MATH 559 - EXERCISES 1

Not for Assessment

The Poisson model has mass function

$$f_Y(y;\theta) = \frac{\theta^y \exp\{-\theta\}}{y!}$$
 $y = 0, 1, 2, ...$

and zero otherwise, for parameter $\theta > 0$. Two priors to consider in a Bayesian analysis are

- (i) $\pi_0(\theta) \equiv Gamma(\alpha_0, \beta_0)$ for $\alpha_0, \beta_0 > 0$;
- (ii) $\pi_0(\theta)$ determined by the assumption that $\phi = \log \theta$ is $Normal(\eta_0, \tau_0^2)$ distributed a priori.

For values of the hyperparameters α_0 , β_0 , η_0 , τ_0^2 of your choosing, compute and plot the posterior density $\pi_n(\theta)$ under the two priors for the following data, which constitute a sample of size n=50 are displayed in aggregate form That is, there were two observations with y=0, six with y=1 and so on.

y	0	1	2	3	4	5	6
Count	2	6	7	16	11	6	2

MATH 559 Exercises 1 Page 1 of 1