MATH 559 - ASSIGNMENT 3 - SOLUTIONS

1. The $Trinomial(n, \theta_1, \theta_2)$ distribution is a bivariate distribution with pmf

$$p_{Y_1,Y_2}(y_1,y_2;\theta_1,\theta_2) = \frac{n!}{y_1!y_2!(n-y_1-y_2)!}\theta_1^{y_1}\theta_2^{y_2}(1-\theta_1-\theta_2)^{n-y_1-y_2} \qquad 0 \le y_1,y_2,y_1+y_2 \le n,$$

where $n \ge 1$ is a fixed integer, and parameters (θ_1, θ_2) are parameters with parameter space

$$\Theta = \{(\theta_1, \theta_2) : 0 < \theta_1, \theta_2, \theta_1 + \theta_2 < 1\}.$$

(a) Find the posterior for (θ_1, θ_2) under the conjugate $Dirichlet(\alpha_1, \alpha_2, \alpha_3)$ prior, with pdf

$$\pi_0(\theta_1, \theta_2) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} (1 - \theta_1 - \theta_2)^{\alpha_3 - 1}$$

with support Θ , where $\alpha_1, \alpha_2, \alpha_3 > 0$ are hyperparameters.

SOLUTION: We have that, on the support of the prior,

$$\pi_n(\theta_1, \theta_2) \propto \left\{ \theta_1^{y_1} \theta_2^{y_2} (1 - \theta_1 - \theta_2)^{n - y_1 - y_2} \right\} \times \left\{ \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} (1 - \theta_1 - \theta_2)^{\alpha_3 - 1} \right\}$$
$$= \theta_1^{y_1 + \alpha_1 - 1} \theta_2^{y_2 + \alpha_2 - 1} (1 - \theta_1 - \theta_2)^{n - y_1 - y_2 + \alpha_3 - 1}$$

and so we may deduce that

$$\pi_n(\theta_1, \theta_2) \equiv Dirichlet(y_1 + \alpha_1, y_2 + \alpha_2, n - y_1 - y_2 + \alpha_3)$$

3 MARKS

(b) Plot the joint posterior if $\alpha_1 = \alpha_2 = \alpha_3 = 1$, and $n = 10, y_1 = 3, y_2 = 4$.

SOLUTION: Using the code provided (any plotting method is allowed):

```
#Dirichlet pdf
Dir.post<-function(th1,th2,y1v,y2v,nv,a1v=1,a2v=1,a3v=1){</pre>
    if(th1+th2 >= 1){
        return(0.0)
    }else{
        c1 < -gamma(nv+a1v+a2v+a3v)
        c2<-(gamma(a1v+y1v)*gamma(a2v+y2v)*gamma(nv-y1v-y2v+a3v))
        dval <-c1*exp(y1v*log(th1)+y2v*log(th2)+(nv-y1v-y2v)*log(1-th1-th2))/c2
    return(dval)
f <- Vectorize(Dir.post, vectorize.args=c("th1", "th2"))</pre>
th1v < -seq(0.0, 1, by=0.01)
th2v < -seq(0.0, 1, by=0.01)
y1<-3; y2<-4; n<-10
dmat<-outer(th1v,th2v,f,y1v=y1,y2v=y2,nv=n)
library(fields, quietly=TRUE)
par(pty='s',mar=c(4,3,2,2))
colfunc <- colorRampPalette(c("blue","lightblue","white","yellow","orange","red"))</pre>
image.plot(th1v,th2v,dmat,col=colfunc(100),
           xlab=expression(theta[1]),ylab=expression(theta[2]),cex.axis=0.8)
contour(th1v,th2v,dmat,add=T,nlevels=20)
```


4 MARKS

(c) Find the marginal posterior for

$$\phi = \frac{\theta_1}{\theta_1 + \theta_2}$$

under the prior in (a).

SOLUTION: We define the bivariate 1-1 transformation,

$$\phi = \frac{\theta_1}{\theta_1 + \theta_2} \qquad \qquad \psi = \theta_1 + \theta_2$$

so that for the inverse transformations we have $\theta_1 = \psi \phi, \theta_2 = \psi (1 - \phi)$. Note that in the new parameterization, we have that the support of the new prior/posterior will be

$$\{(\phi, \psi): 0 < \phi < 1, 0 < \psi < 1\} \equiv (0, 1) \times (0, 1).$$

The Jacobian of the transformation is

$$\left| \begin{array}{cc} \psi & -\psi \\ \phi & 1-\phi \end{array} \right| = \psi$$

and therefore the posterior for the new parameters is

$$\pi_n^*(\phi, \psi) = \pi_n(\psi\phi, \psi(1-\phi))\psi \qquad (\phi, \psi) \in (0, 1) \times (0, 1)$$

which we compute as

$$\pi_n^*(\phi,\psi) \propto (\psi\phi)^{y_1+a_1-1}(\psi(1-\phi))^{y_2+a_2-1}(1-\psi\phi-\psi(1-\phi))^{n-y_1-y_2+a_3-1}\psi$$
$$= \left\{\phi^{y_1+a_1-1}(1-\phi)^{y_2+a_2-1}\right\} \left\{\psi^{y_1+y_2+a_1+a_2-2}(1-\psi)^{n-y_1-y_2+a_3}\right\}$$

Therefore we can deduce that the marginal posterior for ϕ is $Beta(y_1+a_2,y_2+a_2)$, as the joint posterior factorizes into the product of the marginal for ϕ and the marginal for ψ . 5 MARKS

2. The Gibbs posterior for iid data drawn from distribution F_0 using prior $\pi_0^{\dagger}(\theta)$ is formed by computing the density

$$\pi_n^{\dagger}(\theta) = \frac{\exp\left\{-\eta \sum_{i=1}^n \ell(y_i, \theta)\right\} \pi_0^{\dagger}(\theta)}{\int \exp\left\{-\eta \sum_{i=1}^n \ell(y_i, t)\right\} \pi_0^{\dagger}(t) dt}$$

defined when the denominator is finite, where $\ell(y,\theta)$ is a non-negative function from $\mathcal{Y} \times \Theta$ to \mathbb{R}^+ , and η is a fixed positive constant. The true value of the parameter, θ_0 , is defined by

$$\theta_0 = \arg\min_t \int \ell(y, t) dF_0(y)$$

that is, it is the loss-minimizing value of the parameter.

(a) Suppose that $\ell(y,\theta)$ is at least three times differentiable with respect to θ for almost all y (that is, the set of y values for which the function is NOT differential contains probability equal to zero under F_0) at each $\theta \in \Theta$. Suppose that θ_0 lies in an open subset of Θ .

Describe the behaviour of $\pi_n^{\dagger}(\theta)$ as $n \longrightarrow \infty$.

SOLUTION: Under these conditions, the loss function can be approximated in the same was as a regular log density (or log likelihood) function, that is, using a quadratic Taylor expansion. Therefore, provided the support of the prior includes θ_0 , the posterior will concentrate at θ_0 as $n \to \infty$. Under these conditions, when n is large,

$$\frac{1}{n}\sum_{i=1}^{n}\ell(y_i,\theta)$$

is minimized at $\theta = \theta_0$ with probability tending to 1, by the result from lectures. In addition, we may construct a Normal approximation to π_n^{\dagger} by using the quadratic expansion.

Note that θ_0 may not be uniquely defined in general (for example if F_0 is a discrete distribution), in which case these results hold for one of the true loss minimizers.

4 MARKS

(b) If $\mathcal{Y} \equiv \Theta \equiv \mathbb{R}$ and $\ell(y, \theta) = |y - \theta|$ show that the Gibbs posterior is equivalent to a standard Bayesian posterior under a particular parametric assumption.

SOLUTION: In this case

$$\exp\left\{-\eta \sum_{i=1}^{n} \ell(y_i, \theta)\right\} = \exp\left\{-\eta \sum_{i=1}^{n} |y_i - \theta|\right\}$$

suggesting that for this to be a standard Bayesian posterior, we would need the density

$$f_Y(y;\theta) \propto \exp\{-\eta|y-\theta|\}.$$

But this is a valid pdf on \mathbb{R} that takes the form

$$f_Y(y;\theta) = \frac{\eta}{2} \exp\{-\eta |y - \theta|\} \qquad y \in \mathbb{R}$$

which is known as the Laplace or Double Exponential distribution with location parameter θ . Here η is treated as a **known** scale parameter.

(c) If, in fact $F_0(y)$ is an Exponential(1) distribution, describe the behaviour of $\pi_n^{\dagger}(\theta)$ as $n \longrightarrow \infty$ for the loss function in (b).

SOLUTION: In this case, we have from results proven in lectures that θ_0 is the **median** of F_0 , which for this distribution is the value $\log 2 = 0.69310$. Therefore the Gibbs posterior concentrates at this value as $n \longrightarrow \infty$, provided this value lies in the support of π_0^{\dagger} .

Illustration of this result (not required in solution): we may use (for convenience) the Jeffreys prior for θ , which is constant on \mathbb{R} and therefore improper, but yields a valid posterior; we may also choose $\eta=1$ for illustration.

$$\pi_n^{\dagger}(\theta) = \frac{\exp\left\{-\sum_{i=1}^n |y_i - \theta|\right\}}{\int_{-\infty}^{\infty} \exp\left\{-\sum_{i=1}^n |y_i - t|\right\} dt}$$

```
Gpost<-function(thv,yv,ev=1){</pre>
    return(exp(-ev*sum(abs(yv-thv))))
GpostI<-function(thv,yv,ev=1){</pre>
    Iv<-thv
    for(i in 1:length(thv)){
         Iv[i] <-exp(-ev*sum(abs(yv-thv[i])))</pre>
    return(Iv)
set.seed(1101)
yl < -expression({\{pi[n]\}^"\setminus u2020"\}(theta))}
for(n in c(10,100,1000)){
    Y < -rexp(n)
    th < -seq(-2,2,by=0.01)
    Gy<-th*0
    Ival<-integrate(GpostI,lower=-Inf,upper=Inf,yv=Y)</pre>
    for(j in 1:length(th)){
         Gy[j]<-Gpost(th[j],Y)</pre>
    plot(th,Gy/Ival$value,type='l',ylab=yl,xlab=expression(theta))
    title(paste('n =',n))
    abline(v=log(2),col='red',lty=2)
```



```
th<-seq(0.5,0.9,by=0.001)
set.seed(3)
n<-1000
Y<-rexp(n)
Gy<-th*0
Ival<-integrate(GpostI,lower=-Inf,upper=Inf,yv=Y)
for(j in 1:length(th)){
    Gy[j]<-Gpost(th[j],Y)
}
plot(th,Gy/Ival$value,type='l',ylab=yl,xlab=expression(theta))
title(paste('n =',n))
abline(v=log(2),col='red',lty=2)</pre>
```


Addendum: The Gibbs posterior based on the absolute error loss can be approximated by a Normal distribution, but some care is needed in constructing the approximation. The function

$$\ell(y,t) = |y - t|$$

is not differentiable wrt t at t = y, but is differentiable everywhere else. The log-posterior

$$\log \pi_n^\dagger(\theta) = -\sum_{i=1}^n |y_i - \theta| + \text{const.}$$

is a piecewise linear function that is well approximated by a quadratic when n is large.

```
th<-seq(-2,2,by=0.01)
set.seed(3)
n<-10
Y<-rexp(n)
lGy<-th*0
for(j in 1:length(th)){
    lGy[j]<-log(Gpost(th[j],Y))
}
yll<-expression(log({{pi[n]}^"\u2020"}(theta)))
plot(th,lGy,type='l',ylab=yll,xlab=expression(theta))
title(paste('n =',n))
abline(v=log(2),col='red',lty=2)</pre>
```



```
th<-seq(-2,2,by=0.01)
set.seed(3)
n<-100
Y<-rexp(n)
lGy<-th*0
for(j in 1:length(th)){
    lGy[j]<-log(Gpost(th[j],Y))
}
yll<-expression(log({{pi[n]}^"\u2020"}(theta)))
plot(th,lGy,type='l',ylab=yll,xlab=expression(theta))
title(paste('n =',n))
abline(v=log(2),col='red',lty=2)</pre>
```



```
th<-seq(0.5,0.9,by=0.01)
set.seed(3)
n<-1000
Y<-rexp(n)
lGy<-th*0
for(j in 1:length(th)){
    lGy[j]<-log(Gpost(th[j],Y))
}
yll<-expression(log({{pi[n]}^"\u2020"}(theta)))
plot(th,lGy,type='l',ylab=yll,xlab=expression(theta))
title(paste('n =',n))
abline(v=log(2),col='red',lty=2)</pre>
```


However, writing $|y - \theta| = \sqrt{(y - \theta)^2}$, we have that at θ where the derivatives exist,

$$\dot{\ell}(y,\theta) = -\sum_{i=1}^{n} \operatorname{sgn}|y_i - \theta| \qquad \operatorname{sgn}(x) = -\mathbb{1}_{(-\infty,0)}(x) + \mathbb{1}_{(0,\infty)}(x)$$

 $\ddot{\ell}(y,\theta) = 0 \quad \forall \theta$

so the second derivative cannot be used to approximate the log-posterior. Instead we may use the frequentist theory and replace the second derivative at θ by using the square of the first derivative. Here, we have

$$\sum_{i=1}^{n} {\{\dot{\ell}(y,\theta)\}^2} = n$$

suggesting the approximation

$$\log \pi_n^\dagger(\theta) = \log \pi_n^\dagger(\widehat{\theta}) - \frac{n}{2}(\theta - \widehat{\theta})^2$$

where $\widehat{\theta}$ is the posterior mode, so that

$$\pi_n^{\dagger}(\theta) \approx Normal(\widehat{\theta}, 1/n).$$

```
th<-seq(0.5,0.9,by=0.01)
set.seed(3)
n<-1000
Y<-rexp(n)
lGy<-th*0
for(j in 1:length(th)){
    lGy[j]<-log(Gpost(th[j],Y))
}
yll<-expression(log({{pi[n]}^"\u2020"}(theta)))
plot(th,lGy,type='l',ylab=yll,xlab=expression(theta))
lines(th,max(lGy)-0.5*n*(th-th[which.max(lGy)])^2,col='red')
title(paste('n =',n))
abline(v=log(2),col='red',lty=2)
legend(0.785,max(lGy),c('Exact','Quadratic Appr.'),col=c('black','red'),lty=1)</pre>
```

