
MATH 559 - EXERCISES 2 : SOLUTIONS

1. Suppose Y1, . . . , Yn are realizations from an exchangeable binary sequence. Using the Jeffreys prior for
parameter

θ = EY [Y ]

find an approximation to the posterior distribution πn(θ) for large n.

We have

ℓn(θ) =
n∑

i=1

log fY (yi; θ) =
n∑

i=1

((1− yi) log(1− θ) + yi log θ)

ℓ̇n(θ) =− n− sn
1− θ

+
sn
θ

sn =

n∑
i=1

yi

ℓ̈n(θ) =−
[
(n− sn)

(1− θ)2
+
sn
θ2

]
which informs us that as E[Sn] = nθ, the Jeffreys prior is

π0(θ) ∝
∣∣∣E [

−ℓ̈n(θ)
]∣∣∣1/2 ∝ 1√

θ(1− θ)
≡ Beta(1/2, 1/2)

but also that, for large n, using the results concerning approximations of the likelihood

πn(θ) ∝ exp

{
− n

2θ̂n(1− θ̂n)
(θ − θ̂n)

2

}
as we can ignore the influence of the prior when n is large. Thus in this case

πn(θ) ≈ Normal(θ̂n, θ̂n(1− θ̂n)/n)

2. Suppose that in a Bayesian model, we have that

fY (y; θ) = 1(θ,∞)(y) exp{−(y − θ)} y ∈ R

for θ ∈ Θ ≡ R+. Suppose that the prior is π0(θ) ≡ Exponential(2). Find the posterior, πn(θ), based on a
sample y1, . . . , yn.

We have for the likelihood

Ln(θ) =

n∏
i=1

1(θ,∞)(yi) exp {−(yi − θ)} = 1(0,min
i

yi)(θ) exp

{
−

n∑
i=1

(yi − θ)

}

∝ exp{nθ} 0 < θ < min
i
yi

so if ymin is the minimum observed y value, for the posterior, we have

πn(θ) ∝ exp{nθ} exp{−2θ} = exp{(n− 2)θ} 0 < θ < ymin

The normalizing constant is easily computed by integration: If n > 2∫ ymin

0
exp{(n− 2)θ} dθ = 1

(n− 2)
[exp{(n− 2)ymin} − 1]
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and hence

πn(θ) =
(n− 2)

exp{(n− 2)ymin} − 1
exp{(n− 2)θ} 0 < θ < ymin

and zero otherwise. If n = 2, we have

πn(θ) ∝ 1 0 < θ < ymin

so the posterior distribution is Uniform(0, ymin). If n = 1,

πn(θ) =
1

1− exp{−y1}
exp{−θ} 0 < θ < y1.

3. Suppose that in a Bayesian model, we have that

fY (y; θ) = 1(0,∞)(y)
y

θ2
exp

{
− y2

2θ2

}
y ∈ R

for θ ∈ Θ ≡ R+. Using a prior of your choosing, find the posterior, πn(θ) based on a sample y1, . . . , yn.

We have for the likelihood

Ln(θ) =

n∏
i=1

1(0,∞)(yi)
yi
θ2

exp

{
− y2i
2θ2

}

∝
(

1

θ2

)n

exp

{
− t

2θ2

}
θ > 0 t =

n∑
i=1

y2i

Writing ϕ = θ2, a conjugate prior for this likelihood is

1

ϕ
∼ Gamma(a0, b0/2)

that is ϕ ∼ InvGamma(a0, b0/2), with

π0(ϕ) =
ba00

Γ(a0)

(
1

ϕ

)a0+1

exp

{
− b0
2ϕ

}
.

Then we have
πn(ϕ) ≡ InvGamma(n+ a0, (t+ b0)/2)

from which we may deduce the posterior for θ by transformation.

4. Suppose exchangeable sequences {Y1n, Y2n} are such that given parameters θ1, θ2, σ2

Yji ∼ Normal(θj , σ
2) j = 1, 2, i = 1, . . . , nj

are independent. Suppose that a proper, conjugate prior specification with

π0(θ1, θ2, σ
2) = π0(σ

2)π0(θ1|σ2)π0(θ2|σ2)

is used. Compute the posterior distribution for

ψ = θ2 − θ1.
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From lectures, and by conditional independence, we know that, conditional on σ2,

πn(θ1, θ2|σ2) = πn1(θ1|σ2)πn2(θ2|σ2)

with
πnj (θj |σ2) ≡ Normal

(
ηnj , σ

2/λnj

)
j = 1, 2.

where, for j = 1, 2,

ηnj =
njyjnj

+ λjη

nj + λj
λnj = nj + λj .

Therefore, by properties of the Normal distribution

πn(ψ|σ2) ≡ Normal(ηn, σ
2/λn)

where
ηn = ηn2 − ηn1 λn =

λn1λn2

λn1 + λn2

.

Therefore, under the conjugate InvGamma(a0/2, b0/2) prior for σ2, we have from lectures that
πn(ψ) is a Student-t distribution

πn(ψ) =
Γ((an + 1)/2)

Γ(an/2)
√
π

1

a
1/2
n

(
1

ϕn

)1/2
{
1 +

1

an

(ψ − ηn)
2

ϕn

}−(an+1)/2

where

an = n1 + n2 + a0

bn =
n1λ1
n1 + λ1

(yn1
− η1)

2 +

n1∑
i=1

(y1i − y1n)
2 +

n2λ2
n2 + λ2

(y2n2
− η2)

2 +

n2∑
i=1

(y2i − y2n2
)2 + b0

and where
ϕn =

bn
anλn

5. Suppose exchangeable sequences {Yn} are assumed to arise from a Bayesian model with

fY(y;θ) ≡ Normal2(θ,Σ0)

where Y1, . . .Yn are 2 × 1 random vectors that are conditionally independent given parameters θ =
(θ1, θ2)

⊤, where Σ0 is a known covariance matrix.

(i) Find the posterior distribution for θ if a conjugate prior is used.
(ii) Find the marginal posteriors for θ1 and for θ2.

(iii) Find the conditional posterior for θ2 given θ1.

(i) Up to proportionality, the likelihood in this case, using the bivariate Normal distribution pdf,
takes the form

Ln(θ) ∝
n∏

i=1

exp

{
−1

2
(yi − θ)⊤Σ−1

0 (yi − θ)

}
.

The term in the exponent resulting from the product can be written

n∑
i=1

(yi − θ)⊤Σ−1
0 (yi − θ) =

n∑
i=1

(yi − yn)
⊤Σ−1

0 (yi − yn) + n(θ − yn)
⊤Σ−1

0 (θ − yn)
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using the usual sum-of-squares decomposition. A conjugate prior is therefore theNormal2(m0,M0)

π0(θ) ∝ exp

{
−1

2
(θ −m0)

⊤M−1
0 (θ −m0)

}
.

To compute the posterior, we first note that in the exponent, combining two terms using the
complete-the-square formula, we have

n(θ − yn)
⊤Σ−1

0 (θ − yn) + (θ −m0)
⊤M−1

0 (θ −m0) = (θ −mn)
⊤M−1

n (θ −mn) + cn

where

Mn =
(
nΣ−1

0 +M−1
0

)−1
mn =

(
nΣ−1

0 +M−1
0

)−1 (
nΣ−1

0 yn +Σ−1
0 m0

)
.

Thus we conclude that

πn(θ) ∝ exp

{
−1

2
(θ −mn)

⊤M−1
n (θ −mn)

}
and so πn(θ) ≡ Normal2(mn,Mn).

(ii) By properties of the multivariate Normal distribution (see Appendix), we have that if

mn =

(
mn1

mn2

)
Mn =

(
Mn11 Mn12

Mn21 Mn22

)
then

πn(θ1) ≡ Normal(mn1,Mn11) πn(θ2) ≡ Normal(mn2,Mn22)

(iii) By properties of the multivariate Normal distribution, we have that

πn(θ2|θ1) ≡ Normal(mn2 + (Mn21(θ1 −mn1)/Mn11),Mn22 −M2
n12/Mn11)

6. Show that, in general, Bayes estimators defined by expected loss minimization are not invariant to 1-1
transformations; that is, if θ̂nB is a Bayes estimator of θ, and ϕ = g(θ) is 1-1 reparameterization of the
model, then

ϕ̂nB ̸= g(θ̂nB)

in general.

A counterexample suffices to demonstrate that the result does not hold in general. Suppose that
θ > 0. We have that

θ̂nB = argmin
t

∫
Lθ(t, θ)πn(θ) dθ.

and under quadratic loss, Lθ(t, θ) = (t− θ)2, we have seen that the estimate is the posterior mean

θ̂nB = Eπn [θ].

Now suppose ϕ = g(θ) = θ2, so that g(x) = x2, and θ =
√
ϕ. We must specify the loss to be the

same for a given ϕ as it would be for the corresponding θ, that is

Lϕ(t, ϕ) ≡ Lθ(t, θ) θ =
√
ϕ.

Hence we must have
Lϕ(t, ϕ) = (t−

√
ϕ)2

We conclude by the usual method that ϕ̂nB = E
πϕ
n
[
√
ϕ] computed under the posterior for ϕ. But in

general
E
πϕ
n
[
√
ϕ] ≡ Eπn [θ] ̸= {Eπn [θ]}

2

by standard arguments.
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APPENDIX

CALCULATIONS FOR THE MULTIVARIATE NORMAL DISTRIBUTION

The multivariate Normal distribution is a multivariate generalization of the Normal distribution. The
joint pdf of X = (X1, . . . , Xd)

⊤ takes the form

fX1,...,Xd
(x1, . . . , xd) =

(
1

2π

)d/2 1

|Σ|1/2
exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
where x = (x1, . . . , xd)

⊤, µ is a d × 1 vector, and Σ is a symmetric, positive-definite d × d matrix. The
distribution is obtained by taking a vector Z = (Z1, . . . , Zd)

⊤ of independent standard Normal random
variables with joint pdf

fZ1,...,Zd
(z1, . . . , zd) =

(
1

2π

)d/2

exp

{
−1

2

d∑
i=1

z2i

}
=

(
1

2π

)d/2

exp

{
−1

2
z⊤z

}
and taking the linear transformation

X = LZ+ µ

where L is the Cholesky factor of Σ, that is,

Σ = LL⊤.

Using the multivariate transformation result, we can deduce the multivariate Normal joint pdf. It can
be shown that for any linear combination

Y = AX+ b

for constant matrix A and vector b (compatible in dimension) also has a multivariate Normal distribu-
tion; this result can be derived using moment generating functions; we have for t = (t1, . . . , td)

⊤ ∈ Rd,
by independence

MZ(t) = exp

{
1

2

d∑
i=1

t2i

}
= exp

{
1

2
t⊤t

}
so therefore

MX(t) = EX[exp{t⊤X}] = EZ[exp{t⊤(LZ+ µ)}]

= exp{t⊤µ}EZ[exp{(t⊤L)Z)}]

= exp{t⊤µ}MZ(L
⊤t)

= exp{t⊤µ} exp
{
1

2
(L⊤t)⊤(L⊤t)

}

= exp

{
t⊤µ+

1

2
t⊤(LL⊤)t

}

= exp

{
t⊤µ+

1

2
t⊤Σt

}
.

The distribution of Y = AX+ b can be deduced using similar methods as

Y ∼ Normald(Aµ+ b,AΣA⊤).
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Marginal And Conditional Distributions

All marginal and all conditional distributions derived from the multivariate Normal are also multivari-
ate normal; for the marginal distributions, the result follows immediately from the derivation above
Suppose that vector random variable X = (X1, X2, . . . , Xd)

⊤ has a multivariate normal distribution
with pdf given by

fX(x) =

(
1

2π

)d/2 1

|Σ|1/2
exp

{
−1

2
x⊤Σ−1x

}
(1)

where Σ is the d×d variance-covariance matrix (we can consider here the case where the expected value
µ is the d× 1 zero vector; results for the general case are easily available by transformation).

Consider partitioning X into two components X1 and X2 of dimensions d1 and d2 = d−d1 respectively,
that is,

X =

[
X1

X2

]
.

We attempt to deduce

(a) the marginal distribution of X1, and

(b) the conditional distribution of X2 given that X1 = x1.

First, write

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ11 is d1 × d1, Σ22 is d2 × d2, Σ21 = Σ⊤

12, and

Σ−1 = V =

[
V11 V12

V21 V22

]
so that ΣV = Id (Ir is the r × r identity matrix) gives[

Σ11 Σ12

Σ21 Σ22

] [
V11 V12

V21 V22

]
=

[
Id1 0
0 Id2

]
where 0 represents the zero matrix of appropriate dimension. More specifically,

Σ11V11 +Σ12V21 = Id1 (2)
Σ11V12 +Σ12V22 = 0 (3)
Σ21V11 +Σ22V21 = 0 (4)
Σ21V12 +Σ22V22 = Id2 . (5)

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as

x⊤Σ−1x = x⊤
1 V11x1 + x⊤

1 V12x2 + x⊤
2 V21x1 + x⊤

2 V22x2. (6)

In order to compute the marginal and conditional distributions, we must complete the square in x2 in
this expression. We can write

x⊤Σ−1x = (x2 −m)⊤M(x2 −m) + c (7)

and by comparing with equation (6) we can deduce that, for quadratic terms in x2,

x⊤
2 V22x2 = x⊤

2 Mx2 ∴ M = V22
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for linear terms
x⊤
2 V21x1 = −x⊤

2 Mm ∴ m = −V−1
22 V21x1

and for constant terms

x⊤
1 V11x1 = c+m⊤Mm ∴ c = x⊤

1 (V11 −V⊤
21V

−1
22 V21)x1

thus yielding all the terms required for equation (7), that is

x⊤Σ−1x = (x2 +V−1
22 V21x1)

⊤V22(x2 +V−1
22 V21x1) + x⊤

1 (V11 −V⊤
21V

−1
22 V21)x1,

which, crucially, is a sum of two terms, where the first can be interpreted as a function of x2, given x1,
and the second is a function of x1 only.

Hence we have a factorization of the joint pdf using the chain rule for random variables;

fX(x) = fX2|X1
(x2|x1)fX1(x1) (8)

where

fX2|X1
(x2|x1) ∝ exp

{
−1

2
(x2 +V−1

22 V21x1)
⊤V22(x2 +V−1

22 V21x1)

}
giving that

X2|X1 = x1 ∼ Normald2
(
−V−1

22 V21x1,V
−1
22

)
(9)

and

fX1(x1) ∝ exp

{
−1

2
x⊤
1 (V11 −V⊤

21V
−1
22 V21)x1

}
giving that

X1 ∼ Normald1

(
0, (V11 −V⊤

21V
−1
22 V21)

−1
)
. (10)

But, from equation (3), Σ12 = −Σ11V12V
−1
22 , and then from equation (2), substituting in Σ12,

Σ11V11 − Σ11V12V
−1
22 V21 = Id ∴ Σ11 = (V11 −V12V

−1
22 V21)

−1 = (V11 −V⊤
21V

−1
22 V21)

−1.

Hence, by inspection of equation (10), we conclude that

X1 ∼ Normald1 (0,Σ11) ,

that is, we can extract the Σ11 block of Σ to define the marginal sigma matrix of X1.

Using similar arguments, we can define the conditional distribution from equation (9) more precisely.
First, from equation (3), V12 = −Σ−1

11 Σ12V22, and then from equation (5), substituting in V12

−Σ21Σ
−1
11 Σ12V22 +Σ22V22 = Id−d ∴ V−1

22 = Σ22 − Σ21Σ
−1
11 Σ12 = Σ22 − Σ⊤

12Σ
−1
11 Σ12.

Finally, from equation (3), taking transposes on both sides, we have that V21Σ11 + V22Σ21 = 0. Then
pre-multiplying by V−1

22 , and post-multiplying by Σ−1
11 , we have

V−1
22 V21 +Σ21Σ

−1
11 = 0 ∴ V−1

22 V21 = −Σ21Σ
−1
11 ,

so we have, substituting into equation (9), that

X2|X1 = x1 ∼ Normald2
(
Σ21Σ

−1
11 x1,Σ22 − Σ21Σ

−1
11 Σ12

)
.

Thus any marginal, and any conditional distribution of a multivariate Normal joint distribution is also
multivariate normal, as the choices of X1 and X2 are arbitrary.
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