduces to 

Example 4.1. (Tossing a thumb tuck). Consider a sequence of tosses of a standard 
metal drawing pin (or thumb tack), and let xi = 1 if the pin lands point uppermost on the 
ith toss, x, = 0 otherwise, i = 1.. . . . R. If the tosses are performed in such a way that 
time order appears to be irrelevant and the conditions of the toss appear to be essentially 
held constant throughout, it would seem to be the case that, whatever precise quunrirutive 
form their beliefs take, most observers would judge the outcomes of the sequence of tosses 
11. r2,. . . to be exchangeable in the above sense. 

In general, the exchangeability assumption captures, for a subjectivist interested 
in belief distributions for observables, the essence of the idea of a so-called 
"random sample". This latter notion is, of course, of no direct use to us at this 
stage, since it (implicitly) involves the idea of "conditional independence, given 
the value of the underlying parameter", a meaningless phrase thus far within our 
framework. 

The notion of exchangeability involves a judgement of complete symmetry 
among all the observables x l , .  . . , I,, under consideration. Clearly, in many situa- 
tions this might be too restrictive an assumption, even though a partial judgement 
of symmetry is present. 

Example 4.1. (cont.). Suppose that the sequence of tosses of a drawing pin are not 
all made with the same pin, but that the even and odd numbered tosses are made with 
different pins: an all metal one for the odd tosses: a plastic-coated one for the even tosses. 
Alternatively, suppose that the same pin were used throughout. but that the odd tosses are 
made by a different person, using a completely different tossing mechanism from that used 
for the even tosses. In such cases, many individuals would retain an exchangeable form 
of belief distribution within the sequences of odd and even tosses separately, but might be 
reluctant to make a judgement of symmetry for the combined sequence of tosses. 
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Example 4.2. (Luborato~ measurements). Suppose that . r l .  .I.:.  . . . are real-valued 
measurements ofa physical or chemical property of a given substance. all made on the same 
sample with the same measurement procedure. Under such conditions. many individuals 
might judge the complete sequence of meawrements to be exchangeable. 

Suppose, however. that sequences of such measurements are combined from 1. different 
laboratories. the substance being identical but the measurement procedures varying from 
laboratory to laboratory. In this case. judgements of exchangeability for each laboratory 
sequence separdtely might be appropriate. whereas such a judgement for the combined 
sequence might not be. 

Example4.3. (Physiologicalresponses). Suppose that {.Ti .  x 2 . .  . . . } are real-valued 
measurements of a specific physiological response in human subjects when a particular 
drug is administered. If the drug is administered at more than one dose level and it’ there 
are both male and female subjects, spanning a wide age range, most individuals would be 
very reluctant to make a judgement of exchangeability for the entire sequence of results. 
However. within each combination of dose-level. sex and appropriately defined age-group. 
a judgement of exchangeability might be regarded as reasonable. 

Judgements of the kind suggested in the above examples correspond to  forms 
of purriuf exchongeubility. Clearly, there are many possible forms of departure 
from overall judgements of exchangeability to those of partial exchangeability and 
so a formal definition of the term does not seem appropriate. In general, i t  simply 
signifies that there may be additional “1abels”on the random quantities (forexample. 
odd and even, or the identification of the tossing mechanism in Example 4.1 ) with 
exchangeable judgements made separately for each group of random quantities 
having the same additional labels. A detailed discussion of various possible forms 
of partial exchangeability will be given in Section 4.6. 

We shall now return to the simple case ofexchangeability and examine in detail 
the form of representation of p( .r] .  . . . . . I . , , )  which emerges in various special cases. 
As a preliminary, we shall generalise our previous definition of exchangeability 
to allow for ”potentially infinite” sequences of random quantities. In practice, it  
should. at least in principle. always be possible to give an upper bound to  the number 
of observables to be considered. However. specifying an actual upper bound may be 
somewhat difficult or arbitrary and so. for mathematical and descriptive purposes. it 
is convenient to be able to proceed as if we were contemplating an infinite sequence 
of potential observables. Of course. i t  will be important to establish that working 
within the infinite framework does not cause any fundamental conceptual distortion. 
These and related issues of finite versus infinite exchangeability will be considered 
in more detail in Section 4.7. I .  For the time being. we shall concentrate on the 
”potent idly infinite” case. 
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Definition 4.3. (Infinite exchangeability). The inJnite sequence of ran- 
dom quantities $1,  x2! . . . is said to be judged (injnitely) exchangeable if 
everyfinite subsequence is judged exchangeable in the sense of Definition 4.2. 

One might be tempted to wonder whether every finite sequence of exchange- 
able random quantities could be embedded in or extended to an infinitely exchange- 
able sequence of similarly defined random quantities. However, this is certainly 
not the case as the following example shows. 

Example 4.4. (Non-extendible exchangeability). Suppose that we define the three 
random quantities C ~ . : C ~ , . C : ~  such that either I, = 1 or .r, = 0, i = 1.2?3, with joint 
probability function given by 

p ( q  = O..C2 = 1..r:i = I )  = p ( q  = 1. *'2 = O,.C:3 = 1) 

= p(3.1 = 1.x2 = l,.r;t = 0) 

= 1/3. 

with all other combinations of x i ,  x2: r:{ having probability zero, so that x i .  ~ 2 .  .r3 are clearly 
exchangeable. We shall now try to identify an sJ. taking only values 0 and 1, such that 
rI .. . . . xj are exchangeable. For this to be possible, we require, for example. 

p ( s ,  = 0 , x r  = 1.KI = 1.3.4 = 0) = p ( q  = O..C? = 0.S:t = l .Sl = 1). 

But 

where 

so that 

p ( q  = 0, x:! = 1. X:)  = 1, XA = 0) 

= p(s1 = 0 . 3 . 2  = 1.r:i = 1) - p ( q  = 0.1:z = l .&$ = I . X J  = 1) 

- -1/3-p(.rI = O . . r y = l , . ~ : ~ =  l , . r L = l )  

= l / : I -p (q  = 1.1.2 = l ,S.$ = 1,S( = O ) .  

p ( q  = l.Zz = 1,q = 1. x.1 = 0 )  5 p(xl = 1 . 2 2  = 1.S;) = 1 )  = 0. 

p(J.1 = 0.2-2 = 1,S.t = l.rr = 0) = 1/3. 

p ( r ,  = 0. .rl = 0, S )  = 1. Si = 1) 5 p ( J l  = 0, I1 = 0. S )  = 1) = 0 

However, we also have 

and so 

p(r1 = O,ri = 1,s) = 1 . ~ 4  = 0) # p(r1 = 0.r2 = O.x, = 1..r4 = I ) .  

It follows that a finitely exchangeable sequence cannot even necessarily be embedded 
in a larger finitely exchangeable sequence, let alone an infinitely exchangeable sequence. 
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4.3 MODELS VIA EXCHANGEABILITY 

4.3.1 The Bernoulli and Binomial Models 

We consider first the case of an infinitely exchangeable sequence of0 - I  random 
quantities, . r l . . ~ .  . . . . with s, = 0 or .r, = 1. for all i = I . ? . ,  . .. Without loss 
of generality, we shall derive a representation result for the joint mass function. 
p( . r l .  . . . . .rII), of the first I I  random quantities XI. . . . . .r l l .  

Proposition 4.1. (Representation theorem for 0 -I random quantities). 
If XI. x i .  . . . is un injnitely e.rchungeable sequence of0-1 random yuuntitics 
with prohahilin. measure P ,  there txists u distribution fiuiction Q such t k r r  
the joint inuss firnction p( .r I . . . . . .r,, ) jhr .I‘ I . . . . .r,, hcrs the forin 

rcjhere, 
Q ( 0 )  = lim P[gll/tt 5 HI. 

with y,, = .I’I + . . . + zI,. {rnd 0 = l i ~ i i , , - ~  y , , / t t .  

Proof. (De Finetti. 1930, I937/ 1964; here we follow closely the proof given 
by Heath and Sudderth. 1976; see also Barlow. 199 I ) .  Suppose .ri t. . . -t .r,, = .vI,. 
then, by exchangeability. for any 0 5 ?I,, r: t ~ .  

0-x 

]1(.1.1 + * “ + rl, = y,,) = (;;,) d . r . 7 ,  I I. ’ . . . J’T, I , ,  1 

for any permutation x of { 1. . . . , r t  } such that .r7( I ,  + . . . t .rTl ,, = y,, . Moreover. 
for arbitrary R; 2 ri 2 y,, 2 0. and with the summations below taken over the 
range y y  = y,, to g.\ = 2%- - ( 1 1  - g,,), we see that 

where (;y.,)U,, = y.v(y,\ - 1)  . . . [!I., - (?y,, - 1)) .  etc. (Intuitively. we can imagine 
sampling tt items without replacement from an urn of X items containing ,I/.\ 1’s 
and :Ir - y,, 0’s. corresponding to the hypergeometric distribution of Section 3.7.2.) 
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If we now define Q,v(8) on R to be the step function which is 0 for 8 < 0 and 
has jumps of p(zl t . . t S.V = y . ~ )  at 8 = y.v/N. gAv = 0,. . . . N. we see that 

As N - x, 
( 8 W U , l  K1 - ~ ) A v r r - - l / l l  ~ fly,, (1 - , ) , I -  ,y,, 

(Nht 

uniformly in 8. Moreover, by Helly’s theorem (see, for example, Section 3.2.3 and 
Ash, 1972, Section 8.2), there exists a subsequence Q.v,, Q.v2. . . . such that 

lirn Q“; = Q. 
:YJ - x 

where Q is a distribution function. The result follows. a 

The interpretation of this representation theorem is of profound significance 
from the point of view of subjectivist modelling philosophy. It is as if: 

the .r, are judged to be independent, Bernoulli random quantities (see Sec- 
tion 3.2.2) conditional on a random quantity 8; 
8 is itself assigned a probability distribution Q; 
by the strong law of large numbers, 8 = liInll-x(y,,/n), so that Q may be 
interpreted as “beliefs about the limiting relative frequency of 1 ’s”. 

In more conventional notation and language, it is as if, conditional on 8, 
. . , xl l  are a random sample from a Bernoulli distribution with parameter 8, 

generating a parametrised joint sampling distribution 

p(x1.. . . 
I ,  I ,  

, = I  r=l 

where the parameter is assigned a prior distribution Q(8).  The operational content 
of this prior distribution derives from the fact that it is as ifwe are assessing beliefs 
about what we would anticipate observing as the limiting relativefrequency from a 
“very large number” of observations. Thought of as a function of 8, we shall refer 
to the joint sampling distribution as the likelihood function. 

In terms of Definition 4. I ,  the assumption of exchangeability for the infinite 
sequence of 0-1 random quantities ~ 1 . ~ 2 . .  . . places a strict limitation on the 
family of probability measures P which can serve as predictive probability models 
for the sequence. Any such P must correspond to the mixture form given in 
Proposition 4.1, for some choice of prior distribution Q(8) .  As we range over 
all possible choices of this latter distribution, we generate all possible predictive 
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probability models compatible with the assumption of infinite exchangeability for 
the 0-1 random quantities. 

Thus, "at a stroke". we establish a justification for the conventional model 
building procedure of combining a likelihood and a prior. The likelihcd is defined 
in terms of an assumption of conditional independence of the observations given 
a parameter; the latter, and its associated prior distribution. acquire an operational 
interpretation in terms of a limiting average of observables t in  this case a limiting 
frequency). 

In many applications involving 0-1 random quantities. we may be more in- 
terested in a summary random quantity, such as y l ,  = .rI + . . . + J , ~ .  than in the 
individual sequences of . r t *s .  The representation of p( . r~  + . . . + .rI, = !I,,) is 
straightforwardly obtained from Proposition 4. I .  

Corollary 1. Given the cvnditions of Proposition 4.1. 

PI-UOJ This follows immediately from Proposition 4.1 and the fact that 

for all s1. I . . . .r,l such that .rl + . . . f .rll = ,y,,. a 

T h i s  provides a justification. when expressing beliefs about g,,, for acting us 
ifwe have a binomial likelihood. defined by Bi(.yll 10. ) I ) .  with a prior distribution 
Q( 0) for the binomial parameter 0. 

The formal learning process for models such as this will be developed sys- 
tematically and generally in Chapter 5 .  However. this simple example provides 
considerable insight into the learning process, showing how. in a sense. the key 
step is a straightforward consequence of the representation theorem. 

Corollary 2. , # f i r .  .r2. . . . is (it1 injnitely crchangeahle seqrretice ~ $ 0 - 1  run- 
dun1 quantities with prohuhitity mrcrsitrr P. the conditional probability ,firnc- 
tion p(rl,, + ] .  . . . . slI 1 X I . .  . . . . r l l , ) .  for . t . l , i . - l .  . . . . .rII gir-en .r1. . . . ..I' ,,,. hus 
t h e j h r i  
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where 

Proof. Clearly. 

p ( . n , .  . . , G I )  

p(z1.. . . . I,,,) p(z,,,+1.. . . , 5 1 1  12,. . f . . I l l , )  = 

and the result follows by applying Proposition 4.1 to both p ( q ,  . . . , z,,) and 
p(z1.. . . x , , ~ )  and rearranging the resulting expression. a 

We thus see that the basic form of representation of beliefs does not change. 
All that has happened. expressed in conventional terminology, is that the prior 
distribution Q(0)  for 8 has been revised, via &yes' theorem, into the posrerior 
distribution Q(O 1 zl.. . . . .rnl). 

The conditional probability function ~ ) ( t , ~ , + ~ ,  . . . ,sI2 I zl,. . . , z,,,) is called 
the (conditionul, or posterior) predictive probability function for zn,+ 1. . . . , I,# 
given 1 1 ,  . . . , I , ,~,  and this, of course, also provides the basis for deriving the con- 
ditional predictive distribution of any other random quantity defined in terms of the 
futureobservations. Forexample, given rl. . . . . xn, ,  the predictive probability func- 
tion p ( ~ , ~ - ~ , ~  I XI.. . . .-c,,~) for Y,,-,~,. i.e., the total number of 1's in I , , ~ + ~ ,  . . . , x,,, 
has the form 

A particularly important random quantity defined in terms of future obser- 
vations is the frequency of 1's in a large sample. But, by Proposition 4.1 and its 
Corollary 2. 

Thus, a posterior distribution for a parameter is seen to be a limiting case of 
u posterior (conditionat) predictive distribution for an observable. 
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4.3.2 The Multinomial Model 

An alternative way of viewing the 0 -1 random quantities discussed in Section 3.1 i s  
as defining category membership (given two exclusive and exhaustive categories). 
in the sense that .r; = 1 signifies that the ith observation belongs to category I and 
.T, = 0 signities membership of category 2. We can extend this idea in an obvious 
way by considering I-dimensional random vectors x, whose j t h  component, J., , .  

takes the value I to indicate membershipofthejth o fk  + 1 categories. At most one 
of  the k components can take the value I ; if they all take the value 0 this signifies 
membership of the ( X  + 1)th category. In what follows. we shall refer t o  such 5, 
as "0-1 random vectors". If xI, 5 2 .  . . . i s  an infinitely exchangeable sequence of 
0-1 random vectors. we can extend Proposition 4. I in an obvious Wily. 

Proposition 4.2. (Represenfation theorem for 0 -I random vecfors). 
If 2 1 .  5 2 .  . . . is (it1 itrjnitely c~.rchtirigeable seyitetice ($0-l nrntiotii \~~tcir.s 
rcitli probability tt~~(rsiire P. there e.rists u distrihirtiori fiinctiotr Q such thrit 

the joint mtus,fiinction p(x I . . , . . x,, ),for x . . . . x,, htrs tlie,fortr~ 

where 

Proof. This i s  a straightforward, albeit algebraically cumbersome. generali- 
sation of the proof of Proposition 4. I .  4 

As in the previous case, we are often most interested in the summary random 
vector y,, = xl + . . + + x,, whose j th  component g,,,) i s  the random quantity 
corresponding to the total number ofoccurrences ofcategory j in the I I  observations. 
We shall give the representation of p(zl + . . . + x,, = y,, 1 = y(y,,~. . . . . y,,~ 1. 
generalising Corollary I to Proposition 4.1. and then comment on the interpretation 
of these rcsults. 
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Corollary. Given the conditions of Proposition 4.2, the joint mass function 
p(ynl,. . . . ynk) may be represented as 

where 
72 T?,! LlIl . . . hJ = ?Jnl!Pn2!. . .Ynk!(n - c?/,,l)! ’ 

Proof. This follows immediately from the generalisation of the argument used 
in proving Corollary 1 to Proposition 4. I .  4 

Thus, we see in Proposition 4.2 that it is as if we have a likelihood corre- 
sponding to the joint sampling distribution of a random sample z1, . . . , z,,, where 
each z, has a multinomial distribution with probability function Muk(z, 18. l ) ,  
together with a prior distribution Q over the multinomial parameter 8, where the 
components 8, of the latter can be thought of as the limiting relative frequency of 
membership of the jth category. In the corollary, it is as ifwe assume a multinomial 
likelihood, Mu&,,. 18. TI). with a prior Q(8) for 8. 

4.3.3 The General Model 
We now consider the case of an infinitely exchangeable sequence of real-valued 
random quantities xl, x2, . . .. As one might expect, the mathematical technicalities 
of establishing a representation theorem in the real-valued case are somewhat more 
complicated than in the 0-1 cases, and a rigorous treatment involves the use of 
measure-theoretic tools beyond the general mathematical level at which this volume 
is aimed. For this reason, we shall content ourselves with providing an outlineproof 
of a form of the representation theorem, having no pretence at mathematical rigour 
but, hopefully, providing some intuitive insight into the result. as well as the key 
ideas underlying a form of proper proof. 

Proposition 4.3. (General representation theorem). 
If ~1~ x2. . . ., is an infinitely exchangeable sequence of real-valued random 
quantities with probability measure P,  there exists a probability memure Q 
over 3, the space of all distributionfunctio,u on 8, such that the joint distri- 
butionfunction of T I . .  . . , x,, has the form 

where 
Q ( F )  = lirn P(Fl,) 

1 1 - 2  

and F,, is  the empirical distribution function defined by X I ,  . . . , T,, . 
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Ourline proof. (See Chow and Teicher. 1978/ 19138). Since 

we have. by exchangeability, 

To see this, writing I, in place of and noting that I' = I,. we have 

Note also that E(I,)  = P ( J ,  < .r)  and E ( Z , I J )  = I'[(.rl < . r )  ( . r ~  < . I*)] .  

for all i . j ,  by exchangeability. A straightforward count of the numbers of terms 
involved in the summations then gives the required result. 

The right-hand side tends to zero as ,IT. t t  - x. and hence the random quantity 
F,,(.r) tends in probability to some random quantity. F(.r). say, which implies that 

I - '  , = I  

in probability as ,V - x, for fixed 1 1 .  

Suppose we now let (1 I . . . . . o,, denote positive integers and set 

and 
'4- = I ( n )  = I[(.r,,l 5 . r l ) n . . . n ( . r  ,,,, < . r , , ) ] .  

For il: > t t .  it  then follows that 



4.3 Models via Exchangeability 179 

However, as N -+ co, 

so that. 
,I 

But, by exchangeability, 

and so 

Recalling (*), we see that, as N - m, 

F ( z j )  d Q ( F )  P ( x ~ ,  . . . ,x,) /g 
where Q ( F )  = lim,v-.x P(F,v) .  a 

The general form of representation for real-valued exchangeable random quan- 
tities is therefore as ifwe have independent observations zl, . . . , zn conditional on 
F ,  an unknown (i.e., random) distribution function (which plays the role of an 
infinite-dimensional "parameter" in this case), with a belief distribution Q for F, 
having the operational interpretation of "what we believe the empirical distribution 
function would look like for a large sample". 

The structure of the learning process for a general exchangeable sequence of 
real-valued random quantities, with the distribution function representation given 
in Proposition 4.3, cannot easily be described explicitly. In what follows, we shall 
therefore find it convenient to restrict attention to those cases where a corresponding 
representation holds in terms of density functions, labelled by a finite-dimensional 
parameter, 8, say, rather than the infinite-dimensional label. F. For ease of refer- 
ence, we present this representation as a corollary to Proposition 4.3. 
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Corollary 1. Assuming the required densities to exist, under the conditions 
of Proposition 4.3 the joint density of s1. . . . , .rll has the form 

p(x,. . 

with p ( .  16) denoting 
parameter" 6 E 8. 

the density jiinction corresponding to the "unkno con 

The role of Bayes' theorem in the learning process is now easily identified. 

Corollary 2. r f  XI. x2 , .  . . is an injnitely exchangeable sequence of retrl- 
valued random quantities admitting a density representation as in Corollarj I ,  
then 

Proof. This follows immediately on writing 
[.'(.rl. . . . . X I / )  

p(r, .  . . . . x,,,) 
P(.r,,/+I,. . . * X I ,  1 X I . .  . . . . r t , , )  = 

applying the density representation form to both p( . r l .  . . . . x,,) and p ( . r l .  . . . . . r t , , ) .  
and rearranging the resulting expression. a 

The technical discussion in this section has centred on exchangeable se- 
quences, zl. x2, . . . . of real-valued random quantities. In fact. everything carries 
over in an obviously analogous manner to the case of exchangeable sequences 
xl. 2 2 .  . . . , with x, E 'Rk. All that happens, in effect, is that the distribution func- 
tions and densities referred to in Proposition 4.3 and its corollaries become the 
joint distribution functions and densities for the k components of the z,. To avoid 
tedious distinctions between .r E 'R and x E !Rk. in subsequent developments we 
shall often just write s E X. In cases where the distinction between k = 1 and 
A- > 1 matters, it will be clear from the context what is intended. 

In Section 4.8. I ,  we shall give detailed references to the literature on represen- 
tation theorems for exchangeable sequences, including far-reaching generalisations 
of the 0 - I  and real-valuedcases. However. wen the simple cases we have presented 
already provide, from the subjectivist perspective, a deeply satisfying clarification 
of such fundamental notions as models, parumeters. conditional independence and 
the relationship between helieji and l in i i t i t i~~~t~~uenc . i r s .  
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In terms of Definition 4.1, the assumption of exchangeability for the real- 
valued random quantities ~ 1 . ~ 2 ,  . . . again places (as in the 0-1 case) a limitation 
on the family of probability measures P which can serve as predictive probability 
models. In this case, however, in the context of the general form of representation 
given in Proposition 4.3, the “parameter”, F, underlying the conditional indepen- 
dence structure within the mixture is a random distribution function, so that the 
“parameter” is, in effect, injnire dimensional, and the family of coherent predictive 
probability models is generated by ranging through all possible prior distributions 
Q(Fj. The mathematical form of the required representation is well-defined, but 
the practical task of translating actual beliefs about real-valued random quantities 
into the required mathematical form of a measure over a function space seems, 
to say the least, a somewhat daunting prospect. It is interesting therefore to see 
whether there exist more complex formal structures of belief, imposing further 
symmetries or structure beyond simple exchangeability, which lead to more spe- 
cific and “familiar” model representations. In particular, it is of interest to identify 
situations in which exchangeability leads to a mixture of conditional independence 
structures which are defined in terms of ajnite dimensional parameter so that the 
more explicit forms given in the corollaries to Proposition 4.3 can be invoked. 
Given the interpretation of the components of such a parameter as strong law limits 
of simple sequences of functions of the observations, the specification of Q, and 
hence of the complete predictive probability model P,  then becomes a much less 
daunting task. 

4.4 MODELS VIA INVARIANCE 

4.4.1 The Normal Model 

Suppose that in addition to judging an infinite sequence of real-valued random 
quantities q ,  22,. . . to be exchangeable, we consider the possibility of further 
judgements of invariance, perhaps relating to the “geometry”of the space in which 
a finite subset of observations, 2 1 , .  . . ~ T,,, say, lie. The following definitions 
describe two such possible judgements of invariance. As with exchangeability, 
there is no claim that such judgements have any a priori special status. They are 
intended, simply, as possible forms of judgement that might be made, and whose 
consequences might be interesting to explore. 

Definition 4.4. (Spherical symmetry). A sequence of random quantities 
xl, . . . . x,, is said to have spherical symmetry under a predictive probability 
model P ifthe latter defines the distributions of x = (x l  . . . , , x,,) and Ax to 
be identical, for any (orthogonal) n x n matrix A such that At A = I .  
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This definition encapsulates a judgement of rotational symmetry, in the sense 
that, although measurements happened to have been expressed in terms of a par- 
ticular coordinate system (yielding s ~ .  . . . . .r , ,) ,  our quantitative beliefs would not 
change if they had been expressed in a rotated coordinate system. Since rota- 
tional invariance fixes "distances" from the origin. this is equivalent to a judgement 
of identical beliefs for all outcomes of sI.. . . . .r,, leading to the same value of 

The next result states that if we make the judgement of spherical symmetry 
(which in turn implies a judgement of exchangeability. since permutation is a special 
case of orthogonal transformation). the general mixture representation given in 
Proposition 4.3 assumes a much more concrete and familiar form. 

J; + . . . + .I.;. 

Proposition 4.4. (Representalion theorem under spherical symmetry). 
If .I.]. , r2 .  . . . is uti infinite sequence .f rei~l-vul~ied rundotn yirnntities with 
probability meuswe P, und if, fi)r utiy 11,  { .rl . . . . . .r,) } h a w  sphrr-icul synnie- 
try. there e.risfs Q distribution function Q on 'R 1- such that the joint distribirtion 
Jimctiori of r 1 . . . . . x has the jbrni 

where CP is the standard tiorninl distrihuriori~fimctioti unit 

with s: = n-'(.r: + . . . + xf), and X ' = l i i i i , ,  .x  s i .  

Proof. See, for example. Freedman (1963a) and Kingman (1972): details are 
omitted here, since the proof of a generalisation of this result will be given in full 
in Proposition 4.5. a 

The form of representation obtained in Proposition 4.4 tells us that the judge- 
ment of spherical symmetry restricts the set of coherent predictive probability 
models to those which are generated by acting us if: 

( i )  observations are conditionally independent riortnal random quantities. c' *wen 
the random quantity X (which, as a "labelling parameter". corresponds to the 
precision; i.e., the reciprocal of the variance); 

(ii) X is itself assigned a distribution Q; 
(iii) by the strong law of large numbers. X - '  = s i .  so that (2 may be 

interpreted as "beliefs about the reciprocal of the limiting mean sum of squares 
of the observations". 
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For related work see Dawid ( 1977,1978). Toobtain a justification for the usual 
normal specification, with “unknown mean and precision”, we need to generalise 
the above discussion slightly. 

We note first that the judgement of spherical symmetry implicitly attaches a 
special significance to the origin of the coordinate system, since it is equivalent 
to a judgement of invariance in terms of distance from the origin. In general, 
however, if we were to feel able to make a judgement of spherical symmetry, it 
would typically only be relative to an “origin” defined in terms of the “centre” of 
the random quantities under consideration. This motivates the following definition. 

Definition 4.5. (Centredsphericdsymmetry). A sequence ofrandom quanti- 
ties X I ,  . . . . x, is said to have centred spherical symmetry ifthe random quanti- 
ties-cl - P , , ,  . . . .xn-x , ,  ~ v e ~ ~ p h e r i c a l s y m m e t ~ ,  where%,, = n-’ E x , .  This 
is equivalent to a judgement of identical beliefs for all outcomes of x1, . . . , I,, 
leading to the same value of ( X I  - + . . . + (zf, - T t 1 ) * .  

Proposition 4.5. (Representation under centred spherical symmetry). 
If xl, 22, . . . is an infinitely exchangeable sequence of real-valued random 
quantities with probability measure P,  and if, for any n,, { X I , .  . . x i , }  have 
centred spherical symmetry, then there exists a distribution function Q on 
R x R+ such that the joint distribution of x 1 ~  . . . , x, h a s  the form 

where is the standard normal distribution function and 

Q(p, A) = lim P[(?,, I p )  n ( s i 2  I A)] 
n-x 

with x,, = TI-’(x~ + ...  + x,,), S: = 7 t - ’ [ ( ~ l  - T , r ) 2  + + (x,) - Z,)’], 
p = limrrd-a En, and A-’  = 1imtt-% s?,. 

Proof. (Smith, 1981). Since the sequence X I ,  22,. . . is exchangeable, by 
Proposition 4.3 there exists a random distribution function F such that, condi- 
tional on F ,  the random quantities .cI, . . . , x , ~ ,  for any n, are independent. There 
is therefore a random characteristic function, 4, corresponding to F.  such that 
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If we now define y, = .c, - . ~ - , ~ , j  = 1.. . . . i t .  it follows that 

for all real s l .  . . . . s,, such that sI + . . . + 
symmetric, both sides of this latter equality depend only on sf + . . . + s' I I  . 

follows that. for any real u and v .  

= 0. Since !jI. . . . . are spherically 

Recalling that q(-f )  = o ( t ) .  the complex conjugate. and that o(0) = 1. i t  

E { J O ( ~  + r,)o(u - 1.1 - ~ ; j ~ [ t ~ ) ~ ( f , ) ~ ~ ( - f l ) l ~ }  

= f<{Q(l/ + i Q ) ( ; ) ( l (  - f * j @ ( - - / /  - I $ ) O ( / *  - u ) }  

- E ( O ( U  -t ( . ) ( > ( I (  - t ? ) o " ( - u ) o (  - I - ) c ) ( I - ) }  

- E ( O ( - I I  - t l j c3 ( r .  - l/)( ; )~( l / j~;~(~,) , ,~(- l , ) }  

+ E { 0' ( (1 )O' ( I ' )C7?  ( - /-)c? ( - I /  ) } . 

where all four terms in this expression are of the form of the right-hand side of ( * )  

with n = 8. s1 + . . . + s X  = 0 and .s; + . . . + .si = -I( 11' f r 2 ) .  All the four terms 
are therefore equal, so that the overall expression is zero. This implies that. almost 
surely with respect to the probability measure P. L:, satisfies the functional equation 

o( f /  + r ) c > (  / I  - I . )  = I>')( u)o( I ' ) C 3 (  - I * )  

for all real II and 1 1 .  This can be rewritten in the form 

\zI, ( I 1  + I , )  + \zI'( I1 - 1 . )  = A( I / )  + n( 1 8 ) .  

where @ , ( t )  = @ ? ( t )  = l o g d ( f ) ,  and where A ( . )  = 2logd(,(u) and B ( v )  II: 
log[@( I ! ) @ (  - r ) ] ;  it follows that log o(t) is a quadratic in 1 (see. for example. Kagan. 
Linnik and Rao. 1973, Lcmmn 1.5.1). Again using ~ ( - f )  = c ; [ f ) . c $ ( O )  = 1 .  
we see that, for this quadratic. the constant coefficient must be zero. the linear 
coefficient purely imaginary and the quadratic coefficient real and non-positive. 
This establishes that the random characteristic function I.) takes the form 

d ( t )  = c'sp ipt - ;- { ::l} 
for some random quantities 11 E %. A E !W. 

If we now define a random quantity : by 

2 = cxp ( i  g t , q )  
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then, by iterated expectation, we have 

This establishes that, conditional on p and A, x l  , . . . , zn are independent nor- 
mally distributed random quantities, each with mean p and precision A. The mixing 
distribution in the general representation theorem reduces therefore to a joint dis- 
tribution over p and A. But, by the strong law of large numbers, 

21 1- . * + 2-11 
lirn = P ,  
l7-x n 

( X I  - ~ 2 , ) 2 + ~ ~ . + ( x l ,  - X 1 , ) 2  1 
_ - - 1  
- lim 

1 1 - x ,  n x 
and the result follows. a 

We see, therefore, that the combined judgements of exchangeability and cen- 
tred spherical symmetry restrict the set of coherent predictive probability models 
to those which, expressed in conventional terminology, correspond to acting as if: 

(i) we have a random sample from a normal distribution with unknown mean and 
precision parameters, p and A, generating a likelihood 

n 

p(x1, * * .  . x i , l p .  A) = n N ( + i  1 ~ 5 ~ ) ;  

i = l  

(ii) we have a joint prior distribution Q(p,  A) for the unknown parameters, p 
and A, which can be given an operational interpretation as "beliefs about the 
sample mean and reciprocal sample variance which would result from a large 
number of observations". 

4.4.2 The Multivariate Normal Model 

Suppose now that we have an infinitely exchangeable sequence of random vectors 
zl, 2 2 . .  . . taking values in !Rk, k 2 2, and that, in addition, we judge, for all 
n and for all c E 3Zk, that the random quantities c ~ z ~ , .  . . , ctz,, have centred 
spherical symmetry. The next result then provides a multivariate generalisation of 
Proposition 4.5. 
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Proposition 4.6. (Mulfivariccre representah'on theorem under centred spher- 
ical symmetry). If x 1 . 2 2 .  . . . is an infinitely exchangeable sequence of ran- 
dom vectors taking rdues in Rk, with probabiliry measure 1'. such that. .for 
any '11 and c f ?TIk, the random quantities C'XI . . . . . c'x,, have centred spher- 
ical symmetry the structure af evaluations under P of probabilities of events 
dejined by XI. . . . . x,, is cis if rhe latter were independent, ttiulti~nriare nor- 
mally distributed rundam wcm-s.  conditional on (1 rundoni meun wcm- p 
und a random precision matrix A, nith u distribution o w -  p and A indircrd 
by P, where 

Prook Defining y, = ctzJ. j = 1.. . . . 1 1 .  we see that the random quantities 
yl. . . . . y,, have centred spherical symmetry and so, by Proposition 4.5. there exist 
p = p(c) and X = X(c) such that, for all f ,  E %. j = I . .  . . . I ) .  

where 
. I ,  

so that 

for all c E 92" f ,  E 92.1 = 1. . . . . I ) .  It follows that. for all t ,  E !HA. ,j = 1. . . . . I ) .  

so that, conditional on p and A, XI. . . . . x,, are independent multivariate normal 
random quantities each with mean p and precision matrix A. .3 
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4.4.3 The Exponential Model 

Suppose xl ,  xz, . . . is judged to be an infinitely exchangeable sequence of positive 
real-valued random quantities. In particular, we note that this implies, for any 
pair x,, xJ, an identity of beliefs for any events in the positive quadrant which are 
symmetrically placed with respect to the 45” line through the origin. 

I 
XI 

/ 

Figure 4.1 A,  Az, BI , L32 rejections in 45” line. C,  , C2 rejections in (dashed) 45” line 

Thus, for example, in Figure 4.1, the probabilities assigned to A1 and Az,  B1 
and €32, respectively, must be equal, for any i # j. In general, however, the 
assumption of exchangeability would not imply that events such as C1 and CZ have 
equal probabilities, even though they are symmetrically placed with respect to a 
45” line (but not the one through the origin). 

It is interesting to ask under what circumstances an individual might judge 
events such as C1 , C2 to have equal probabilities. The answer is suggested by the 
additional (dashed) lines in the figure. Ifwe added to the assumption of exchange- 
ability the judgement that the “origins” of the xi and x, axes are “irrelevant”, so 
far as probability judgements are concerned, then the probabilities of events such 
as C1 and C2 would be judged equal. In perhaps more familiar terms, this would 
be as though, when making judgements about events in the positive quadrant, an 
individual’s judgement exhibited a form of “lack of memory” property with respect 
to the origin. If such a judgement is assumed to hold for all subsets of n (rather 
than just two) random quantities, the resulting representation is as follows. 
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Proposition 4.7. (Continuous representalion under origin invariance). 
If X I .  x2, , . . is an infinitely exchangeable sequence of positive real-valued 
random quantities with probability measure P. such that, for all 11, and any 
event A in R+ x . . . x !R+, 

P[(r , .  . . . ,&) E A] = Pl(r1.. . . ? Z I f )  E A + a] 

for all a E 8 x . . . x Rsuch that at 1 = 0 and A+Q is an event in %+ x . . . x %’, 
then the joint densityfor x l .  . . . . .r,, has the form 

p ( x , .  . . . 

where 0 = lim,f-x T i ’ ,  and 

Outline prooJ (Diaconis and Y Ivisaker, 1985). By the general representation 
theorem, there exists a random distribution function F, such that, conditional on 
F. sl.. . . ,I,, are independent, for any n. It can be shown that the additional 
invariance property continues to hold conditional on F, so that, for any i # J ,  

P[(J,.Z,) E .41F] = P[(;c,,r,) E A + a ( F ]  

for A and Q as described above. If we now take a‘ = ( a ] ,  ap)  and 

A = { (s , .s , ) ;  s, > a1 + a.L,x, > 0 )  

we have 

P [ ( x *  > al + a2)  n (x, > 0) I F ]  = P [ ( x ,  > a l )  n (2, > u 2 )  1 F ]  

= P [ ( &  > u1) I F ] P [ ( x ,  > a2) I F ] .  

By exchangeability, and recalling that I, is certainly positive for all j ,  this implies 
that 

But this functional relationship implies, for positive real-valued x,, that 
P(1, > nl + (2.2 I F )  = P(X,  > 01 1 F ) P ( s ,  > a2 1 F ) .  

p( .r ,  > .r I E’) = < “ r  

for some 8, so that the density, p(s, I F) = p( .r ,  10). is the derivative of 

I - t>xp(--Hx,). 

and hence given by 8 cxp( -Ox, ). The rest of the result follows on noting that, by 
the strong law of large numbers. tl-’ = 1iiiir,-. [ t i - ’ ( . r ,  + . . + . I , , ) ] .  <J 
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Thus, we see that judgements of exchangeability and “lack of memory” for 
sequences of positive real-valued random quantities constrain the possible predic- 
tive probability models for the sequence to be those which are generated by acting 
US if we have a random sample from an exponential distribution with unknown 
parameter 8, with a prior distribution Q for the latter. In fact, if Q’ denotes the 
corresponding distribution for 4 = 8-1 = lim,,,, Z,,, it may be easier to use the 
“reparametrised” representation 

since Q* is then more directly accessible as “beliefs about the sample mean from 
a large number of observations”. 

Recalling the possible motivation given above for the additional invariance 
assumption on the sequence X I ,  ~ 2 , .  . . ~ it is interesting to note the very specific 
and well-known “lack of memory” property of the exponential distribution; namely, 

p ( Z C ,  > nl + a2 1 8. 1, > a l )  = P(., > u2 I 8). 

which appears implicitly in the above proof. 

4.4.4 The Geometric Model 

Suppose x 1 , x 2 , .  . . i s  judged to be an infinitely exchangeable sequence of strictly 
positive integer-valued random quantities. It is easy to see that we could repeat 
the entire introductory discussion of Section 4.4.3, except that events would now 
be defined in terms of sets of points on the lattice 2+ x . . . x Z+, rather than as 
regions in %+ x . , . x W. This enables us to state the following representation 
result. 

Proposition 4.8. (Discrete representution under origin invariance). 
If X I ,  5 2 ,  . . , is  an infinitely exchangeuble sequence of positive integer-valued 
rundom quantities with probability measure P, such that, for all 11 and any 
event A in 2+ x . . . x 2+, 

P((r1 , .  . . .-c,,) E .4] = P [ ( x l , .  . . ..L) E A + a] 
for (111 a E 2 x . . . x 2 such thut a‘l = 0 and A + a is an event in 
2+ x . . . x 2+, then the joint density for X I .  . . . , x,, has the form 
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Outline proof. This follows precisely the steps in the proof of Proposition 4.7. 
except that, for positive integer-valued z,. the functional equation 

P ( r ,  > R j  + 112 I F )  = P ( r ,  > f11 I F)P(.r, > (I:! I F )  

implies that 
P(.r, > x I F )  = I 9 ' .  

so that the probability function, y ( r l  1 F) = p ( s ,  1 I 9 )  is easily seen to be #( 1 -O)" t - ' .  

Again. by the strong law of large numbers, I9 I = l i i i i , ,  . ,. .I,,,. where. since .r, 2 1 
forall i.0 < 6 5 1. a 

In this case, the coherent predictive probability models must be those which 
are generated by acting us ifwe have a rundom sample from a geometric distribution 
with unknown purumeter 6 .  with aprior distribution Q for the latter, where 19.- = 
lim,,,, Z,,. 

Again, recalling the possible motivation for the additional invariance property, 
it is interesting to note the familiar "lack of memory" property of the geometric 
distribution; 

P(n., > al +a?  18. s, > 0 1 )  = P(.r, > a? 18). 

4.5 MODELS VIA SUFFICIENT STATISTICS 

4.5.1 Summary Statistics 

We begin with a formal definition. which enables us to discuss the process ofsurn- 
murising a sequence, or sample. of random quantities. .rI. . . . . .I.,,, . (In general. our 
discussion carries over to the case of random vectors, but for notational simplicity 
we shall usually talk in terms of random quantities.) 

Definition 4.6. (Stalislic). Given rfJrIdOti1 quatitities (tvctors) . I . \ .  . . . . J . , , ~ .  

with specified sets of possible i~ulires 'Y I . . . . . XI,, . respectiwly. (I mndoni vrc- 
/or t,,, : .'i, x . . . x X,,, --+ c R k " " ) ( L - ( ~ t ~ )  5 1 1 1 )  is culled X(irt)-tlintc.nsionuI 
statistic. 

A trivial case of  such a statistic would be t,,, ( X I .  . . . . ,I.,#, 

but this clearly does not achieve much by way of summarisation 
Familiar examples of summary statistics are: 

I t,,, = I H  ( X I  + . . . + x,,, ). the strniple niean ( A (  I / / )  .= 1 ): 

= (./.I 

since A. 
. . . . .r,,, ). 
r r t )  = / I / .  

t,,, = [ r n ,  ( J ]  + . . . + x,,, ). (.ri + . , ' + .r;, ) I .  the .sclnIplr si:e. tr,tc/l Ulld .Slllll 

O ~ S ~ N N M S  (k(rrr)  = 3 ) :  

t,,, = [n i .  med{ X I . .  . . . . ) . , , , ) I .  the sample size und nirdinn ( k (  I / / )  = 2 ) :  

t,,, = lllax{./j. . . . . J',, ,  } - I l l i l l (  .!'I. . . . . J,,, } . the strrnplr rr/rrgr ( A , (  / ) / )  = 1 ). 
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To achieve data reduction, we clearly need k ( m )  < m: moreover, as with the 
above examples, further clarity of interpretation is achieved if k(m) = k, a fixed 
dimension independent of TR. 

In the next section, we shall examine the formal acceptability and implications 
of seeking to act as if particular summary statistics have a special status in the 
context of representing beliefs about a sequence of random vectors. We shall not 
concern ourselves at this stage with the origin of or motivation for any such choice 
of particular summary statistics. Instead, we shall focus attention on the general 
questions of whether, and under what circumstances, it is coherent to invoke such 
a form of data reduction and, if so, what forms of representation for predictive 
probability models might result, Throughout, we shall assume that beliefs can be 
represented in terms of density functions. 

4.5.2 Predictive Sufficiency and Parametric Sufficiency 

As an example of the way in which a summary statistic might be assumed to play 
a special role in the evolution of beliefs, let us consider the following general 
situation. Past observations xl . . . ! x , , ~  are available and an individual is contem- 
plating, conditional on this given information, beliefs about future observations 
x , , + ~ ,  . . . . xtl, to be described by p ( ~ , , ~ + ~ .  . . . . x,, 1 zl, . . . , s , ) .  The following 
definition describes one possible way in which assumptions of systematic data 
reduction might be incorporated into the structure of such conditional beliefs. 

Definition 4.7. (Predictive su&iency). 
Given a sequence of random quantities x 1 , x:! , . . . , with probability measure P, 
where xt takes values in Xi,  i = 1.2, .  . . the sequence of statistics t l ,  t 2 . .  . . , 
with t ,  dejined on X1 x . . . x X,, is said to be predictive suficient for the 
seyuence.zl.z2 . . . .  i j f~wal l7n 2 1.r >_ l a n d { i l  . . . .  ,zr}n{1 ....! m} =0. 

where p ( .  I .) is the conditional density induced by P. 

The above definition captures the idea that, given t,, = trl2(x1, . . . , .rrl1). 
the individual values of SI, . . . . x,,, contribute nothing further to one's evaluation 
of probabilities of future events defined in terms of as yet unobserved random 
quantities. Another way of expressing this, as is easily verified from Definition 4.7, 
is that future observations ( x , ~ .  . . . . x,,.) and past observations (21.. . . , x,,,) are 
conditionally independent given t,,,. Clearly, from a pragmatic point of view the 
assumption of a specified sequence of predictive sufficient statistics will, in general, 
greatly simplify the process of assessing probabilities of future events conditional on 
past observations. From a formal point of view. however, we shall need additional 
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structure if we are to succeed in using this idea to identify specific forms of the 
general representation of the joint distribution of ~ 1 .  . . . . x,,. 

As a particular ilfustratioti of what might be achieved, we shall assume in 
what follows that the probubilih nieusure P describing our belieji implies both 
predictive su@ciency and exchangeubili!\t for the injnite sequence .I‘I. .r2. , . .. As 
with our earlier discussion in Section 4.4. a mathematically rigorous treatment is 
beyond the intended level of this book and so we shall confine ourselves to an 
informal presentation of the main ideas. 

In particular, throughout this section we shall assume that the exchangeability 
assumption leads to a finitely parametrised mixture representation, as in Corol- 
lary I to Proposition 4.3. so that. as shown in Corollary 2 to that proposition. the 
conditional density function of . I , , , , .  . . . . . I . , , .  given . r ~ .  . . . . r,,, . has the form 

and all integrals, here and in what follows, are assumed to be over the set of possible 
values of 6. 

This latter form makes clear that, for such exchangeable beliefs. the learning 
process is ”transmitted” within the mixture representation by the updating of beliefs 
about the “unknown parameter” 8. This suggests another possible way of defining 
a statistic t,,, = t , , ,(.r,,  . . . . . r f , , )  to be a “sufficient summary” of . r l .  . . . . .r,,,. 

Definition 4.8. (Parametric sufiiency).  If‘ .rl . .I .?.  . . . is un infinitely e.v- 
changeable sequence of rundoni quantities. where .r, tukes wlues in X I  = 
X. i = 1.2, . . ., ,lie seqirence of srutistii-s t l .  t?. . . ., with t ,  dejitieri on S1 x 
. . . x .Y,. is said to be parametric sii&ienrjbr x I ,  .I*?. . . . if ,fi,r tiny I I  2 I ,  

q ( e  1 .rl. . . . . .r,,) = (rc)(e I t , ,  ).  

for any d4(  6 )  dejtiing an exchangeable predictive prohubilih model rici thr 
represen ration 

p ( x , .  . . . . 

Definitions 4.7 and 4.8 both seem intuitively compelling as encapsulations 
of the notion of a statistic being a ”sufficient summary“. I t  is perhaps reassuring 
therefore that. within our  assumed framework. we can establish the following. 
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Proposition 4.9. (Equivalence of predictive and paremetric sufiiencies). 
Given an infinitely exchangeable sequence of random quantities X I ,  x2, . . ., 
where xi takes values in Xi = X ,  i = 1,2,. . ., the sequence of statistics 
t l  , t 2 ,  . . . with t j  defined on XI x . - . x X, is predictive suflcient $ and only 
if; it is parametric suflcient. 

Heuristicproof. For any XI, . . . , x,, I xm+l, . . . , xn and any sequence of statis- 
tics t,,, where t ,  = t,,, (21, . . . , x,,,), m = 1, . . . , n - 1. the representation theorem 
implies that 

where A = ( ( 2 1 . .  . $ x m ) i  t m ( x l , .  . . , xm)  = t m } ,  which, in turn, can be easily 
shown to be expressible as 

It follows that 

P(x,n+1+ * - * 9 zn I t m )  = P(xm+lr.. . ,  ~n I * .  3 x m )  

= J fi p ( z l  1 e) dQ(e  1x1,. . . , x m ) ,  
t=m+l 

if, and only if, dQ(8 I X I , .  . . , X m )  = dQ(6 I tm)  for all dQ(6). Q 

To make further progress, we now establish that parametric sufficiency is itself 

Proposition 4.10. (Neyman factorisation criterion). The sequence tl , t 2 ,  . . . 
is parametric sufiient for infinitely exchangeable x 1 .22, . . . admitting a 
finitely parametrised mixture representation if and only $ for any m 2 1, 
the joint density for xI , . . . , x,, given 8 has the form 

equivalent to certain further conditions on the probability structure. 

~ ( x I . . * . , x ~  16) = h n ~ ( t , , , B ) g ( ~ l , . . . , x , n ) ,  

for somefunctions h,,, 2 0 .g  > 0. 
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Outline proof. Given such a factorisation. for any dQ(8)  we have 

for some It,, ,  > 0. The right-hand side depends on X I , .  . . . .r,,, only through t,,, 
and, hence, dQ(0 I .rl. . . . . J,,,) = dQ(8 1 t , , , ) .  Conversely, given parametric suffi- 
ciency, we have, for any dQ(8) with support 8, 

Proposition 4.11. (Sufficiency and condifiunal independence). 
The sequence t 1 ,  t 2 ,  . . . is parametric suBcienr for infinitely exchangeable 
.rl, x2, . . . ij uttd only ij for ony I I I  2 1. the density p ( x ~ .  . . . . .r,,, 18. t , , , )  is 
independenr off?. 

Outline prooj For any t,,, = t,,, ( . T I .  . . . . s,,,) we have 

P(.w..  . , .I.,,, I e )  = p ( . r l . .  . . . x,,, I e. t 1 7 1 ) p ( t , l ~  1 el. 
If p ( r l ,  . . . . s,,, 1 8. tin) is independent of 8. the parametric sufficiency of t l .  t?.  . . . 
follows immediately from Proposition 4.10. 

Conversely. suppose that t , .  t 2 .  . . . is parametric sufficient. so that, by Propo- 
sition 4.10. 

for some h,,, 2 0,y > 0. Integrating over all values {~j.. . . ..r,,,} such that 
t,,, ( ~ - 1 ,  . . . , s,,,) = t,,, , we obtain 

p( . r l .  . . . , s,,, 10) = h,,,(t,,,. e)g(.rl. . . . ..r,,, 1 

p ( t l f l  I 0) = ~ t ~ ~ ~ .  w ( t , , , )  

forsomeG > 0. Substitutingforh,,,(t,,,.0)intheexpressionforp(.r~. . . . ..I',,, 18). 
we obtain 

so that 

which is independent of 8. cl 
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In the approach we have adopted, the definitions and consequences of pre- 
dictive and parametric sufficiency have been motivated and examined within the 
general framework of seeking to find coherent representations of subjective be- 
liefs about sequences of observables. Thus, for example, the notion of parametric 
sufficiency has so far only been put forward within the context of exchangeable 
beliefs, where the operational significance of “parameter” typically becomes clear 
from the relevant representation theorem. 

In fact, however, as the reader familiar with more”conventional”approaches 
will have already realised, related concepts of “sufficiency”are also central to non- 
subjectivist theories. In particular, we note that the non-dependence of the density 
p ( z l :  . . . , z,,, I 6, t,,,) on 6, established here in Proposition 4.1 1 as a consequence 
of our definitions, was itself put forward as the dejnition of a“sufficient statistic” 
by Fisher (1922). and the factorisation given in Proposition 4.10 was established 
by Neyman (1935) as equivalent to the Fisher definition. 

From an operational, subjectivist point of view, it seems to us rather myste- 
rious to launch into fundamental definitions about learning processes expressed 
in terms of conditioning on “parameters” having no status other than as “labels”. 
However, from a technical point of view, since our representation for exchange- 
able sequences provides, for us. a justification for regarding the usual (Fisher) 
definition as equivalent to predictive and parametric sufficiency, we can exploit 
many of the important mathematical results which have been established using 
that definition as a starting point. 

In the context of our subjectivist discussion of beliefs and models, we shall 
mainly be interested in asking the following questions. 

When is it coherent to act as if there is a sequence of predictive sufficient 
statistics associated with an exchangeable sequence of random quantities? 

What forms of predictive probability model are implied in cases where we can 
assume a sequence of predictive sufficient statistics? 

Aside from these foundational and modelling questions, however, the results 
given above also enable us to check the form of the predictive sufficient statistics 
for any given exchangeable representation. We shall illustrate this possibility with 
some simple examples before continuing with the general development. 

Example 4.5. (Bernoulli model). We recall from Proposition 4.1 that if x l ,  x2, . . . 
is an infinitely exchangeable sequence of 0- 1 random quantities, then we have the general 
representation 
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where Y,, = X I  + . . . + r,,. Defining t,, = [ t i .  5, , ]  and noting that we can write 

~ ( 3 . 1 . .  . . . t,, 10) = h,,(t, , .  O)y(.rI.. . . . .r,, 1. 

with 
h,,(t , , .@) = P ( 1  - H ) ” - ’ ” . g ( r I  . . . . . .  r , , )  = 1. 

it follows from Propositions 4.9 and 4.10 that the sequence t l .  t 2 . .  . . is predictive and 
parametric sufficient for sI. .c2. . . .. This corresponds precisely to the intuitive idea that the 
sequence length and total number of 1’s summarises all the interesting information in any 
sequence of observed exchangeable 0- 1 random quantities. 

Example 4.6. (Nonnol model). We recall from Proposition 4 5  that if s,. . r2 . .  . . is 
an exchangeable sequence of real-valued random quantities with the additional property of 
centred spherical symmetry then we have the general representation 

p ( z l . .  . . . z,,) = 1% p(.r,..  . . .s,, I p .  X ) t l Q ( p .  A )  

where 

In the light of Propositions 4.10 and Proposition 4. I I ,  inspection of ~ ( Z I .  . . . . .r,$ 1 p .  A )  
reveals that 

t,, = (12.2 ,,.. 9 2 ,  

defines a sequence of predictive and parametric sufficient statistics for .I,. . r2 . .  . . . In view 
of the centring and spherical symmetry conditions, it  is perhaps not surprising that the 
sample size. mean and sample mean sum of squares about the mean turn out to be sufficient 
summaries. Of course. t,, is not unique; for example. since 

we could equally well define t,, = [ 7 ! . ~ , , .  rt - j ( .r;  + ’ .  + . r i ) /  as the sequence of sufficient 
statistics. 
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Example 4.7. 
is an exchangeable 
“origin invariance” 

(Expnentiulmudel). We recall from Proposition 4.7 that if 5 , ;  .r2? . . . 
sequence of positive real-valued random quantities with an additional 
property, then we have the general representation 

= Lx 0’1 e x p ( - ~ u , , ) t ~ ~ ( ~ )  

where s,, = 1 1  + . . . + r,, . Again, it is immediate from Propositions 4.10 and 4. I 1  that 
t ,  = In. s,,) defines a sequence of predictive and parametric sufficient statistics, although, 
in this example, there is not such an obvious link between the form of invariance assumed 
and the form of the sufficient statistic. 

It  is clear from the general definition of a sufficient statistic (parametric or 
predictive) that t,,(zl,. . . , x , ~ )  = (12. (XI,. . . , x,,)] is always a sufficient statistic. 
However, given our interest in achieving simplification through data reduction, it is 
equally clear that we should like to focus on sufficient statistics which are, in some 
sense, minimal. This motivates the following definition. 

Definition 4.9. (Minimal suyicient statistic). Ifx ,. x2, . . . , is an infinitely ex- 
changeable sequence of random quantities, where x, takes values in X, = X, 
the sequence of statistics tl . tar . . ., with t, defined on X1 x . . . x X,. is min- 
imal suflcienr for 21. q, . . . if given any other sequence of suficient statis- 
tics, sl, s2,. . . , there existfunctions gl(.),g2(.). . . . such that t ,  = g,(st) ,  
i = 1.2, . . .  
It is easily seen that the forms of t (z )  identified in Examples 4.5 to 4.7 are 

minimal sufficient statistics. From now on, references to sufficient statistics should 
be interpreted as intending minimal sufficient statistics. 

Finally, since n very often appears as part of the sufficient statistic, we shall 
sometimes, to avoid tedious repetition, omit explicit mention of n and refer to the 
“interesting function(s) of T I ,  . . . , T,,” as the sufficient statistic. 

4.5.3 Sufficiency and the Exponential Family 

In the previous section, we identified some further potential structure in the general 
representation of joint densities for exchangeable random quantities when predic- 
tive sufficiency is assumed. We shall now take this process a stage further by 
examining in detail representations relating to sufficient statistics of fixed dimen- 
sion. 
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Since we have established, in the finite parameter framework. the equivalence 
of predictive and parametric sufficiency for the case of exchangeable random quan- 
tities, and their equivalence with the factorisation criterion of Proposition 4.1 1. we 
shall from now on simply use the tern suflcient stutisric. without risk of confusion. 

We begin by considering exchangeable beliefs constructed by mixing, with 
respect to some dQ(I9). over a specified parametric form 

where I9 is a one-dimensional parameter. By Proposition 4.10, if the form of y( s 1 19) 
is such that p ( q . .  . . , sft 10) factors into h f , ( t , , .  0 ) g ( . r 1 7 .  . . . x f l ) ,  for some h f 8 .  9. 
the statistic t, = t ,L(.rl. .  . . , zt l )  would be sufficient. An important class of such 
p(.r 10) is identified in the following definition. 

Definition 4.10. (One-parameter exponential family). A probubility densin 
lor massfunction) p ( s  I 19). lubelled by 8 E 0 C R. is suid ro belong to tha 
one-purumeter exponential family if it is of the fornr 

where, given f .  h,  0, and c. [y(tl)]-' = J,. .f(.r) exp{co(O)h(s)}ri.r < x. 
The fumilj is culled regular if X does not depend on 8: orherwise it is culled 
non-regular, 

Proposition 4.12. (Su@knt s&atis&ics for the one-parameter exponential 
family). I f ' r 1 ,  .Q. . . . . .rfJ E S. is un e.rcliurigeuhle seqirence such thnt. given 
regular Ef(. I .), 

for some dQ(t)) ,  then t,, = t , , ( . r , . .  . . . . I ' , ~ )  = [ r ~ .  h( . r I )  + . . . + h ( . r I , ) ] ,  jiir 
I I  = 1,2. . . ., i s  ci sequence (f'.viiSJicient stntistics. 

Proof. This follows immediately from Proposition 4.10 on noting that 
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The following standard univariate probability distributions are particular cases 
of the (regular) one-parameter exponential family with the appropriate choices of 
f ,  9, etc. as indicated. 

Bernoulli 

P(X I 8) = Br(s 18) = eJ(i - e p ,  I E {o, I}, e E [o. 1). 

Poisson 

We note that the term cg(8) appearing in the general Ef(. 1 .) form could always 
be simply written as @ ( O )  with cjt suitably defined (see, also, Definition 4.1 I) .  
However, it is often convenient to be able to separate the “interesting” function of 
8, d(8), from the constant which happens to multiply it. 

In Definition 4.10. we allowed for the possibility (the non-regular case) that 
the range, X, of possible values of z might itself depend on the labelling parameter 
8. Although we have not yet made a connection between this case and forms of 
representation arising in the modelling of exchangeable sequences, it will be useful 
at this stage to note examples of the well-known forms of distribution which are 
covered by this definition. We shall indicate later how the use of such forms in the 
modelling process might be given a subjectivist justification. 

Unijorm 

p ( ~  I 6 )  = u ( ~  1 0 ,  e)  = e- ’ ,  s E (0, B ) ,  e E %+. 

f(.) = 1. g(e)  = e - ) ,  h ( ~ )  = o, d(8)  = 8, = 1. 
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Shif ed exponen tiul 

p( .r  18) = Shex(L 18) = c y [ - ( . r  - O ) ] .  .t' - 8 E >R+. 8 E W ,  
/ I  .f(.).) = f ' .  g ( H )  = f . h( .r )  = 0. o(0) 5; 0.  (. = 1 .  

In order to identify sequences of sufficient statistics in these and similar cases. 

For the uniforni. we rewrite the density in the form 
we make use of the factorisation criterion given in Proposition 4.10. 

so that. for any sequence .rI. . . . . .r,, which is conditionally independent given 8. 

It then follows immediately from Proposition 4.10 that 

is a sequence of sufficient statistics in this case. 

For the shifted exponential, if we rewrite the density in the form 

a similar argument shows that. for ( J , .  . . . . x,,) E R'. 

so that. for ri = 1.2.. . .. 

I I,, = f , , ( . r l . .  . . . . I ' , , )  = 

provides a sequence of  sufficient statistics. 

The above discussion readily generalises to the case of exchangeable se- 
quences generated by mixing over specified parametric forms involving a k-di- 
mensional parameter 8. 
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Definition 4.1 1. (k-parameter expone& famdy). A probability density (or 
massfunction) p(x I O ) ,  x E X, which is labelled by 8 E 0 C Rk, is said to 
belong to the k-parameter exponential family if it is of the form 

where h = ( h l ,  .. . , hk), 4(8) = ($1 , .. . , &) and, given the functions 
f ,  h, 4, and the constants c,, 

The family is called regular if X does not depend on 8; otherwise it is called 
non-regular. 

Proposition 4.13. (SujJkient statistics forthe k-jwmeterexponential fam- 
ily). If 51, x2, . . . , xt e X ,  is an exchangeable sequence such that, given 
regular k-parameter Efk(. 1 -), 

for some dQ(t?), then 

is a sequence of suflcient statistics. 

Proof. This is analogous to Proposition 4.12 and is a straightforward conse- 
quence of Roposition 4.10. a 

The following standard probability distributions are particular cases (the first 
regular, the second non-regular) of the Ic-parameter exponential family with the 
appropriate choices off,  9 etc. as indicated. 
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Normal (unknown mean and variunce) 

Y(x 10) = p(x I P .  7) = N(.T I p . 7 )  

In this case. k = 2 and 

@(e) = ( 7 4 .  c1 = 1. cp = -1/2. 

so that t, = [n, C:=l I,, X:ll xp] , 7i = 1.2, .  . . is a sequence of sufficient 
statistics. 

Uniform (over the interval [el, 021) 

P(X 

In this case, 

e )  = p ( : ~ ( e , , e ~ )  = U(Z el&) = (e, - e , ) - ] ,  
s E (el.Q2). o1 E 8. e, -e l  E R+. 

and 
t ,  = (n.min{xl.. . . . x I f } ,  max{r,. . . . . ~ , ~ } ] . n  = 1.2.. . . 

is easily seen to give a sequence of sufficient statistics. 

The description of the exponential family forms given in Definitions 4.10 and 
4. I I ,  is convenient for some purposes (relating straightforwardly to familiar ver- 
sions of parametric families), but somewhat cumbersome for others. This motivates 
the following definition, which we give for the general k-parameter case. 

Definition 4.12. (Canonical exponential family). 
The probability density (or massfunctiotr) 

derivedfrom Efk(. I .) in Definition 4.11, sia the trunsjhnutions 

y = (y ,..... yk). II, = (c,. . . . .  C ' I ) .  

Y f = h , ( T ) .  Ll,=c,d,(e).  i = i  . . . . .  A-. 

i.y called the canonical form of representcrtion of the e.~p.potietiticil~iniil~. 
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Systematic use of this canonical form to clarify the nature of the Bayesian 
learning process will be presented in Section 5.2.2. Here, we shall use it to exam- 
ine briefly the nature and interpretation of the function b(+) ,  and to identify the 
distribution of sums of independent Cef random quantities. 

Proposition 4.14. (Firsttwo moments of the canonicalexponeniial famdy). 
For y in Definition 4.12, 

E(9 I +) = Vb(+)? V(Y 1111) = V 2 W .  

Proof. It is easy to verify that the characteristic function of y conditional on 
+ is given by 

E(exp{iu'y} I +) = exp{b(iu + +) - b ( + ) } ,  

from which the result follows straightforwardly. a 

Proposition 4.15. (Sumiency in the canonical exponential family). 
lfyl,. . . , y,l are independent Cef(y I a, b: +) random quantities, then 

is a suficient staristic and has a disrriburion Cef(s I a("), nb, +), where d*) 
is the n-fold convolurion of a. 

Proof. Sufficiency is immediate from Proposition 4.12. We see immediately 
that the characteristic function of s is exp{nb(iu + +) - nb(+)},  so that the 
distribution of s is as claimed, where a(") satisfies 

7ib(+) = log 1 a(" ) (s )  exp{t/~'s}ds. 

Examination of the density convolution form for n = 1, plus induction, establishes 
the form of a("). a 

Our discussion thus far has considered the situation where exchangeable belief 
distributions are constructed by assuming a mixing over finite-parameter exponen- 
tial family forms. A consequence is that sufficient statistics of fixed dimension 
exist. Moreover, classical results of Darmois (1936). Koopman (1936), Pitman 
(1936), Hipp (1974) and Huzurbazar (1976) establish, under various regularity 
conditions, that the exponential family is the only family of distributions for which 
such sufficient statistics exist. 
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In the second part of this subsection, we shall consider the question of whether 
there are structural assumptions about an exchangeable sequence s1. .rz. . . . . which 
imply that the mixing must be over exponential family forms. 

Previously. in Section 4.4, we considered particular invariance assumptions, 
which, together with exchangeability, identified the parametric forms that had to 
appear in the mixture representation. Here, we shall consider. instead, whether 
characterisations can be established via assumptions about ronditiond distrihu- 
tions. motivated by suflciency ideas. 

As a preliminary, suppose for a moment that an exchangeable sequence, { y,}. 
is modelled by 

Now consider the form of p(yI. . . . . y, I y1 +. . . + y,, = s), k < n. Because 
of exchangeability, this has a representation as a mixture over 

But the latter does not involve + because of the suffkiency of y1 + . . .  + yI, 
(Propositions 4.1 1 and 4.15). so that 

where, in the numerator, s,. = y1 + * . . + yk 5 s. The exponential family mixture 
representation thus implies that, 

Now suppose we consider the converse. If we assume y l .  y?. . . . to be ex- 
changeable and also assume that, for all 71 and k < 1 1 .  the conditional distributions 
have the above form (for some n defining a Cef(y [ ( I ,  6. +) form), does this im- 
ply that p ( ~ ,  . . . . . g r 8 )  has the corresponding exponential family mixture form? 
A rigorous mathematical discussion of this question is beyond the scope of this 
volume (see Diaconis and Freedman, 1990). However, with considerable licence 
in ignoring regularity conditions. the result and the “flavour” of a proof are given 
by the following. 
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Proposition 4.16. (Represenfation theorem under surniency). 
Ifyl. y2, . . . is any exchangeuble sequence such that, for all n 2 2 and k < n, 

k 

p(yI,...,& Jy1 +"'+Y,, = 8 )  = ~a(y,)a'~~-"(s-ss)/n("'(s), 

p(Y,, . . . . ul,) = 1 fi Cef(y, I a. b. + ) ~ Q W L  

? = I  

where sk = y1 + . . . + gr and a(.) defines Cef(y I u ,  b. +). then 

1=1 

for some dQ(+). 

Outline pro($ We first note that exchangeability implies a mixture represen- 
tation, mixing over distributions which make the y, independent. But each of the 
latter distributions, with densities denoted generically by f, themselves imply an 
exchangeablesequence, sothat, forn 1 2, k < 71, f(y,. . . . , gk I y1 +. . .+gn = s) 
also has the specified form in terms of u ( . ) .  

Now consider ri = 2. k = 1. Independence implies that 

where f ( 9 )  denotes the marginal density and f C 2 ) ( . )  its twofoldconvolution, so that 
f( a )  must satisfy 

If we now define 
f ( Y 1 )  f (0) 

U ( Y l )  = log - - log - 
491) 4 0 )  

and 

it follows that 

Setting 9, = s, and noting that u(0) = 0, we obtain .u(s) = ~(s). and hence 
4 Y l )  + 4 s  - Y1) = 4 s ) .  

U(YA + 4 9 2 )  = 4 Y l  + y.2)- 

This implies that u(9) = +'y, for some @, so that 

f b )  = 49) exPWY - b(+) l*  a 

The following example provides a concrete illustration of the general result. 
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Example 4.8. (Cluuacterisdon of the Poisson model). Suppose that the sequence 
of non-negative integer valued random quantities ,yl . y?. . . . is judged exchangeable. with 
the conditional distribution of y = (9,. . . . . yk) given - . . - g,, = c. { I  1 2 .  A. < 1 1 .  

specified to be the multinomial Mul (g 1 S .  8). where 8 = ( 1 : / I .  . . . . I / I /  ). so that 

where ?it = y, t . . + I J~ .  Noting that the Poisson distribution. Pn(!/ t . ) .  can he witten in 
Cef(g / ( I .  6. c q )  form as 

1 
Pn(!/ I 1 % )  = - txp { !p.* - 

!/! 
} = ( I ( ! / )  c'xp{,yi- - bO ,) } 

from which it easily follows that d'"(s,) = w.,/s!. it is straightforward to check that, in terms 
of a ( . )  and d'"(-), 

By Proposition 4.16. it follows that the belief specitication for y1. y,. . . . is coherent and 
implies that 

for some dc ) (~ . * ) ,  L" E 8'. a 

As we remarked earlier. the above heuristic analysis and discussion for the 1.- 
parameter regular exponential family has been given without any attempt at rigour. 
For the full story the reader is referred to Diaconis and Freedman (1990). Other 
relevant references for the mathematics of exponential families include Ramdorff- 
Nielsen ( 1978). Morris ( 1982) and Brown ( 1985). 

We conclude this subsection by considering. briefly and informally, what can 
be said about characterisations of exchangeable sequences as mixtures of non- 
regular exponential families. For concreteness, we shall focus on  the uniform. 
U(s 10.0). distribution, which hasdensity & I  l ! , l . v , (x ) .  3' E R. and sufficient statis- 
tic iiiitx{.rl. . . . . x,,} ,  given a sample x i ,  . . . . .r,i. This sufficient statistic is clearly 
not a summation, as is the case for regular families (and plays a key role in Proposi- 
tion 4.16). However. conditional on nil,  = niax{.rl.. . . . . r , , } .  X I . .  . . . . r k .  A. I ) .  

are approximately independent I : ( . , ,  10. m,,) and this will therefore be true for 
all exchangeable . T I ,  sg. . . . constructed by mixing over independent L'(.r, 10.0). 
Conversely, we might wonder whether positive exchangeable sequences having 
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this conditional property are necessarily mixtures of independent U ( x ,  lo,@). In- 
tuitively, if rn, tends to a finite f3 from below, as R + 00, one might expect the 
result to be true. This is indeed the case, but a general account of the required math- 
ematical results is beyond our intended scope in this volume. The interested reader 
is referred to Diaconis and Freedman (1984), and the further references discussed 
in Section 4.8. I .  

4.5.4 Information Measures and the Exponential Family 

Our approach to the exponential family has been through the concept of predictive 
or, equivalently. parametric sufficient statistics. It is interesting to note, however. 
that exponential family distributions can also be motivated through the concept of 
the utility of a distribution (c.f. Section 3.4). using the derived notions of approxi- 
mation and discrepancy. 

Consider the following problem. We seek to obtain a mathematical represen- 
tation of a probability density p ( z ) ,  which satisfies the k (independent) constraints 

h,(r)p(x)& = mi, < 30, i = 1,. . . .k. 

where ml,  . . . , nzk are specified constants, together with the normalizing constraint 
ly p(r)ds = 1, and, in addition, is to be approximated as closely as possible by a 
specified density f(z). 

We recall from Definition 3.20 (with a convenient change of notation) that the 
discrepancy from a probability density y ( ~ )  assumed to be true of an approximation 
f(x) is given by 

where f and p are both assumed to be strictly positive densities over the same range, 
X, of possible values. Note that we are interested in deriving a mathematical repre- 
sentation of the true probability density y(x), not of the (specified) approximation 
f(x). Thus, we minimise S(f I p) over p subject to the required constraints on p .  
rather than 6( f I p) over f subject to constraints on f. Hence, we seek p to minimise 

where 81, . . . ,O, and c are arbitrary constant multipliers. 
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Proposition 4.17. (The exponential family as an approximatwn). 
I’hefuncrional F ( p )  defined above is nrinimised by 

p ( . r )  = Efk(.r I f.9. h. 4.0. c ) .  .r E .Y 

where f and h are given in b’(p). r ,  = 1. qb = 8 = (0 , .  . . . . H i . )  mid 

Proof. By a standard variational argument (see. for example. Jeffreys and 
Jeffreys, 1946, Chapter lo), a necessary condition for y to give a stationary value 
of F ( p )  is that 

( a / i h ) F ( p ( . r )  + ( t T ( J ) )  I ,,-.-() = 0 

for any function T : s - % of sufficiently small norm. This condition reduces to 
the equation 

from which it follows that 

as required. (For an alternative proof. see Kullback. 195911968. Chapter 3 . )  

The resulting exponential family form for p ( , r )  was derived on the basis of a 
given approximation f ( ~ )  and a collection of “constant” functions h(.r) = [h,( .r) .  
. . . . h k ( r ) ] .  If we wish to emphasise this derivation of the family, we shall refer to 
Ef(s 1 f. 9. h. Q. 6.  c )  as the e.rponenrial fantily Reneruted by f uttd h. 

In general, specification of the sufficient statistic 

1 

I -  I J 

does not uniquely identify the form off ( . r )  within the exponential family frame- 
work. Consider, for example. the Ga(x 1 0 ,  H) family with n known. Each distinct 
(t  defines a distinct exponential family with density 

( .r”-  l / I - ( < t ) ) P  ‘#P( - f l J . } .  
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so that, in addition to h(z)  = 2,  we need to specify f(z) = x0-’/r(a) in order to 
identify the family. 

Returning to the general problem of choosing p to be “as close as possible” to 
an “approximation” f, subject to the k constraints defined by h(z),  it is interesting 
to ask what happens if the approximation f is very “vague”, in the sense that f is 
extremely diffusely spread over X. A limiting form of this would be to consider 
f(x) = constant, which leads us to seek the p minimising sx p ( z )  logp(z)dx 
subject to the given constraints. The solution is then 

exp { ct, 8 M 4 }  

Jy exp {EL, 4 w )  
P(X) = 

which, since minimising sx p ( z )  logp(z) dx is equivalent to maximising H ( p )  = 
- J.y p(x) logp(z) dx, is the so-called maximum enrropy choice of p .  

Thus, for example, if X = W and h( z) = x, the maximum entropy choice for 
p ( z )  is EX(L I4), the exponential distribution with 4-l = E(x 14). If X = 93 and 
h(z) = (x, x2), the maximum entropy choice for p(z)  turns out to be N(z I p, A), 
the normal distribution with p = E ( z  I p,  A), A-’ = V(x I p,  A) (c.f. Example 3.4, 
following Definition 3.20). 

Our discussion of modelling has so far concentrated on the case of beliefs 
about a single sequence of observations zl ,z2, . . . , judged to have various kinds 
of invariance or sufficiency properties. In the next section, we shall extend our 
discussion in order to relate these ideas to the more complex situations, which arise 
when several such sequences of observations are involved, or when there are several 
possible ways of making exchangeable or related judgements about sequences. 

4.6 MODELS VIA PARTIAL EXCHANGEABILITY 

4.6.1 Models for Extended Data Structures 

In Section 4.5, we discussed various kinds of justification for modelling a sequence 
of random quantities z1,22? . . . as a random sample from a parametric family 
with density p(s 18). together with a prior distribution dQ(8) for 8. We also 
briefly mentioned further possible kinds of judgements, involving assumptions 
about conditional moments or information considerations, which further help to 
pinpoint the appropriate specification of a parametric family. 

However, in order to concentrate on the basic conceptual issues, we have 
thus far restricted attention to the case of a single sequence of random quantities, 
z1,52> . . .. labelled by a single index, i = 1,2* . . ., and unrelated to other random 
quantities. Clearly, in many (if not most) areas of application of statistical modelling 
the situation will be more complicated than this, and we shall need to extend and 



21 0 4 Modelling 

adapt the basic form of representation to deal with the perceived complexities of 
the situation. Among the typical (but by no means exhaustive) kinds of situation 
we shall wish to consider are the following. 

(i) 

( i i )  

(iii) 

Sequences xIl  s12. , . . of random quantities are to be observed in each of i E I 
contexts. For example: we may have sequences of clinical responses to each of 
I different drugs; or responses to the same drug used on I different subgroups 
of a population. A modelling framework is required which enables us to learn. 
in some sense. about differences between some aspect of the responses in the 
different sequences. 
In each of i E I contexts. j E J different treatments are each replicated 
k E A' times, and the random quantities .rl.,k denote observable responses for 
each context/treatment/replicate combination. For example: we may have I 
different irrigation systems for fruit trees, .I different tree pruning regimes and 
h' trees exposed to each imgation/pruning combination, with .r,,k denoting 
the total yield of fruit in a given year; or we may have I different geographical 
areas, .I different age-groups and I< individuals in each of the I J combina- 
tions. with s, ,k denoting the presence or absence of a specific type of disease. 
or a coding of voting intention. or whatever. A modelling framework is re- 
quired which enables us to investigate differences between either contexts. or 
treatments, or context/treatment combinations. 
Sequences of random quantities . r , ~ .  .I.,.?. . . . . i E I. are to be observed. where 
some form of qualitative assumption has been made about a form of relation- 
ship between the .rll and other specified (controlled or observed) quantities 
z l  = ( z l l  . . . . . :,A), k 2 1. For example: . I ' , ~  might denote the status (dead or 
alive) of the j t h  rat exposed to a toxic substance administered at dose level z l .  
with an assumed form of relationship between z ,  and the corresponding "death 
rate": or .rIJ might denote the height or weight at time -., from the jth replicate 
measurement of a plant or animal following some assumed form of "growth 
curve"; or x t ,  might denote the output yield on the .jth run of a chemical 
process when k inputs are set at the levels z, = (:,,. . . . . : A , )  and the gen- 
eral form of relationship between process output and inputs is either assumed 
known or well-approximated by a specified mathematical form. In each case 
a inodelling framework is required which enables us to learn about the quanti- 
tative form of the relationship. and to quantify beliefs (predictions) about the 
observable f corresponding to a specified input or control quantity z.. 

(iv) Exchangeable sequences, L , ~ .  .r,'. . . . . of random quantities are to be observed 
in each o f i  E I contexts. where I is itself a selection from a potentially larger 
index set I'. Suppose that for each sequence. 
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is judged to be a sufficient statistic, that the strong law limits 

exist and that the sequence 0, , O?! . . . is itself judged exchangeable. For exam- 
ple: sequence i may consist of 0 - 1 (success-failure) outcomes on repeated 
trials with the ith of I similar electronic components; or sequence i may con- 
sist of quality measurements of known precision on replicate samples of the 
ith of I chemically similar dyestuffs. In the first case, the sequence of long-run 
frequencies of failures for each of the components might, a priori, be judged to 
be exchangeable; in the second case, the sequence of large-sample averages of 
quality for each of the dyestuffs might, a priori. be judged to be exchangeable. 
A modelling framework is required which enables us to exploit such further 
judgements of exchangeability in order to be able to use information from all 
the sequences to strengthen, in some sense, the learning process within an 
individual sequence. 

4.6.2 Several Samples 

We shall begin our discussion of possible forms of partial exchangeability judge- 
ments for several sequences of observables, x t l ,  x,2. ,  . . , i = 1,.  . . , m., by consid- 
ering the simple case of 0 - I random quantities. 

In many situations, including that of a comparative clinical trial, joint beliefs 
about several sequences of 0 - 1 observables would typically have the property 
encapsulated in the following definition, where, here and throughout this section, 
z,(n,) denotes the vector of random quantities ( x , ~ .  . . . , x , ~ , ) .  

Definition 4.13. (Unrestricted exchangeability for 0 - 1 sequences). 
Sequences of 0 - 1 random quantities, x , l ,  x , 2 , .  . . , i = 1,. . . , m, are suid 
to be unrestricredly exchangeable if each sequence is injnitely exchangeable 
and. in addition, for all 78, 5 IV,. i = 1: . . . , rn, 

where y, (N, )  = .c,1 + .  . . + x , ~ ~ . i  = 1 , .  . . , ni. 

In addition to the exchangeability of the individual sequences, this definition 
encapsulates the judgement that, given the total number of successes in the first 
N,  observations from the ith sequence, i = 1.. . .7n, only the total for the irh 
sequence is relevant when it comes to beliefs about the outcomes of any subset 
of n, of the N, observations from that sequence. Thus, for example, given 15 
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deaths in the first 100 patients receiving Drug 1 (N1 = 100, y I ( N I )  = 15) and 
20 deaths in the first 80 patients receiving Drug 2 ( * V 2  = 80, y?(,V?) = 201, we 
would typically judge the latter information to be irrelevant to any assessment of the 
probability that the first three patients receiving Drug 1 survived and the fourth one 
died (XI, = 0. .r12 = 0. ~ 1 : s  = 0. .r14 = 1). Of course, the information might well 
be judged relevant if we were not informed of the value of y I ( N l ) .  The definition 
thus encapsulates a kind of "conditional irrelevance" judgement. 

As an example of a situation where this condition does i io f  apply. suppose that 
S I I .  XI?, . . . i s  an infinitely exchangeable 0-1 sequence and that another sequence 
. r ~ 1 . . ~ ~ .  . . . is defined by sZJ = .rl, (or by .I.?, = 1 - . r l j ) .  Then -l'.ll. .r?'. 
certainly an exchangeable sequence (since sII. .rll. . . . is), but. taking .r?,, = xi., 
and n I  -1 712 = >'V1 = N? = 2, 

p( .1: ,1  = 0.2-12 = 1.T.21 = 1.X?? = 0 I g1.l = 1.!fTi = 1) = 0. 

whereas 

p(al l  = 0,.r12 = 1 jy12 = 1) p(.rz1 = l..rT2 = 0 1 yt. = 1 )  = 112 x 1/2 = 1,l.i. 

Further insight is obtained by noting (from Definition 4.13) that unrestricted ex- 
changeability implies that 

P(Xl1.. . . . S I , I I  * .  ' . . .CfI, l .  . . . . ~ , , I , , , , , )  

- - -P(: r Iq( l ) . ' .  . . J - l x  I .  i r r  I !..* . .  ~ , , , . , , , [ 1 i . . . . . . ~ ' r l ~ ~ , , , ~ f l 1 , , ! ~  

foranyunrestrictedchoiceofpermutationssr, of { 1.. . . , u , } ,  i = 1.. . . in.whereas. 
in the case of the above counter-example. we only have invariance of the joint 
distribution when T I  = TIT?. For a development starting from this latter condition 
see de Finetti ( 1938). 

We can now establish the following generalisation of Proposition 4.1. 

Proposition 4.18. (Represenfation theorem for several sequences of 0-1 
random qrcantilies). If'.c,1. .rrZ.  . . . . i = 1. . rri ure unrestrictedly infinitely 
e.rchangeuble sequences ($0-I random quantities Hith joint pmhabilic nieu- 
sure P, there exists u distrihutionfunc.tion Q such that 

where,withy,(ri,) = r l l  + . - . + r , , , , , i  = 1 . . . . .  1 1 1 .  
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Corollary. Under the conditions of Proposition 4.18, 

P(?/l(nl), . * * * Y7.,(%)) 

Proof. We first note that 

so that, to prove the proposition, it suffices to establish the corollary. Moreover, 
for any N,  2 11, .  i = I..  . . , rn. we may express p(yl(n1). . . . . yrla(n711)) as 

CP(Yl(?’l) , . .  . . Y l ? . ( n m )  l?/l(N),. * ‘ . ? h ( N n ) )  P(Yl(NI).- 4 h “ ( N ” ) ) .  

where the ith of the r n  summations ranges from y, ( i V l )  = y, (ti,) to y l (  N , )  = 1 2 : .  

and where, by Definition 4.4 and a straightforward generalisation of the argument 
given in Proposition 4.1, 

P(YI(’l1). . . . , Y m ( % n )  I Y l ( N ) ,  . . . ~ y l n ( ~ ~ l l L ) )  

Writing (YN), = y,v(ys - 1). . . (ys - (y l l  - 1)). etc., and defining the func- 
tion Qx,. ... xrn (01, . . . . 6,,,) on 3Zrn to be the rndimensional “step” function with 
“.bmps”ofp(yl(Nl). . . . ~ ~ l , l ( N l l J )  at 

where y,(N,) = 0.. . . , Nl,i = 1,. . . , rrr. We see that p(yl(n1). . . . , y , l , ( ~ ~ n l ) )  is 
equal to 

uniformly in el, . . . , O,,,, and, by the multidimensional version of Helly’s theorem 
(see Section 3.2.3). there exists a subsequence Q,v,(,).., ,.~,,,(j), j = 1,2,  . . . having 
a limit Q. which is a distribution function on 8’’’. The result follows. a 



21 4 4 Modellitrg 

Considering, for simplicity, 711 = 2. Proposition 4.18 (or its corollary) asserts 
that if we judge two sequences of 0 - I random quantities to be unrestrictedly 
exchangeable, we can proceed US if: 

( i )  the x,,  are judged to be independent Bernoulli random quantities (or the y , ( ~ , )  
to be independent binomial random quantities) conditional on random quan- 
tities 0,. i = 1.2; 

(ii) ( H I .  02)  are assigned a joint probability distribution C); 

( i i i )  by the strong law of large numbers. 0, = liiii,#;-x ( y , ( n , ) / t t , ) ,  so that C) may 
be interpreted as “joint beliefs about the limiting relative frequencies of 1’s in 
the two sequences”. 
The model is completed by the specification of dQ(B1. H ? ) ,  whose detailed 

form will. of course. depend on the particular beliefs appropriate to the actual 
practical application of the model. At a qualitative level. we note the following 
possibilities: 
(a) knowledge of the limiting relative frequency for one of the sequences would 

not change beliefs about outcomes in the other sequence, so that we have the 
independent form of prior specification, d C ) ( H 1 . H ? )  = dQ(fl1)(fQ(H2): 

(b) the limiting relative frequency for the second sequence will necessarily be 
greater than that for the first sequence (due. for example, to a known improve- 
ment in a drug or an electronic component under test), s o  that r I Q ( H l .  & )  is 
zero outside the range 0 5 H I  < H:! 5 I ;  

(c) there is a real possibility, to which an individual assigns probability T .  say. 
that, in fact. the limiting frequencies could turn out to be equal. so  that, writing 
0 = 8, = 02.  in this case r/Q(Hll 612) has the form 

TdQ’(0) 4- (1 - Ti) ( IC)+( /?, .H:! )  

and the representation, for ( y ~ , , ~ .  yl,,?). say. has the form 

where dC) ’ (0,. H?) assigns probability over the range of values of (0 , .  0 2 )  such 
that 0, # H2. 
As we shall see later, in Chapter 5.  the general form of representation of 

beliefs for observables defined in terms of the two sequences. together with detailed 
specifications of dQ(0, .  02). enables us to explore coherently any desired aspect of 
the learning process. For example. we may have observed that out of the lirst { ( I .  I ) ?  



4.6 Models via Partial Exchangeability 21 5 

patients receiving drug treatments I ,  2, respectively. y1 (n l )  and yz(n2) survived, 
and, on the basis of this information, wish to make judgements about the relative 
performance of the drugs were they to be used on a large future sequence of patients. 
This might be done by calculating, for example, 

P( lim ( Y I ( N ) I N )  - lim (Y.L(WlN) I Y1(721),9/2(7L2))1 !v-2 .v-= 

which, in the language of the conventional paradigm, is the “posterior density for 

Clearly, the discussion and resulting forms of representation which we have 
given for the case of unrestrictedly exchangeable sequences of 0-1 random quan- 
tities can be extended to more general cases. One possible generalisation of Defi- 
nition 4.13 is the following. 

4 - 62, given y~(m), ydn2)”. 

Definition 4.14. (Unrestricted exchangeability for sequences with predictive 
su@cient statistics). Sequences of random quantities x,1, z,2, . . . taking val- 
ues in X , ,  i = 1, . . . . m, are said to be unrestrictedly infinitely exchangeable 
if each sequence is infinitely exchangeable and, in addition, for all n, 5 N, , 
i =  l . . . . . n a ,  

1 = I  

where t ,y ,  = t ,yl ( z t ( N z ) ) ,  i = 1,. . . , m, are separately predictive suficient 
statistics for the individual sequences. 

In general, given m unrestrictedly exchangeable sequences of random quanti- 
ties, x l l ,  xt?, . . . , with I,, taking values in X,, we typically amve at a representation 
of the form 

where 0’ = fly:l 8, and the parametric families 

have been identified through consideration of sufficient statistics of fixed dimen- 
sion, or whatever, as discussed in previous sections. Most often, the fact that the 
k sequences are being considered together will mean that the random quantities 
r,1. x,?. . . . relate to the same form of measurement or counting procedure for all 
i = 1.. . . ,m, so that typically we will have p l ( z  10,) = p(x I O , ) ,  i = 1 . .  . . ,m, 
where the parameters correspond to strong law limits of functions of the sufficient 
statistics. The following forms are frequently assumed in applications. 
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Example4.9. (Binomid). If ~ , ( n , )  denotes the number of 1's in the first 1 1 ,  outcomes 
of the ith of rrr unrestrictedly exchangeable sequences of 0 - 1 random quantities. then 

Example4.10. (Multi'nomial). Ifg,(/i,) denotes the category membershipcount (into 
the firstl:ofk+l exc1usivecategories)from the first I ) ,  outcomesofthe ithofvr unrestrictedly 
exchangeable sequences of '0 - 1 random vectors" (see Section 4.3). then 

P ( T / l ( " l ) . . . . .  ? J , , , ( r 1 , , , ) )  = l,,, f i  MUL (y,(n, 1 10.. I t , )  d C . 3 4 .  . . , . H I , ,  1. 

whereO,=liiri ,,.., ( y , ( r r ) / r r ) a n d ~ = { O = ( H ,  . . . . .  Hh.)suchthatO<H, 5 1.1 < / < A .  
and 0, + . . . + 5 I}. This model describes beliefs about an 111 x ( k  - 1 ) cotiringetyv rcrhle 
of count data, with row totals r r I .  . . . . r r , , , .  I t  generalises the c a ~ e  of the 111 x 2 contingency 
table described in Example 4.9. ci 

Example4.11. (Normal). If.r, , .  J = 1 . .  . . . I / , .  I = I . .  . . . r~t.denotereal-valuedob- 
servations from 1 1 )  unrestrictedly exchangeable sequence!, of real-valued random quantities. 
the assumed sufficiency of the sample sum and sum of squares within each sequence might 
lead to the representation 

where.withS,,(i) - - ) I  ' (  .~ , ,+ . . . .  t . i . , , , )and .~~( ; )  = r ~ - ' ~ ~ - ~ ( . r , ,  -.i.,,(r))2.wvehave//, = 

h i  ,,-, .F,,(i). A, I = l i i i t , ,  ., . s i ( i ) .  H = ( / I , . .  . .  . / I  ,,.., . . .,\,,,) and (3) = H'" x (it");'. 
In many applications. the further judgement is made that X I  = . . . .- A,,, = X. say. so 

that the representation then takes the form 

. [ I , , ,  . X J. 

This is the model most often used to describe beliefs about a o t i e - w ~ ~  lqvoirr of measurement 
data. 4 

As in the case of 0 - I random quantities with 'rri = 2, discussed earlier in 
this section, we could make analogous remarks concerning the various qualitative 
forms of specification of the prior distribution Q that might be made in these cases. 
We shall not pursue this further here. hut will comment further in Section 4.7.5. 
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4.6.3 Structured Layouts 

Let us now consider the situation described in (ii) of Section 4.6.1, where the random 
quantity xyk is triple-subscripted to indicate that it is the kth of K “replicates” of 
an observable in “context” i E I, subject to “treatment” j E J. In general terms, 
we have a WO-way layout. having I rows and J columns, with K replicates in each 
of the I J  cells. 

In such contexts, most individuals would find it unacceptable to make a judge- 
ment of complete exchangeability for the random quantities xTJk.  For example, if 
rows represent age-groups, columns correspond to different drug treatments, repli- 
cates refer to sequences of patients within each age-groupheatment combination 
and the X t J k  measure death-rates, say, it is typically not the case that beliefs about 
the x f J t  would be invariant under permutations of the subscript i. On the other 
hand, for the kinds of mechanisms routinely used to allocate patients to treatment 
groups in clinical trials, many individuals would have exchangeable beliefs about 
the sequence x , , ~ ,  xV2, . . . for any fixed i ,  j. 

Technically, such a situation corresponds to the invariance of joint beliefs for 
the collection of random quantities, x , , ~ ,  under some restricted set of permutations 
of the subscripts, rather than under the unrestricted set of all possible permuta- 
tions (which would correspond to complete exchangeability). The precise nature 
of the appropriate set of invariances encapsulating beliefs in a particular applica- 
tion will, of course, depend on the actual perceived partial exchangeabilities in 
that application. In what follows, we shall simply motivate, using very minimal 
exchangeability assumptions, a model which is widely used in the context of the 
two-way layout. There is no suggestion that the particular form discussed has any 
special status, or oughr to be routinely adopted, or whatever. 

Suppose that, for any fixed I, j .  we think of rrJ1, x , ~ ? ~  . . . as a (potentially) infi- 
nite sequence of real-valued random quantities (2 E x), such that the IJ sequences 
of this kind, with I and J fixed, are judged to be unrestrictedly exchangeable. If 
further assumptions of centred spherical symmetry or sufficiency for each sequence 
then lead to the normal form of representation, we have 
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the x , , ~  are assumed independently and normally distributed with means prJ and 
variances (A/,)-'. 

In many cases, the nature of the observational process leads to the judgement 
that limb-:, ,$,(K) may be assumed to be the same for all ( i .  j). so that A,, = A. 
say, for all z ,  J .  Letting 

denote the strong law limits of the row averages. column averages and overall 
average, respectively, from the two-way layout with Z and J fixed. we can always 
write 

p./J = /1 + C k ,  + d, + ? I l J .  

where 

so that the random quantities x , , k  are conditionally independently distributed with 

The full model representation is then completed by the specification of a prior 
distribution Q for X and any Z J  linearly independent combinations of the p;,. 
In conventional terminology. ci is referred to as the o\*erull inem, ( I !  as the ith 
row eflect. ;j, as the ,jth wlutnn efleect and ", as the (ij)th intercrcrioir rfleect. 
Collectively, the { (.tt } and { ,$, } are referred to as the main cftecr.5 and { ?,, } as the 
interactions. Interest in applications often centres on whether or not interactions or 
main effects are close to zero and, if not. on making inferences about the magnitudes 
of differences between different row or column effects. 

In the above discussion, our exchangeability assumptions were restricted to 
the sequence .r,,l, . r tJ2 , .  . . for fixed i .  j .  It is possible, of course. that further 
forms of symmetric beliefs might be judged reasonable for certain permutations of 
the i..j subscripts. We shall return to this possibility in Section 46.5. where we 
shall see that certain further assumptions of invariance lead naturally to the idea of 
hierarchical rcpresentations of beliefs. 
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4.6.4 Covariates 

In (iii) of Section 4.6, we gave examples of situations where beliefs about sequences 
of observables xtll x22, . . . , i = 1, . . . , m are functionally dependent, in some 
sense, on the observed values, z,, i = 1, . . . m, of a related sequence of (random) 
quantities. We shall refer to the latter as cuvariares and, in recognition of this 
dependency, we shall denote the joint density of ~ , ~ . j  = 1,. . . , n,, i = 1,. . . , m, 
by 

p(zl(n1) . . . . . 2 , , ( n *  ,)lz1,...1z,,). 

The examples which follow illustrate some of the typical forms assumed in appli- 
cations. Again, there is no suggestion that these particular forms have any special 
status; they simply illustrate some of the kinds of models which are commonly 
Used. 

Example 4.12. (Bimsay). Suppose that at each of 'rri specified dose levels, tl, . . . , 
z,,,. of a toxic substance, typically measured on a logarithmic scale, sequences of 0 - 1 
random quantities, z i l , x , ? ! .  . . . i = l ? . .  . . m, are to be observed, where zi, = 1 if the 
j t h  animal receiving dose t, survives, z,, = 0 otherwise. If, for each i = 1. . . . , tn,  the 
sequences zil, 2,2: . . . are judged exchangeable, and if we denote the number of survivors 
out of ni animals observed in the ith sequence by y, (n,) = x , ~  +. . . + zi,,, , a straightforward 
generalisation of the corollary to Proposition 4.18 implies a representation of the form 

where z = (q,. . . , z n l ) ,  8(2) = (6JI(z), . . . . O,,,(z)) and 8, ( z )  = linin-'y,(n). 
In many situations, investigators often find it reasonable to assume that 

n -x 

where the functional form G (usually monotone increasing from 0 to 1) is specified, but d, is 
a random quantity. Functions having the form G(4: 2,) = G(41 + p 2 z l ) .  with 4' E 92, 42 E 
R', are widely used (see, for example, Hewlett and Plackett, 1979). with 

and 

G(41 + &z,) = exp(d,~ + &z,)/{l  + exp(4, + cj2z, )}  (the logit model) 

being the most common. For any specified C( .; z l ) .  the required representation has the form 
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with dQ’(0) specifying a prior distribution for 0 E (P. In practice, the specification of 
(1 might be facilitated by reparametrising from Q to a more suitable ( 1 - 1 )  transformation 
@ = @(@). In the probit and logit cases, for example, vl = - C > ~ / O ~  corresponds to the 
(log) dose, z ; ,  at which G(o, + &:,) = 1/2. Beliefs about L ‘ n I  then correspond to beliefs 
about the (log-) dose level for which the survival frequency in a large series of animals would 
equal 112, the so-called LD50 dose. Experimenters might typically be more accustomed to 
thinking in terms of ( -QI /c72.02) .  say. than in terms of (0,. 0 2 ) .  a 

Example 4.13. (Growth-curues). Suppose that at each of irt specified time points, 
say i ,  ~. . . , z,!,, sequences of real-valued random quantities. .r,, . .r,?. . . . . I = 1. .  . . . w .  are 
to be observed, where .r,, is the jth replicate measurement (perhaps on a logarithmic scale) 
of the size or weight of the subject or object of interest at time 2 , .  Suppose further that the 
kinds of judgements outlined in Example 4.1 1 are made about the sequences . I , , : .  . . . 
with t = 1..  . . , in. so that we have the representation 

wherefiJ(z)= (p l (z )  . . . . .  p, , , ( t ) .X1(z )  . . . . .  A,,,(z))and0: = W x  (W-)“‘. 

(particularly if measurements are made on a logarithmic scale) and that 
In many such situations, the judgement is made that X l ( r )  = . ’ .  = , \ , , , (%I = X 

/ I , ( Z )  = p;(:,)  = g(@: :,I. 
where the functional form y (usually monotone increasing) is specified, but @ is a random 
quantity. Commonly assumed forms include 

g ( ~ :  2,) = (0, + 0 ~ c . 5 , ~  I. ( the /ogisric model) 

y(@: 2 , )  = cil 022, (the straight-line model). 
and 

For any specified g ( . :  :,), the joint predictive density representation has the form 

where dQ(& A )  specifying a prior distribution for @ E @ and X E %*. 
As with Example 4.12, specification of C) might be facilitated if we reparametrise from 

q5 to a more suitable ( I  - 1 )  transformation, + = I)(@). In the logistic case, for example. we 
might take v ! ,  = dl I .  corresponding to the “saturation” growth level reached as s, -- x. 
and ~2 = (ol + 02)-’, corresponding to the growth level at the “time origin”. 2, 2 0. Beliefs 
about c ’ ~ .  Q2 then acquire an operational meaning as beliefs about the average growth-levels. 
at times “,x” and “0. respectively, that would be observed from a large number of replicate 
measurements. A third possible parameter to which investigators could easily relate i n  some 
applications might be c.‘+ = 1og[0~&/(20~ -t & ) j /  the time at which growth is 
half-way from the initial to the final level. ,(1 
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Example 4.14. (Muuiple regression). Suppose that, for each 1 = 1.. . . ,m, se- 
quences of real-valued random quantities x,]. s , ~ .  . . . are to be observed, where each x , ,  
is related to certain specified observed quantities z, = (i,]. . . . . z , ~ )  and judgements are 
made which lead to the belief representation 

where 
p, (z , )  = lim z,,(z). 

qz) = (P,(ZI).. . ..LL,,,(Z,,,). h ( Z 1 )  *. . .  ,X,rr(zno) 

A, '(2,) = liiii si(i). 
n *a n-?i 

a n d 8 =  R"'x (Rt)"' .  withz =(zl ...., z,,,). 
In many situations, the further judgements are made that XI (2,) = A, = X and p,  (2,) = 

p(zl) .  L = 1.. . . , m. where X and p(. )  are unknown, but the latter is assumed to be a 
"smooth" function, adequately approximated by a first-order Taylor expansion, so that, for 
some (unspecified) z * ,  

where we define 
a, = ( l . ~ , ] .  . . . , t , ~ )  (row vector) 

8 = (&, 01, . . . . Ok)' (column vector) 
and 

with 
e,, = P ( z * )  - z* D pu(z-).e, = l ~ I ~ ( z * ) ] ~ ,  i = 1,. . . , IC.  

Conditional on + = (8, A), the joint distribution of 

is thus seen to be multivariate normal, N,,(z I A@. A). where A is an rz x 12 matrix (n = 
rr l  t . . . + n,,,), whose rows consist of al replicated n l  times, followed by a2 replicated n2 
times, and soon, and X = X I , , ,  with I,, denoting therr  x 71 identity matrix. The unconditional 
representation can therefore be written as 

It is conventional to refer to -,, .zz,. . . . as values of the regressor rwiables z ' j ) ,  J = 1. . . . . k ,  
to 8 as the vector of regression coeflcienrs and A as the design marrix. The form p (  z )  = A8 
is called a regression equation and the structure 

E(zIA.8.X)  = A 8  
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is said to define a linear model. if I ;  = 1, we have the simple regression (struighr-line) 
model, E(L, , )  = 4, i- O , Z , ~ ;  for I; 2 2, we have a multiple regression model. 

From an operational point of view, beliefs about 8 in the general case relate to be- 
liefs about the intercept (&) of the regression equation and the marginal rates of change 
( O I .  . . . . f / r )  of the J,, with respect to the regressor variables (2,. . . . . z1 ). However, within 
this general structure we can represent various special cases such as 2 ’ ’ ’  = z ’  @oIynmnriid 
regression) or Z ~ J )  = sin(jH/K), for some .V (a version of trigononterric regre.wiorr): in 
these cases. beliefs about 8 will stem from rather different considerations. .3 

Specification of the kinds of structures which we have illustrated in Examples 
4. I2 to 4.14 essentially reduces to the same process as we have seen in earlier 
representations of joint predictive densities as integral mixtures. We proceed c1s if: 

( i )  the random quantities are conditionully independent. given the values of the 

(ii)  the latter are assigned a prior distribution, dd)(@) .  
relevant covuriates, L, and given the unknown parameters. 4; 

In many cases, the likelihood, defined through conditional independence. in- 
volves familiar probability models. often of exponential family form (as with the 
binomial. normal and multivariate examples seen above), but with at least some 
of the usual “labelling” parameters replaced by more complex functional forms 
involving the covariates. From a conceptual point of view. this is all that really 
needs to be said for the time being. Howevcr. when we consider the applications 
of such models. together with the problems of computation. approximation. etc., 
which arise in implementing the Bayesian learning process,, it  is often useful to 
have a more structured taxonomy in mind: for example. linear versus non-linear 
functional forms; normal versus non-normal distributions. and so on. 

4.6.5 Hierarchical Models 

In Section 4.6.2. we considered the general situation where several sequences of 
random quantities. x , ~ . . z - , ~ .  . . . . I = 1.. . . . I n  are judged unrestrictedly infinitely 
exchangeable, leading typically to a joint density representation of the form 

We remarked at that time that nothing can be said. in generul, about the prior spec- 
ification Q(&. . . . . O,, , ) ,  since this must reflect whatever beliefs are appropriate for 
the specific application being modelled. However, it is often the case that addi- 
tional judgements about relationships among the nt \equenccs lead to interestingly 
structured forms of Q ( H I .  . . . . Qt,,). 
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In Section 4.6.1, we noted some of the possible contexts in which judgements 
of exchangeability might be appropriate not only for the random quantities within 
each of m separate sequence of observables, but also between the m strong law 
limits of appropriately defined statistics for each of the sequences. The following 
examples illustrate this kind of structured judgement and the forms of hierurchicuf 
model which result. 

Example 4.15. (Exchangeable binomial parameters). Suppose that we have unre- 
strictedly infinitely exchangeable sequences of 0-1 random quantities, xl l ,  1 ~ 1 , .  . .. with 
i = 1, . . . , m. Then. for i = 1,2. . . . . [7 t , .  vt(7/,) = s,l + . . . + s,,,,], is a sufficient statistic 
for the 2th sequence and 

p(yi(n1). . . . . T/ffo(n,,i)) = Y(YI (ni). . . . 181,. . . 30,,t)dQ(Q~. . . . .ow) I 11”’ 

where 
8, = liiri ( g , ( n ) / n ) .  

11-x 

As we remarked in Section 4.6. I ,  if the sequences consists of success-failure outcomes 
on repeated trials with i i i  different (but, to all intents and purposes, “similar”) types of 
component, it might be reasonable to judge the 711 “long-run success frequencies” to be 
themselves exchangeable. This corresponds to specifying an exchangeable form of prior 
distribution for rhe parameters el. . . . , O,,,. If the rri types of component can be thought of 
as a selection from a potentially infinite sequence of similar components. we then have (see 
Section 4.3.3) the general representation 

Q ( Q i . .  . . . O,,, I G) m(G) 

The complete model structure is then seen to have the hierarchical form 

,,, 
p(yi(l l i)  . . . . .  ! / f , l ( t , , , , ) l e ~ , . . . . H , , , )  = n B i ( p , ( l ~ , ) I O , . ~ t , )  

, - I  

Q(6. . . . . I G) = n G ( @ , )  
f -1 

n(G) 
In conventional terminology, the first stage of the hierarchy relates data to parameters via 
binomial distributions; the second stage models the binomial parameters a5 if they were a 
random sample from a distribution G; the third, and final, stage specifies beliefs about G. 
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The above example is readily generalised to the case of exchangeable param- 
eters for any one-parameter exponential family. In practice. beliefs about G might 
concentrate on a particular parametric family. so that, assuming the existence of 
the appropriate densities, the prior specification takes the form 

/T 1 

les the hierarchi- 

As before, the first stage of the hierarchy relates data to parameters in a form as- 
sumed to be independent of G; the second stage now models the parameters us i f  
they were a random sample from a parametric family labelled by the hyperpurutn- 
em- + E CP; the third, and final, stage specifies beliefs about the hyperparameter. 
Such beliefs acquire operational significance by identifying the hyperparameter 
with appropriate strong law limits of observables, as we shall indicate in the fol- 
lowing example. 

Example 4.16. (Exchangeable normal mean parameters). Suppose that we hake 111 

unrestrictedly infinitely exchangeable sequences .r,,  . . r ,?.  . . . . I = 1 .  . . . . iu. of  real valued 
random quantities, for which (see Example 4. I 1 )  the joint density has the representation 

where we recall that A - '  = I h , ,  ., . s f ( ( )  and 11, = h i , ,  ., .r,,(i). where 

I t . ? , , ( / )  "(.I.,! +'"+./',,,). //Sf(/) =Z(.r,,  . r , , ( / ) ) i . ;  : 1 _ . _ _ .  1 1 1 .  

i t  

So far as the specification of  Q ( p l . .  . . . / I , , , .  X )  is concerned. wc tirst note that in many 
applications it is helpful to think in terms o f  

O(/fl . . . . .  /',,,. A )  - - O , , b l . . . . .  / / , , , lA"(A).  
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for some Qp, QA. In some cases, knowledge of the strong law limits of sums of squares 
about the mean may be judged irrelevant to the assessment of beliefs for strong law limits 
of the sample averages: in such cases, Q,(pl ,  . . . p,,, I A) will not depend on A. In other 
cases, we might believe, for example, that variation among the limiting sample averages is 
certainly bigger (or certainly smaller) than within-sequence variation of observations about 
the sample mean: in such cases, (?,,(PI, . . . , I A) will involve A. In either case, it is useful 
to think in terms of the product form of Q. 

Now suppose that, conditional on A. the limiting sample means are judged exchange- 
able. If the rn sequences can be thought of as a selection from a potentially infinite collection 
of similar sequences, we have (see Section 4.3) a further representation of Q, in the form 

The complete model then has the hierarchical structure 
tr1 

In practice, beliefs about G, given A, might concentrate on a particular parametric family, 
so that, assuming the existence of the appropriate densities, the hierarchical structure would 
take the form 

111 

g p ( 1 1 , .  . . . .PI12 I A.4) = n 9 J P t  I A, 4) 
1 = 1  

lW4 I A) QA(A) .  

For an explicit example of this, suppose that, given a potentially infinite sequence pl . p2.. . . 
(or, moreconcretely,~,1(1).~,,2(2). . . . .forvery largenl,az,. . .)thequantitiesrri, p ( m )  = 
tn-'(pl  + + .  . + f i n )  and s'(m) = m I 1: , (p,  - j i(m))2 (or the large sample analogues 
of p(m) and s2(7n)) were judged sufficient for the sequence. It would then be natural (see 
Section 4.5) to take g,,(pl I A, 4) = N ( p I  14,. 02) .  where 

From an operational standpoint, the final stage specification of the joint prior distribution for 
&, 42 and X then reduces to a specification of beliefs about the following limits of observable 
quantities (for large m and 7 t l .  i = 1,. . . . r n ) :  

(i) the mean of all the observations from all the sequences (&); 
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( i i )  the mean sum of squares of the individual sequence means about the overall mean (6.); 
(i i i)  the mean (over sequences) of the mean sum of squares of observations within a sequence 

about the sequence mean (A). 

The precise form of specification at this stage will, of course. depend on the particular 
situation in which the model is being applied. 

Hierarchical modelling provides a powerful and flexible approach to the rep- 
resentation of beliefs about observables in extended data structures, and is being 
increasingly used in statistical modelling and analysis. This section has merely 
provided a brief introduction to the basic ideas and the way such structures arise 
naturally within a subjectivist, modelling framework. In the context of the Bayesian 
learning process, further brief discussion will be given in Section 5.6.4, where links 
will be made with empirical Buyes ideas. 

An extensive discussion of hierarchical modelling will be given in the volumes 
Bayesian Curnpururiun and Bayesian Merhods. A selection of references to the 
literature on inference for hierarchical models will be given in Section 5.6.3. 

4.7 PRAGMATIC ASPECTS 

4.7.1 Finite and Infinite Exchangeability 

The de Finetti representation theorem for 0-1 random quantities, and the vari- 
ous extensions we have been considering in this chapter. characterise forms of 
p ( r l . .  . . , x t t )  for observables . ? - I . .  . . . .  r,, assumed to be part of an infinite ex- 
changeable sequence. However, in general, mathematical representations which 
correspond to probabilistic mixing over conditionally independent parametric forms 
do not hold for finite exchangeable sequences. 

To see this, consider 11 = 2 and finitely exchangeable 0- 1 .rl . .Q, such that 

If the de Finetti representation held. we would have 

for some Q ( O ) ,  an impossibility since the latter would have to assign probability 
one to both 0 = 0 and B = 1 (Diaconis and Freedman. 1980a). 
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It appears, therefore, that there is a potential conflict between realistic mod- 
elling (acknowledging the necessarily finite nature of actual exchangeability judge- 
ments) and the use of conventional mathematical representations (derived on the 
basis of assumed infinite exchangeability). 

To discuss this problem, let us call an exchangeable sequence, x1 . . . I I,, with 
IC, E X, N-extendible if it is part of the longer exchangeable sequence q , . . . . x,v. 
Practical judgements of exchangeability for specific observables 2 1 ,  . . . , x, are 
typically of this kind: the xl, . . . , xn can be considered as part of a larger, but 
finite, potential sequence of exchangeable observables. Infinite exchangeability 
corresponds to the possibly unrealistic assumption of N-extendibility for all N > n. 

In general, the assumption of infinite exchangeability implies that the proba- 
bility assigned to an event (q . . . , z,,) E E X” is of the form 

= / F ” ( E ) K ? ( F ) ,  

for some Q. If we denote by P( E) the corresponding probability assigned under 
N-extendibility for a specific N, a possible measure of the “distortion” introduced 
by assuming infinite exchangeability is given by 

where the supremum is taken over all events in the appropriate a-field on X“. 
Intuitively, one might feel that if 3c1 . . . , x, is N-extendible for some N > > n, the 
“distortion” should be somewhat negligible. This is made precise by the following. 

Proposition 4.19. (Finite approximation of infinite exchangeability). 
With the preceding notation, there exists Q such that 

where f (n )  is the number of elements in X ,  ifthe latter isfinite, and f (71)  = 
( n  - 1) otherwise. 

Proof. See Diaconis and Freedman (1980a) for a rigorous statement and tech- 
nical details. 

The message is clear and somewhat comforting. If a realistic judgement of 
N-extendibility for large, but finite, N is replaced by the mathematically conve- 
nient assumption of infinite exchangeability, no important distortion will occur in 
quantifying uncertainties. 

For further discussion, see Diaconis (1977), Jaynes (1986) and Hill (1992). 
For extensions of Proposition 4.19 to multivariate and linear model structures, see 
Diaconis et al. (1992). 
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4.7.2 Parametrlc and Nonparametric Models 

In Section 4.3. we saw that the assumption of exchangeability for a sequence 
sl, s2, . . . of real-valued random quantities implied a general representation of the 
joint distribution function of x I  . . . . . x,, of the form 

1-1 
J .1 

where 
Q ( F )  = lim P(F, , )  

and F,, is the empirical distribution function defined by .TI.  . . . . .rl, .  This implies 
that we should proceed as ifwe have a random sample from an unknown distribution 
function F, with Q representing our beliefs about “what the empirical distribution 
would look like for large n*’. 

As we remarked at the end of Section 4.3.3. the task of assessing and represent- 
ing such a belief distribution Q over the set 3 of all possible distribution functions 
is by no means straightforward, since F is, effectively. an infinite-dimensional pa- 
rameter. Most of this chapter has therefore been devoted to exploring additional 
features of beliefs which justify the restriction of ‘3 to families of distributions 
having explicit mathematical forms involving only a tinite-dimensional labelling 
parameter. 

Conventionally, albeit somewhat paradoxically, representations in the tinite- 
dimensional case are referred to as pururnetric models. whereas those involving the 
infinite-dimensional parameter are referred to as nonparumetric models! The tech- 
nical key to Bayesian nonparametric modelling is thus seen to be the specification 
of appropriate probability measures over function spaces. rather than over finite- 
dimensional real spaces, as in the parametric case. For this reason, the Bayesian 
analysis of nonparametric models requires considerably more mathematical ma- 
chinery than the corresponding analysis of parametric models. In the rest of this 
volume we will deal exclusively with the parametric case. postponing a treatment 
of nonparametric problems to the volumes Buyesion Coniputation and Bqcsiun 
Methods. 

Among important references on this topic, we note Whittle ( 1958). Hill (1968. 
1988, 1992). Dickey (1969). Kimeldorf and Wahha (1970), Good and Gaskins 
(1971, 1980). Ferguson (1973. 1974), Leonard (1973). Antoniak (1974). Doksum 
(1974). Susarla and van Ryzin ( 1976). Ferguson and Phadia ( 1979). Dalal and Hall 
(1980).DykstraandLaud(198l).Padgettand Wei( i981),Rolin( 1983).Lo( 1984). 
Thorburn ( I  986), Kestemont (I 987). Berliner and Hill ( 1988). Wahba ( 1988). Hjort 
(1990). Lenk (1991) and Lavine (1992a). 

As we have seen. the use of specific parametric forms can often be given a 
formul motivation or justification as the coherent representation of certain forms of 

11 x 



4.7 Pragmatic Aspects 

belief characterised by invariance or sufficiency properties. In practice, of course, 
there are often less formal, more pragmatic, reasons for choosing to work with a 
particular parametric model (as there often are for acting, formally, as ifparticular 
forms of summary statistic were sufficient!). In particular, specific parametric mod- 
els are often suggested by exploratory data analysis (typically involving graphical 
techniques to identify plausible distributional shapes and forms of relationship with 
covariates), or by experience (i.e., historical reference to“similar” situations, where 
a given model seemed “to work”) or by scientific theory (wtuch determines that 
a specific mathematical relationship “must” hold, in accordance with an assumed 
“law”). In each case, of course, the choice involves subjective judgements; for 
example, regarding such things as the “straightness” of a graphical normal plot, the 
“similarity” between a current and a previous trial, and the “applicability of a theory 
to the situation under study. From the standpoint of the general representation the- 
orem, such judgements correspond to acting as ifone has a Q which concentrates 
on a subset of 3 defined in terms of a finite-dimensional labelling parameter. 

4.7.3 Model Elaboration 

However, in arriving at a particular parametric model specification, by means of 
whatever combination of formal and pragmatic judgements have been deemed 
appropriate, a number of simplifying assumptions will necessarily have been made 
(either consciously or unconsciously). It would always be prudent, therefore, to 
“expand one’s consciousness” a little in relation to an intended model in order 
to review the judgements that have been made. Depending on the context, the 
following kinds of critical questions might be appropriate: 

(i) is it reasonable to assume that all the observables form a “homogeneous sam- 
ple”, or might a few of them be “aberrant” in some sense? 

(ii) is it reasonable to apply the modelling assumptions to the observables on 
their original scale of measurement, or should the scale be transformed to 
logarithms, reciprocals, or whatever? 

(iii) when considering temporally or spatially related observables, is it reasonable 
to have made a particular conditional independence assumption, or should 
some form of correlation be taken into account? 

(iv) if some, but not all, potential covariates have been included in the model, is it 
reasonable to have excluded the others, or might some of them be important, 
either individually or in conjunction with covariates already included? 

We shall consider each of these possibilities in turn, indicating briefly the 
kinds of elaboration of the “first thought of’  model that might be considered. 
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Outlier elaboration. Suppose that judgements about a sequence zI . z2. . . . of 
real-valued random quantities have led to serious consideration of the model 

but, on reflection, it is thought wise to allow for the fact that (an unknown) one of 
. r l , .  . . . xfa  might be aberrant. If aberrant observations are assumed to be such that 
a sequence of them would have a limiting mean equal to I / ,  but a limiting mean 
square about the mean equal to (7  A)-' .  0 < 2 < 1. where p and A denote the 
corresponding limits for non-aberrant observations. a suitable form of elaborated 
model might be 

This model corresponds to an initial assumption that, with specified probability T, 

there are no aberrant observations, but, with probability 1 - 7 ~ .  there is precisely one 
aberrant observation, which is equally likely to be any one of .rl . . . . . x,,. General- 
isations to cover more than one possible aberrant observation can be constructed in 
an obviously analogous manner. Such models are usually referred to as "outlier" 
models. since 7 < 1 implies an increased probability that, in the observed sample 
sI.. . . . sf,. the aberrant observation will "outlie". Since for an aberrant observa- 
tion 1. E [ ( r  - p)?  111, A. -,] = ( ? A )  ~ ' I ,  prior belief in the relative inaccuracy of' an 
aberrant observation as a "predictor" of p is reflected in the weight attached by the 
prior distribution Q ( ? )  t o  values of-! much smaller than 1. 

De Finetti ( I96 1 ) and Box and Tiao ( 1968) are pioneering Bayesian papers on 
this topic. More recent literature includes; Dawid ( 1973). O'Hagan (1979. 1988b. 
1990), Freeman ( 1980). Smith ( 1983). West ( I984 1985). Pettit and Smith ( 1985). 
Arnaiz and Ruiz-Rivas ( 1986). Muirhead ( 1986). Pettit ( 1986. 1992). Guttman and 
Peiia (1988) and Peiia and Guttman (1993). 

Tran.vjhnnurion ekuhor-ution. Suppose now that judgements about a sequence 
xl , rj. . . . of real-valued random quantities are such that it seems reasonable to sup- 
pose that. if'a suitaMe :- were idetitijied. beliefs about the sequence .I.\- '. .t.? . . . . . 
defined by 

/ '  i 

1 -  ! 
. I . ,  ( J ' ,  - I)/*, (? # 0. 7 E 1') 

= log( .I.,  ) ( -. = 0) .  



4.7 Pragmatic Aspects 231 

would plausibly have the representation 

It then follows that 

where 
n 

1 4  

The case y = 1 corresponds to assuming a normal parametric model for the ob- 
servations on their original scale of measurement. If r includes values such as 
y = -1,y = 1 / 2 , ~  = 0, the elaborated model admits the possibility that trans- 
formations such as reciprocal, square root, or logarithm, might provide a better 
scale on which to assume a normal parametric model. Judgements about the rela- 
tive plausibilities of these and other possible transformations are then incorporated 
in &+. For detailed developments see Box and Cox (1964), Pericchi (1981) and 
Sweeting (1984, 1985). 

Correlation elaboration. Suppose that judgements about z1,x2, . . . again lead 
to a "first thought of model in which 

I, 

~ ( ~ 1 7 . .  . r l n  I P. = n ~ ( r t  I P ~ X ) .  
r=l  

but that it is then recognised that there may be a serial correlation structure among 
zl,. . . , x,, (since, for example, the observations correspond to successive time- 
points, t = 1. t = 2, etc.) A possible extension of the representation to incorporate 
such correlation might be to assume that, for a given y E [ - 1. 1). and conditional on 
p and A, the correlation between x, and .r,+h is given by R(.r,. X,+h 1 p, A. 3) = ? h .  

so that 
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The elaborated model then becomes. for some Q'. 4 '. 
N , , ( z l p l . A I '  I )  d& ' (p .X I? )  d Q t ( i )  / p(.r1. . . . . . r l l )  = 

H Y R + I I - - I  I I  

The "first thought of' model corresponds to = 0 and beliefs about the relative 
plausibility of this value compared with other possible values of positive or negative 
correlation are reflected in the specification of (2'. 

Cowiricite aluborurion. Suppose that the "first thought of' model for the ob- 
servables z = (zl ( 1 1 ~ ) .  . . .  . ~ , , ( I ~ ~ , , ) ) ,  where z, ( / t , )  = ( . r , ]  . . . . . .  I' ,,,,) denotes 
replicate observations corresponding to the observed valuc z, = ( 2 ,  1 .  . . . . :,A ) of 
the covariates z I . .  . . . q. is the multiple regression model with representation 

Y(Z) = / Nl,(a: I AO. A)  &W. A)  
p P t l , p -  

as described in Example 4.16 of Section 4.6. If it is subsequently thought that 
covariates t A + l , .  . . . 2' should also have been taken into account, a suitable elabo- 
ration might take the form of an extended regression model 

where 33 consists of rows containing b, = ( z , k T l . .  . . . z , , )  replicated I I ,  times. 
i FT 1. .  . . . ir i  and y = ( & . + I , .  . . .el) denotes the regression coefficients of the 
additional regressor variables Z A - ~ .  . . . , si .  The value y = 0 corresponds to the 
"first thought of' model. 

In all these cases, an initially considered representation of the form 

= / P ( z :  14) dQ(4) 

is replaced by an elaborated representation 

A=) = /As I 4.7) d 4 * ( 4 . 7 ) .  

the latter reducing to the original representation on setting the elaboration parameter 
y equal to 0. Inference about such a 7. imaginatively chosen to reflect interesting 
possible forms of departure from the original model. often provides a natural basis 
for checking on the adequacy of an initially proposed model. as well as learning 
about the directions in which the model needs extending. 

Other Bayesian apprwdches to the problem of covariate selection include 
Bernardo and Bermudez ( 1985). Mitchell and Beauchamp ( 1988) and George and 
McCulloch ( I YY3a). 
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4.7.4 Model Simplification 

The process of model elaboration, outlined in the previous section, consists in 
expanding a “first thought of’ model to include additional parameters (and possibly 
covariates), reflecting features of the situation whose omission from the original 
model formulation is, on reflection, thought to be possibly injudicious. 

The process of model simplification is, in a sense, the converse. In review- 
ing a currently proposed model, we might wonder whether some parameters (or 
covariates) have been unnecessary included, in the sense that a simpler form of 
model might be perfectly adequate. As it stands, of course, this latter consider- 
ation is somewhat ill-defined: the “adequacy”. or otherwise, of a particular form 
of belief representation can only be judged in relation to the consequence arising 
from actions taken on the basis of such beliefs. These and other questions relating 
to the fundamentally important area of model comparison and model choice will 
be considered at length in Chapter 6. For the present, it will suffice just to give 
an indication of some particular forms of model simplification that are routinely 
considered. 

Equalify ofparameters. In Section 4.6, we analysed the situation where sev- 
eral sequences of observables are judged unrestrictedly infinitely exchangeable, 
leading to a general representation of the form 

where 8, E Q,, 8’ = flzl Q, and the parameter 8, relating to the ith sequence 
can typically be interpreted as the limit of a suitable summary statistic for the ith 
sequence. If, on the other hand, the simplifying judgement were made that, in fact, 
the labelling of the sequences is irrelevant and that any combined collection of 
observables from any or all of the sequences would be completely exchangeable, 
we would have the representation 

where the same parameter 8 E 8 now suffices to label the parametric model for 
each of the sequences. In conventional terminology, the simplified representation 
is sometimes referred to as the null-hypothesis (61 = . . . = O m )  and the original 
representation as the alternative hypothesis (81 # . . . # 8,). As we saw in Sec- 
tion 4.6 (for the case of two 0-1 sequences), rather than opt for sure for one or other 
of these representations, we could take a mixture of the two (with weight x ,  say, on 
the null representation and 1 - x on the alternative. general, representation). This 
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form of representation will be considered in more detail in Chapter 6. where it will 
be shown to provide a possible basis for evaluating the relative plausibility of the 
“null and alternative hypotheses” in the light of data. 

Absence of efects. In Section 4.6, we considered the situation of a structured 
layout with replicate sequences of observations in each of 1.1 cells, and a possible 
parametric model representation involving row effecrs (a1 . . . . . O I  1, column effecrs 
( $ 1 , .  . . . d ~ )  and interaction effects (711.. . . . T ~ J ) .  A commonly considered sim- 
plifying assumption is that there are no interaction effects (71 I = . . . = 71.1 = 0). 
so that large sample means in individual cells are just the additive combination of 
the corresponding large sample row and column means. 

Further possible simplifying judgements would be that the row (or column) 
labelling is irrelevant, so that o1 = . . . = crl = 0 (or dl = . .. = .!I = 0) and 
large sample cell means coincide with column (or row) means. Again, conventional 
terminology would refer to these simplifying judgements as “null hypotheses”. 

Omission of covuriares. Considering. for example, the multiple regression 
case, described in Example 4.14 of Section 4.6 and reconsidered in the previous 
section on model elaboration, we see that here the simplification process is very 
clearly just the converse of the elaboration process. If y denotes the regression coef- 
ficients of the covariates we are considering omitting, then the model corresponding 
to = 0 provides the required simplification. 

In fact, in all the cases of elaboration which we considered in the previous 
section, setting the “elaboration parameter” to 0 provides a natural form of simpli- 
fication of potential interest. Whether the process of model comparison and choicc 
is seen as one of elaboration or of simplification is then very much a pragmatic issue 
of whether we begin with a “smaller” model and consider making it “bigger”. or 
vice versa. In any case, issues of model comparison and choice require a separate 
detailed and extensive treatment, which we defer until Chapter 6. 

4.7.5 Prior Distributions 

The operational subjectivist approach to modelling views predictive models as rep- 
resentations of beliefs about observables (including limiting. large-sample func- 
tions of observables, conventionally referred to as parameters). lnvariancc and 
sufficiency considerations have then been shown to justify a structured approach to 
predictive models in terms of integral mixtures of parametric models with respect 
to distributions for the labelling parameters. In familiar terminology. we specify 
a distribution for the observables conditional on unknown parameters (a sampling 
distribufion, defining a likelihood), together with a distribution for the unknown 
parameters (a prior distribution). It is the combination of prior and likelihood 
which dejines the overull model. In terms of the mixture representation, the spec- 
ification of a prior distribution for unknown parameters is theretbre an essential 
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and unavoidable part of the process of representing beliefs about observables and 
hence of learning from experience. 

From the operational, subjectivist perspective, it is meaningless to approach 
modelling solely in terms of the parametric component and ignoring the prior 
distribution. We are, therefore, in fundamental disagreement with approaches to 
statistical modelling and analysis which proceed only on the basis of the sampling 
distribution or likelihood and treat the prior distribution as something optional, 
irrelevant, or even subversive (see Appendix B). 

That said, it should be readily acknowledged that the process of representing 
prior beliefs itself involves a number of both conceptual and practical difficulties, 
and certainly cannot be summarily dealt with in a superficial or glib manner. 

From a conceptual point of view. as we have repeatedly stressed throughout this 
chapter, prior beliefs about parameters typically acquire an operational significance 
and interpretation as beliefs about limiting (large-sample) functions of observables. 
Care must therefore obviously be taken to ensure that prior specifications respect 
logical or other constraints pertaining to such limits. Often, the specification process 
will be facilitated by suitable “reparametrisation”. 

From a practical point of view, detailed treatment of specific cases is very 
much a matter of “methods” rather than “theory” and will be dealt with in the third 
volume of this series. However, a general overview of representation strategies, 
together with a number of illustrative examples, will be given in the inference 
context in Chapter 5. In particular. we shall see that the range ofcreative possibilities 
opened up by the consideration of mixtures, asymptotics, robustness and sensitivity 
analysis, as well as novel and flexible forms of inference reporting, provides a rich 
and illuminating perspective and framework for inference, within which many of the 
apparent difficulties associated with the precise specification of prior distributions 
are seen to be of far less significance than is commonly asserted by critics of the 
Bayesian approach. 

4.8 DISCUSSION AND FURTHER REFERENCES 

4.8.1 Representation Theorems 

The original representation theorem for exchangeable 0 - 1 random quantities a p  
pears in de Finetti ( 1930), the concept of exchangeability having been considered 
earlier by Haag (1924) and also in the early 1930’s by Khintchine (1932). Exten- 
sions to the case of general exchangeable random quantities appear in de Finetti 
(193711964) and Dynkin (1953), with an abstract analytical version appearing in 
Hewitt and Savage (1955). Seminal extensions to more complex forms of sym- 
metry (partial exchangeability) can be found in de Finetti (1938) and Freedman 
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( 1962). See Diaconis and Freedman ( 1980b) and Wechsler ( 1993) for overviews 
and generalisations of the concept of exchangeability. 

Recent and current developments have generated an extensive catalogue of 
characterisations of distributions via both invariance and sufficiency conditions. 
Important progress is made in Diaconis and Freedman (1984, 1987, 1990) and 
Kuchlerand Lauritzen ( 1989). See, also, Ressel(l985). Useful reviews are given by 
Aldous ( 1985). Diaconis (1988a) and, from a rather different perspective. Lauritzen 
( 1982, 1988). The conference proceedings edited by Koch and Spizzichino (1982) 
also provides a wealth of related material and references. For related developments 
from a reliability perspective, see Barlow and Mendel (1992. 1994) and Mendel 
(1992). 

4.8.2 Subjectivity and Objectivity 

Our approach to modelling has been dictated by a subjectivist, operational con- 
cern with individual beliefs about (potential) observables. Through judgements of 
symmetry, partial symmetry, more complex invariance or sufficiency, we have seen 
how mixtures over conditionally independent “parameter-labelled’’ forms arise as 
typical representations of such beliefs. We have noted how this illuminates. and 
puts into perspective, linguistic separation into “likelihood” (or “sampling model”) 
and “prior” components. But we have also stressed that, from our standpoint. the 
two are actually inseparable in defining a belief model. 

In contrast. traditional discussion of a statistical model typically refers to the 
parametric form as “the model”. The latter then defines ”objective” probabilities 
for outcomes defined in terms of observables. these probabilities being determined 
by the values of the “unknown parameters“. It is often implicit in such discussion 
that if the “true” parameter were known, the corresponding parametric form would 
be the “true” model for the observables. Clearly. such an approach seeks to make 
a very clear distinction between the nature of observables and parameters. I t  is as 
if, given the ”true” parameter, the corresponding parametric distribution is seen ;IS 

part of ”objective reality”, providing the mechanism whereby the observables are 
generated. The “prior”, on the other hand, is seen as a ”subjective” optional extra. a 
potential contaminant of the objective statements provided by the parametric mtdel. 

Clearly, this view has little in common with the approach we have systemat- 
ically followed in this volume. However, there is an interesting sense, even from 
our standpoint. in which the parametric model and the prior can be seen as having 
different roles. 

Instead of viewing these roles as corresponding to an objectivdsubjcctive 
dichotomy. we view them in terms of an intersubjective/subjective dichotomy (fol- 
lowing Dawid. 1982b, 1986b). To this end. consider a group of Bayesians. all 
concerned with their belief distributions for the same sequence of observables. In 
the absence of any general agreement over assumptions of symmetry. invariance or 
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sufficiency, the individuals are each simply left with their own subjective assess- 
ments. However, given some set of common assumptions, the results of this chapter 
imply that the entire group will structure their beliefs using some common form of 
mixture representation. Within the mixture, the parametric forms adopted will be 
the same (the intersubjective component), while the priors for the parameter will 
differ from individual to individual (the subjective component). Such intersubjec- 
tive agreement clearly facilitates communication within the group and reduces areas 
of potential disagreement to just that of different prior judgements for the parame- 
ter. As we shall see in Chapter 5 ,  judgements about the parameter will tend more 
towards a consensus as more data are acquired, so that such a group of Bayesians 
may eventually come to share very similar beliefs, even if their initial judgements 
about the parameter were markedly different. We emphasise again, however, that 
the key element here is intersubjective agreement or consensus. We can find no 
real role for the idea of objectivity except, perhaps, as a possibly convenient, but 
potentially dangerously misleading, "shorthand" for intersubjective communality 
of beliefs. 

4.8.3 Critical Issues 

We conclude this chapter on modelling with some further comments concerning 
(i) The Role and Nature of Models, (ii) Structurul und Stochastic Assumptions, (iii) 
Identtj5abiliry and (iv) Robustness Considerations. 

The Role and Nature of Models 

In the approach we have adopted, the fundamental notion of a model is that of a 
predictive probability specification for observables. However, the forms of repre- 
sentation theorems we have been discussing provide, in typical cases, a basis for 
separating out, if required, two components; the parametric model, and the belief 
model for the parameters. Indeed, we have drawn attention in Section 4.8.2 to 
the fact that shared structural belief assumptions among a group of individuals can 
imply the adoption of a common form of parametric model, while allowing the 
belief models for the parameters to vary from individual to individual. One might 
go further and argue that without some element of agreement of this kind there 
would be great difficulty in obtaining any meaningful form of scientific discussion 
or possible consensus. 

Non-subjectivist discussions of the role and nature of models in statistical 
analysis tend to have a rather different emphasis (see, for example, Cox, 1990. 
and Lehmann, 1990). However, such discussions often end up with a similar 
message, implicit or explicit, about the importance of models in providing a focused 
framework to serve as a basis for subsequent identification of areas of agreement and 
disagreement. In order to think about complex phenomena, one must necessarily 
work with simplified representations. In any given context, there are typically 
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a number of different choices of degrees of simplification and idealisation that 
might be adopted and these different choices correspond to what Lehmann calls "a 
reservoir of models", where 

. . . particular emphasis is placed on transparent characterisations or descriptions 
of the models that would facilitate the understanding of when a given model is 
appropriate. (Lehmann, 1990) 

But appropriate for what'? Many authors-including Cox and Lehmann- 
highlight a distinction between what one might call scientiJc and fechnolugical 
approaches to models. The essence of the dichotomy is that scientists are assumed to 

seek r.rpIuwtory models, which aim at providing insight into and understanding of 
the "true" mechanisms of the phenomenon under study: whereas technologists are 
content with empirical models. which are not concerned with the"truth". but simply 
with providing a reliable basis for practical action in predicting and controlling 
phenomena of interest. 

Put very crudely, in terms of our generic notation, explanatory modellcrs 
take the form of p ( z  10) very seriously. whereas empirical modellers are simply 
concerned that p(z) "works". For an elaboration of the latter view, see Leonard 
( 1980). 

The approach we have adopted is compatible with either emphasis. As we 
have stressed many times, it is observables which provide the touchstone of ex- 
perience. When comparing rival belief specifications, all other things being equal 
we are intuitively more impressed with the one which consistently assigns higher 
probabilities to the things that actually happen. If. in fact, a phenomenon is gov- 
erned by the specific mechanism p ( z  10) with 0 = 0,). a scientist who discovers 
this and sets p ( s )  = p(s 10,) will certainly have a p(z) that "works". 

However, we are personally rather sceptical about taking the science versus 
technology distinction too seriously. Whilst we would not dispute that there are 
typically real differences in motivation and rhetoric between scientists and technol- 
ogists, it seems to us that theories are always ultimately judged by the predictive 
power they provide. Is there really a meaningful concept of "truth" i n  this context 
other than a pragmatic one predicated on p(z)'? We shall return to this issue in 
Chapter 6. but our prejudices are well-captured in the adage: "trll moifels are.fii1.w. 
hut .sonic are Irsefirr'. 

Structural and Stochastic Assumptions 

In Section 4.6. we considered several illustrative examples where, separate from 
considerations about the complete form of probability specification to be adopted. 
the key role of the parametric model component p ( z  10) was to specify structured 
forms of expectations for the observables conditional on the parameters. We recall 
two examples. 
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In the case of observables x i j k  in a two-way layout with replications (Sec- 
tion 4.6.3), with parameters corresponding to overall mean, main effects and inter- 
actions, we encountered the form 

in the case of a vector of observables x in a multiple regression context with design 
matrix A (Section 4.6.4, Example 4-14), we encountered the form 

In both of these cases, fundamental explanatory or predictive structure is cap- 
tured by the specification of the conditional expectation, and this aspect can in many 
cases be thought through separately from the choice of a particular specification of 
full probability distribution. 

Identi$abiliry 

A parametric model for which an element of the parametrisation is redundant is said 
to be non-identified. Such models are often introduced at an early stage of model 
building (particularly in econometrics) in order to include all parameters which may 
originally be thought to be relevant. Identifiability is a property of the parametric 
model, but a Bayesian analysis of a non-identified model is always possible if a 
proper prior on all the parameters is specified. For detailed discussion of this issue, 
see Morales ( 197 1 ), Drhze ( 1974), Kadane ( 1974), Florens and Mouchart ( I986), 
Hills (1987) and Florens et ul. (1990, Section 4.5). 

Robustness Considerations 

For concreteness, in our earlier discussion of these examples we assumed that the 
p ( z  I e) terms were specified in terms of normal distributions. As we demonstrated 
earlier in this chapter, under the a priori assumption of appropriate invariances, or 
on the basis of experience with particular applications, such a specification may 
well be natural and acceptable. However, in many situations the choice of a specific 
probability distribution may feel a much less “secure” component of the overall 
modelling process than the choice of conditional expectation structure. 

For example, past experience might suggest that departures of observables 
from assumed expectations resemble a symmetric bell-shaped distribution cen- 
tred around zero. But a number of families of distributions match these general 
characteristics, including the normal, Student and logistic families. Faced with a 
seemingly arbitrary choice. what can be done in a situation like this to obtain further 
insight and guidance? Does the choice matter? Or are subsequent inferences or 
predictions robust against such choices? 
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An exactly analogous problem arises with the choice of mathematical speci- 
fications for the prior model component. 

In robustness considerations, theoretical analysis - sometimes referred to as 
"what if?" analysis-has an interesting role to play. Using the inference machinery 
which we shall develop in Chapter 5. the desired insight and guidance can often 
be obtained by studying mathematically the ways in which the various "arbitrary" 
choices affect subsequent formsof inferences and predictions. For example. a"what 
if?" analysis might consider the effect of a single. aberrant, outlying observation on 
inferences for main etYects in a multiway layout under the alternative assumptions of 
a normal or Student parametric model distribution. It can be shown that the influence 
of the aberrant observation is large under the normal assumption. but negligible 
under the Student assumption. thus providing a potential basis for preferring one 
or other of the otherwise seemingly arbitrary choices. 

More detailed analysis of such robustness issues will be given in Section 5.6.3. 




