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1. Suppose {Yn} is an infinitely exchangeable sequence. For n ≥ 1, suppose Y1, . . . , Yn is a finite
number of elements from this sequence. Then if fY1,...,Yn

(y1, . . . , yn) is the joint pdf for Y1, . . . , Yn,
it can be deduced that

fY1,...,Yn
(y1, . . . , yn) =

∫ n∏

i=1

f(yi; θ) π0 (θ) dθ. (1)

where π0(θ) is a prior density for the unknown finite-dimensional parameter θ, and f(y; θ) is a
conditional pdf in y.

(a) Using (1), derive an expression for the posterior predictive distribution for Yn+1 (another
element of the infinitely exchangeable sequence) conditional on Y1 = y1, . . . , Yn = yn, and
explain how this defines the posterior density, πn(θ), as an updated version of π0(θ).

6 MARKS

Q1(a): Denote the left hand side of (1) by p0(y). Then the posterior predictive is

pn(yn+1) =
p0(y, yn+1)

p0(y)
=

∫
fY (yn+1; θ)πn(θ) dθ

as

p0(y, yn+1) =

∫ n+1∏

i=1

f(yi; θ) π0(θ)dθ =

∫
fY (yn+1; θ)

{
n∏

i=1

f(yi; θ) π0(θ)

}
dθ

where

πn(θ) =
1

p0(y)

n∏

i=1

f(yi; θ) π0 (θ)

is the posterior. We note that this has the same form as (1), but with π0(θ) updated to πn(θ).



(b) Suppose that in (1), it is specified that

f(y; θ) = 1(0,∞)(y) θ exp{−θy} y ∈ R

where θ ∈ Θ ≡ R
+. Suppose that data y1, . . . , yn are observed.

(i) Find the form of the posterior distribution if a conjugate prior is specified. 5 MARKS

Q1(b)(i): Likelihood: if sn =
∑n

i=1 yi

Ln(θ) = θn exp{−θsn} θ > 0

so a conjugate prior is π0(θ) = Gamma(a0, b0), and then

πn(θ) ≡ Gamma(an, bn)

where an = a0 + n, bn = b0 + sn.



(ii) Find the Jeffreys prior for this model. 4 MARKS

Q1(b)(ii): We have that

ℓ(y; θ) = log fY (y; θ = log θ − θy

ℓ̇(y; θ) = θ−1 − y

ℓ̈(y; θ) = −θ−2

so the Jeffreys prior is

π0(θ) =
1

θ

as is always the case for scale models.



(iii) Find the posterior predictive density for Yn+1 for this model under a conjugate prior.
5 MARKS

Q1(b)(iii): We compute

pn(yn+1) =

∫
∞

0
fY (yn+1; θ)πn(θ) dθ

=

∫
∞

0
1(0,∞)(yn+1) θ exp{−θyn+1}

bann
Γ(an)

θan−1 exp{−bnθ} dθ

= 1(0,∞)(yn+1)
bann

Γ(an)

∫
∞

0
θ(an+1)−1 exp{−(bn + yn+1)θ} dθ

= 1(0,∞)(yn+1)
bann

Γ(an)

Γ(an + 1)

(bn + yn+1)an+1

= 1(0,∞)(yn+1)an

(
bn

bn + yn+1

)an ( 1

bn + yn+1

)

Hence

pn(yn+1) = 1(0,∞)(yn+1)(a0 + n)

(
b0 + sn
b0 + sn+1

)a0+n( 1

b0 + sn+1

)

where

sn+1 =

n+1∑

i=1

yi.



2. Suppose that Y1, . . . , Yn are presumed conditionally independent and distributed as
Uniform(0, θ) for some θ ∈ Θ ≡ R

+, that is

fY (y; θ) =
1(0,θ)(y)

θ
y ∈ R

Bayesian inference for θ is to be carried out.

(a) Find the form of likelihood

Ln(θ) =

n∏

i=1

fY (yi; θ)

for observed data y1, . . . , yn. 6 MARKS

Q2(a): Evidently

Ln(θ) =

{
n∏

i=1

1(0,θ)(yi)

}(
1

θ

)n

= 1(ymax,∞)(θ)

(
1

θ

)n

where ymax = max{y1, . . . , yn}.



(b) Show that the statistic
T ≡ T (Y1, . . . , Yn) = max{Y1, . . . , Yn}

is sufficient in the Bayesian sense, that is, that the posterior distribution depends on the data
only through the observed value of T . 4 MARKS

Q2(b): The posterior distribution is proportional to likelihood times prior, but provided that the
prior places non-zero probability on the interval (t,∞), the posterior depends on the data only
through t, due to the previous answer.



(c) Let ψ = 1/θ, and suppose the prior density for ψ takes the form

π0(ψ) = cψ 0 < ψ < 1

and zero otherwise, for some constant c > 0. Find the posterior for ψ. 6 MARKS

Leave the normalizing constant for the posterior in the form of an integral if necessary.

Q2(c): We have

πn(ψ) ∝ {1(0,1/t)(ψ)ψ
n} × {1(0,1)(ψ)ψ}

∝ 1(0,un)(ψ)ψ
n+1

where
un = min{1/t, 1}.

We have that the normalizing constant is

∫ un

0
ψn+1 dψ =

un+2
n

n+ 2

so

πn(ψ) = 1(0,un)(ψ)

(
n+ 2

un+2
n

)
ψn+1.



(d) For the posterior in (c), find the posterior mode. 4 MARKS

Q2(d): The posterior is monotonically increasing on (0, un), so the posterior mode is un.



3. Suppose that, for n ≥ 1.

Y11, . . . , Y1n ∼ Normal(µ1, 1)

Y21, . . . , Y2n ∼ Normal(µ2, 1)

are conditionally independent random variables. Observed data y11, . . . , y1n and y21, . . . , y2n are
to be used for Bayesian inference.

(a) Suppose that π0(µ1) ≡ Normal(η, 1). Show that the posterior for µ1 is also a Normal
distribution. 6 MARKS

Q3(a): We have that the likelihood is

Ln(µ1) ∝ exp

{
−1

2

n∑

i=1

(y1i − µ1)
2

}

and the prior is

π0(µ1) ∝ exp

{
−1

2
(µ1 − η)2

}

so the posterior is

πn(µ1) ∝ exp

{
−1

2

[
n(µ1 − y1n)

2 + (µ1 − η)2
]}

.

Using the complete the square formula, we have

πn(µ1) ∝ exp

{
−(n+ 1)

2
(µ1 −m1n)

2

}

where m1n = (ny1n + η)/(n + 1). Hence

πn(µ1) ≡ Normal(m1n, 1/(n + 1)).



(b) Suppose that
π0(µ1, µ2) = π0(µ1)π0(µ2)

where π0(µ1) ≡ π0(µ2) ≡ Normal(η, 1). Find the posterior for

φ = µ2 − µ1

based on the observed data. 8 MARKS

Q3(b): We have that

πn(µ1) ≡ Normal(m1n, 1/(n + 1)) πn(µ2) ≡ Normal(m2n, 1/(n + 1))

with the parameters a posteriori independent, so by properties of the Normal distribution

πn(φ) ≡ Normal(m2n −m1n, 2/(n + 1))



(c) Suppose that only the data z1, . . . , zn

zi = y2i − y1i i = 1, . . . , n

are observed. Find the posterior for φ as defined in (b) based on z1, . . . , zn under the implied
prior for φ specified in (b). 6 MARKS

Q3(c): It is evident that under the proposed sampling model

Zi ∼ Normal(φ, 2)

so that the likelihood is proportional to

exp

{
−1

4
(zi − φ)2

}

We have that the implied prior for φ is Normal(0, 2). Hence the new posterior for φ based on the z
data is given by completing the square

n

2
(φ− zn)

2 +
1

2
φ2

where zn = y2n − y1n. Thus

πn(φ) ∝ exp

{
−(n+ 1)

4
(φ−mn)

2

}

where

mn =
(n/2)zn
(n+ 1)/2

=
nzn
n+ 1

so that
πn(φ) ≡ Normal(mn, 2/(n + 1)).

as in (b).



4. Suppose that in a Bayesian model, we have that

fY (y; θ) = 1(0,∞)(y)
y

θ
exp

{
−y

2

2θ

}
y ∈ R

for θ ∈ Θ ≡ R
+.

(a) Find the posterior, πn(θ) based on a sample y1, . . . , yn, drawn conditionally independently
from fY (y; θ), if

π0(θ) ≡ InvGamma(a0, b0/2).

for hyperparameters a0, b0 > 0. 8 MARKS

Q4(a): Up to a constant, we have that the likelihood is

Ln(θ) ∝
(
1

θ

)n

exp

{
−vn

2

1

θ

}

where

vn =

n∑

i=1

y2i .

Therefore the posterior is

πn(θ) ∝
(
1

θ

)n+a0−1

exp

{
−(vn + b0)

2

1

θ

}

that is
πn(θ) ≡ InvGamma(an, bn/2)

where
an = a0 + n bn = b0 + vn.



(b) Suppose λ = 1/θ is to be estimated using Bayesian estimation under quadratic loss, that is

L(t, λ) = (t− λ)2.

Find the Bayesian estimate of λ. 6 MARKS

Q4(b): The posterior for λ is Γ(an, bn/2), and under quadratic loss, the estimate is the posterior mean

λ̂ = 2
an
bn

= 2
a0 + n

b0 + vn



(c) Describe one procedure to derive a 95% credible interval for θ. 6 MARKS

Q4(c): Simply look up the 0.025 and 0.975 quantiles of the Inverse Gamma pdf.



5. (a) Describe how to carry out Monte Carlo sampling from the pdf

f(x) = c1(0,∞)(x)
√
x exp

{
−1

2
x2

}
x ∈ R

using the following approaches.

(i) Rejection sampling: give a specific recommendation for the proposal distribution f0(x). 5 MARKS

Q5(a)(i): Recommend using the Gamma(3/2, 1/2) as then

f(x)

f0(x)
= c

√
x exp

{
−x2/2

}
√
x exp {−x/2} = c exp{(x− x2)/2}.

and as x− x2 is maximized when x = 1/2, the bound on the ratio of the unnormalized densities is

M = exp{1/8}.

The algorithm proceeds as follows:

– Sample (X,U) where X ∼ f0(x) and U ∼ Uniform(0, 1)

– Accept X if

U <
g(x)

Mg0(x)

otherwise return to step 1.

Note: cannot use f0(x) ≡ Normal(0, 1) as this leaves the density ratio unbounded.



(ii) The Metropolis-Hastings algorithm: give a specific recommendation for the proposal density q(x, ·).
5 MARKS

Q5(a)(ii): Here the Normal random walk is adequate: the algorithm proceeds as follows: set x0 = 1,
and for t = 1

– sample z ∼ Normal(xt−1, σ
2
q ) (ie q(x, z) ≡ Normal(x, σ2q));

– accept z and set xt = z with probability

α(x, z) = min

{
1,
f(z)

f(x)

}

otherwise xt = xt−1.

Here f(x) is quite like the Normal(0, 1), so choosing σq = 1 should be reasonable.



(b) The Bayesian analysis of the Generalized Linear Model with Yi ∼ Poisson(µi) and

log µi = β0 + β1xi

for outcomes Y1, . . . , Yn which are conditionally independent given predictor values
x1, . . . , xn and parameters (β0, β1) is to be considered.

(i) Write down the joint posterior distribution πn(β0, β1) up to proportionality for a suitably chosen
prior distribution. 5 MARKS

Q5(b)(i): We first need the likelihood

Yi|Xi = xi ∼ Poisson(µi)

where
log µi = β0 + β1xi = xiβ

say, so that

Ln(β) =

n∏

i=1

exp{yi log µi − µi}
yi!

=

n∏

i=1

exp{yixiβ − exp{xiβ}}
yi!

For the prior, we ideally need a joint prior on the whole of R2, so one may choose the multivariate
Normal, or the special case of independent Normal priors. Then

πn(β0, β1) ∝
n∏

i=1

exp{yixiβ − exp{xiβ}} × exp

{
−1

2
(β −m)⊤M−1(β −m)

}

which is not a known distribution, but is readily computed pointwise for (β0, β1).



(ii) Describe one method for performing Monte Carlo sampling from πn(β0, β1), giving details of each
step of the approach. 5 MARKS

Q5(c)(ii): There are several options

– Metropolis-Hastings on (β0, β1) jointly

– Metropolis-within-Gibbs, sampling the full conditionals

πn(β0|β1) πn(β1|β0)

in turn with updating

– Rejection sampling, after choosing a suitable proposal (eg bivariate Student-t)

– Sampling-importance-resampling

Answers should give step-by-step instructions, as per lecture notes (ie bookwork).


