MATH 559: Bayesian Theory and Methods
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1. Suppose {Y,,} is an infinitely exchangeable sequence. For n > 1, suppose Yi,...,Y,, is a finite
number of elements from this sequence. Then if fy, v, (y1,...,yn) is the joint pdf for Yi,...,Y,,
it can be deduced that

P nseecsam) = [ T1£056) 7o 0) 0. 1)
=1

where 7(0) is a prior density for the unknown finite-dimensional parameter 6, and f(y;0) is a
conditional pdf in y.

(a) Using (1), derive an expression for the posterior predictive distribution for Y, (another
element of the infinitely exchangeable sequence) conditional on Y7 = y1,...,Y,, = y,, and
explain how this defines the posterior density, m,(0), as an updated version of m(0).

6 MARKS

Q1(a): Denote the left hand side of (1) by po(y). Then the posterior predictive is

Pn (yn—i-l) o y yn+1 /fY yn—&-l, 7Tn )d@

as
n+1

o(¥, Yn+1) /nyu ) mo( d9—/f¥ Yn+150 {Hf yi; 0) mo(0 } do
where

1 n
_m]_:[lf@i;e)ﬂ

is the posterior. We note that this has the same form as (1), but with () updated to 7, (6).




(b) Suppose that in (1), it is specified that
f(y;0) = 1L(000)(y) Oexp{—0y} y€eR

where § € © = RT. Suppose that data y1, .. ., y, are observed.

(i) Find the form of the posterior distribution if a conjugate prior is specified.

5 MARKS

r

Q1(b)(i): Likelihood: if s, = > 7" | i
L,(0) = 0" exp{—0s,} 6>0
so a conjugate prior is m(0) = Gamma(ao, bp), and then
m(0) = Gamma(ay, by)

where a,, = ag +n, b, = by + sp,.




(ii) Find the Jeffreys prior for this model. 4 MARKS

rQl (b)(ii): We have that

U(y;0) = log fy(y;0 = log§ — Oy

Uy:0)=0""~y
Uy;0) = —072
so the Jeffreys prior is
mo(0) = é

as is always the case for scale models.




(iii) Find the posterior predictive density for Y;,;; for this model under a conjugate prior.
5 MARKS

Q1(b)(iii): We compute

pn<yn+1) = /Ooo fY<yn+1; 9)77'71(9) do

n

o b
— [ oo uns) Oexp{ O} 0 exp{~b,6) db
0 I'(an)

bn * _
- Il(0,c><>)(yn+1)—/ 0@t exp{—(bp + yn41)0} db
I(an) Jo

b T(an +1)
(an) (bn + yp41)™+!

= 1(0,00)\Yn+1)an b+ Yt b+ Uit

bo+ 50 \ """ 1
p”<y"+1) = ll(O,oo)(yn—i-l)(a() + n) <07> <7>

= 1(0,00) (Yn+1) T

Hence

where




2. Suppose that Yi,...,Y,, are presumed conditionally independent and distributed as
Uniform(0,0) for some § € © = RT, that is

Li0,0)(y
fy(y;9)=%() y€R

Bayesian inference for 6 is to be carried out.
(a) Find the form of likelihood
La(0) =[] v 0)
i=1

for observed data y1, . . ., yn. 6 MARKS

Q2(a): Evidently

Ln(0) = {f[ 1(0,9)(%)} (%)n = Lyan.00)(0) (%)n

where ymax = max{yi,...,yn}-




(b) Show that the statistic
T=T(Y1,...,Y,) =max{Y1,...,Y,}

is sufficient in the Bayesian sense, that is, that the posterior distribution depends on the data
only through the observed value of 7T'. 4 MARKS

Q2(b): The posterior distribution is proportional to likelihood times prior, but provided that the
prior places non-zero probability on the interval (¢,00), the posterior depends on the data only
through ¢, due to the previous answer.




(c) Lett = 1/6, and suppose the prior density for ¢ takes the form
() = ¢ 0<y<1
and zero otherwise, for some constant ¢ > 0. Find the posterior for . 6 MARKS

Leave the normalizing constant for the posterior in the form of an integral if necessary.

Q2(c): We have
T () o {10,176 (V)Y } X {L(0,1)(¥)}
o Lo, ()"

where
u, = min{l1/t, 1}.

We have that the normalizing constant is
Un n+2
n+1 di) = Up
/0 4 v n+2

SO

o) = Lo () (557 ) 97




(d) For the posterior in (c), find the posterior mode. 4 MARKS

Q2(d): The posterior is monotonically increasing on (0, uy,), so the posterior mode is u,,.




3. Suppose that, for n > 1.

Yi1,..., Y1, ~ Normal(uq,1)
Yo1,..., Y2, ~ Normal(usg, 1)

are conditionally independent random variables. Observed data y11, ..., y1, and ya21,. .., y2, are
to be used for Bayesian inference.

(a) Suppose that mo(p1) = Normal(n,1). Show that the posterior for y; is also a Normal
distribution. 6 MARKS

Q3(a): We have that the likelihood is
Ly (p1) o< exp {—% i(yu - M1)2}
i=1
and the prior is
mo(in) o< exp {5~ )}
so the posterior is
) o oxp { = [ = 7100 + (1 — ] .
Using the complete the square formula, we have

(1) o< exp {— (n; D) (1 — mm)z}

where my, = (ny1, +n)/(n +1). Hence

mn(p1) = Normal(min,1/(n + 1)).




(b) Suppose that
mo(p1, p2) = mo(pr)mo(p2)

where 7y(p1) = mo(p2) = Normal(n, 1). Find the posterior for
O =p2—
based on the observed data. 8 MARKS

Q3(b): We have that
mn(p1) = Normal(min,1/(n+ 1)) mn(p2) = Normal(may,1/(n + 1))
with the parameters a posteriori independent, so by properties of the Normal distribution

n(¢) = Normal(ma, — mip,2/(n + 1))




(c) Suppose that only the data z1,..., 2,
Zi = Y2; — Y1i iZl,...,’l’L

are observed. Find the posterior for ¢ as defined in (b) based on 21, . . ., 2, under the implied
prior for ¢ specified in (b). 6 MARKS

Q3(c): It is evident that under the proposed sampling model

Z; ~ Normal(¢,2)

or{ A7)

We have that the implied prior for ¢ is Normal(0, 2). Hence the new posterior for ¢ based on the z
data is given by completing the square

so that the likelihood is proportional to

n 9 1oy
§(¢_zn) +§¢

where Z,, = ¥s,, — J1,,- Thus

4
where
_ (n/2)z,  nzZ,
" n+1)/2 n+1
so that

(@) = Normal(my,2/(n + 1)).
as in (b).




4. Suppose that in a Bayesian model, we have that

y y?
fy(y;0) = 1(0,00)(y)§ exp {—2—9} yeR

for e © =R™.

(a) Find the posterior, 7, (¢) based on a sample v, ..., y,, drawn conditionally independently
from fy (y; ), if
m0(0) = InvGamma(ag, by/2).

for hyperparameters ag, by > 0. 8 MARKS

(Q4(a): Up to a constant, we have that the likelihood is

where

Therefore the posterior is

o () 5

Tn(0) = InvGamma(ay, by, /2)

that is

where
ap =ag+n bn, = by + vy




(b) Suppose A = 1/6 is to be estimated using Bayesian estimation under quadratic loss, that is
L(t,\) = (t — N2

Find the Bayesian estimate of \. 6 MARKS

r

Q4(b): The posterior for Ais I'(ay, b, /2), and under quadratic loss, the estimate is the posterior mean

~ an_2a0—|—n

b, N bo + vy,




(c) Describe one procedure to derive a 95% credible interval for 6.

6 MARKS

Q4(c): Simply look up the 0.025 and 0.975 quantiles of the Inverse Gamma pdf.




5. (a) Describe how to carry out Monte Carlo sampling from the pdf
f(@) = cl(g,00) () VT exp {—%xz} r€R
using the following approaches.

(i) Rejection sampling: give a specific recommendation for the proposal distribution fy(x). 5 MARKS

Q5(a)(i): Recommend using the Gamma(3/2,1/2) as then

f(z) _ C\/Eexp {—a?/2}
folw)  Vrexp{-z/2}

is maximized when xz = 1/2, the bound on the ratio of the unnormalized densities is

= cexp{(x — z?)/2}.

and as = — 22

M = exp{1/8}.
The algorithm proceeds as follows:
— Sample (X,U) where X ~ fo(z) and U ~ Uniform(0,1)

- Accept X if
9(@)

U <
Mgo(x)

otherwise return to step 1.

Note: cannot use fy(z) = Normal(0, 1) as this leaves the density ratio unbounded.




(ii) The Metropolis-Hastings algorithm: give a specific recommendation for the proposal density ¢(z, -).
5 MARKS

Q5(a)(ii): Here the Normal random walk is adequate: the algorithm proceeds as follows: set xp = 1,
and fort =1
— sample z ~ Normal(z,_1,03) (ie q(z, z) = Normal(z,0}));

— accept z and set x; = z with probability

otherwise x; = x;_1.

Here f(x) is quite like the Normal(0, 1), so choosing o, = 1 should be reasonable.




(b) The Bayesian analysis of the Generalized Linear Model with Y; ~ Poisson(u;) and

log i = Bo + B1x;

for outcomes Yi,...,Y, which are conditionally independent given predictor values
x1,...,T, and parameters (/p, 41) is to be considered.

(i) Write down the joint posterior distribution 7, (5, 51) up to proportionality for a suitably chosen
prior distribution. 5 MARKS

Q5(b)(i): We first need the likelihood
Yi|X; = x; ~ Poisson(p;)

where
log p; = Bo + Pre; = x;3

say, so that
n

exp{yilog i — i} 11 exp{yixiB — exp{x;8}}
L@ =11 yi! - 1_11 yi!

=1

For the prior, we ideally need a joint prior on the whole of R?, so one may choose the multivariate
Normal, or the special case of independent Normal priors. Then

o, 50) o [T expluit = exps)} x exp { =56 m) ™M (5 - )}
=1

which is not a known distribution, but is readily computed pointwise for (5, 51).




(ii) Describe one method for performing Monte Carlo sampling from 7, (5o, £1), giving details of each
step of the approach. 5 MARKS

r

Q5(c)(ii): There are several options
- Metropolis-Hastings on (5o, 51) jointly
— Metropolis-within-Gibbs, sampling the full conditionals
Tn(BolBr) ™ (B1lfo)
in turn with updating
— Rejection sampling, after choosing a suitable proposal (eg bivariate Student-t)
- Sampling-importance-resampling

Answers should give step-by-step instructions, as per lecture notes (ie bookwork).




