MATH 559 - ASSIGNMENT 3 - SOLUTIONS

1. The Trinomial(n, 01, 02) distribution is a bivariate distribution with pmf

n!

PyiYs (Y1, Y2361, 02) = ,911“932(1 — 01 —0y)" Y2 0<wy1,y2,y1 +y2 <,

yilya!(n — y1 — y2)!
where n > 1 is a fixed integer, and parameters (01, 602) are parameters with parameter space
© = {(01,02) : 0 < 01,602,601 + 65 < 1}.
(a) Find the posterior for (01, 02) under the conjugate Dirichlet(aq, oz, ag) prior, with pdf

I(ay + as + az)

7o (01,02) = ['(ay)T (o) (as)

07 152 (1 — 0y — By) et

with support ©, where o1, aa, a3 > 0 are hyperparameters.

SOLUTION: We have that, on the support of the prior,
T (01,02) oc {071 052 (1 — 01 — 0)" v %2} x {671 71052 71 (1 — 01 — 62)* '}
= gprrenlgyteeTi(q — g — gy)n v vetes—l
and so we may deduce that
mn(01,02) = Dirichlet(y, + o, y2 + a2,n — y1 — y2 + a3)

3 MARKS

(b) Plot the joint posterior if a1 = g = a3 = 1, and n = 10,y1 = 3,y2 = 4.
SOLUTION: Using the code provided (any plotting method is allowed):

#Dirichlet pdf
Dir.post<-function(thl,th2,ylv,y2v,nv,alv=1,a2v=1,a3v=1){

if (th1+th2 >= 1){
return(0.0)
telse{
cl<-gamma (nv+alv+a2v+a3v)
c2<-(gamma (alv+ylv) *gamma (a2v+y2v) *gamma (nv-y1lv-y2v+a3v))
dval<-cl*exp(ylv*log(thl)+y2v*log(th2)+(nv-ylv-y2v)*log(1-thl-th2))/c2

return(dval)
}
f <- Vectorize(Dir.post,vectorize.args=c("thi","th2"))
thiv<-seq(0.0,1,by=0.01)
th2v<-seq(0.0,1,by=0.01)
y1<-3;y2<-4;n<-10
dmat<-outer(thlv,th2v,f,ylv=yl,y2v=y2,nv=n)

library(fields,quietly=TRUE)

par(pty='s',mar=c(4,3,2,2))

colfunc <- colorRampPalette(c("blue","lightblue","white","yellow","orange","red"))

image.plot (thlv,th2v,dmat,col=colfunc(100),
xlab=expression(thetal[1]),ylab=expression(thetal[2]),cex.axis=0.8)

contour (thlv,th2v,dmat,add=T,nlevels=20)
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4 MARKS

(c) Find the marginal posterior for
b1

¢:&+%

under the prior in (a).
SOLUTION: We define the bivariate 1-1 transformation,

Y ="0,+0;

so that for the inverse transformations we have 0; = 1¢, 02 = (1 — ¢). Note that in the new parame-
terization, we have that the support of the new prior/posterior will be

{(p,0):0<dp<1,0<p <1} =(0,1) x (0,1).

The Jacobian of the transformation is

L
o 1-¢|="
and therefore the posterior for the new parameters is

T (0:9) = mn (Yo, b (1 = 0))Y (4, 9) € (0,1) x (0,1)

which we compute as
T (1) o (6)" LW (1 = )P0 (1 — g — (1 — )Ly
= {¢y1+a171(1 — ¢)y2+a271} {wy1+y2+a1+a272(1 _ w)n*y1*y2+a3}

Therefore we can deduce that the marginal posterior for ¢ is Beta(y; +az, y2+az), as the joint posterior
factorizes into the product of the marginal for ¢ and the marginal for . 5 MARKS
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2. The Gibbs posterior for iid data drawn from distribution Fy using prior m\(0) is formed by computing the density

/eXp {—nig(yut)} mo(t) dt

defined when the denominator is finite, where {(y, 0) is a non-negative function from Y x © to R*, and n is a fixed
positive constant. The true value of the parameter, 0, is defined by

0y = arg mtin/ﬁ(y,t) dFy(y)
that is, it is the loss-minimizing value of the parameter.

(a) Suppose that £(y,0) is at least three times differentiable with respect to 6 for almost all y (that is, the set of y
values for which the function is NOT differential contains probability equal to zero under Fy) at each 6 € ©.
Suppose that 0y lies in an open subset of ©.

Describe the behaviour of 7}, () as n — oc.

SOLUTION: Under these conditions, the loss function can be approximated in the same was as a
regular log density (or log likelihood) function, that is, using a quadratic Taylor expansion. Therefore,
provided the support of the prior includes 6y, the posterior will concentrate at 6y as n — oo. Under
these conditions, when n is large,

1 n

. Z ¢ (yiv 9)

i3

is minimized at § = 0, with probability tending to 1, by the result from lectures. In addition, we may
construct a Normal approximation to 7}, by using the quadratic expansion.

Note that 6, may not be uniquely defined in general (for example if Fj is a discrete distribution), in
which case these results hold for one of the true loss minimizers.

4 MARKS

(b) IfY = © =Rand {(y, 0) = |y — 0| show that the Gibbs posterior is equivalent to a standard Bayesian posterior
under a particular parametric assumption.

SOLUTION: In this case

exp {—nzﬁ(yu@)} = exp {—WZ lyi — 9I}
i=1 i=1
suggesting that for this to be a standard Bayesian posterior, we would need the density
Sy (y;0) oc exp{—nly — 6[}.
But this is a valid pdf on R that takes the form

n
fr(y;0) = Sexp{-nly -0}  yeR
which is known as the Laplace or Double Exponential distribution with location parameter §. Here 7
is treated as a known scale parameter. 2 MARKS

If, in fact Fy(y) is an Exponential(1) distribution, describe the behaviour of w} () as n — oo for the loss
function in (b).

(c

~

SOLUTION: In this case, we have from results proven in lectures that 6, is the median of I, which
for this distribution is the value log2 = 0.69310. Therefore the Gibbs posterior concentrates at this

value as n —s oo, provided this value lies in the support of 7. 2 MARKS
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Mlustration of this result (not required in solution): we may use (for convenience) the Jeffreys prior
for 8, which is constant on R and therefore improper, but yields a valid posterior; we may also choose
n = 1 for illustration.

n
GXP{— > Iyi—ﬂl}
i=1
o) n
/ eXp{—Zlyi—tl} dt
- i=1
Gpost<-function(thv,yv,ev=1){

return (exp (-evxsum(abs (yv-thv))))
}

GpostI<-function(thv,yv,ev=1){
Iv<-thv
for(i in 1:length(thv)){
Iv([i]<-exp(-ev*sum(abs(yv-thv[i])))

mh(0) =

return(Iv)

set.seed(1101)
yl<-expression({{pi[n]}~"\u2020"}(theta))

for(n in ¢(10,100,1000)){
Y<-rexp(n)
th<-seq(-2,2,by=0.01)
Gy<-th*0
Ival<-integrate(GpostI,lower=-Inf,upper=Inf,yv=Y)
Ival
for(j in 1:length(th)){
Gy[jl<-Gpost (th[j1,Y)

lot(th,Gy/Ival$value,type='1"',ylab=yl,xlab=expression(theta))
p y yp y y p

title(paste('n =',n))
abline(v=1log(2),col='red',lty=2)
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n = 1000

12

10

m,(8)

th<-seq(0.5,0.9,by=0.001)
set.seed(3)
n<-1000
Y<-rexp(n)
Gy<-th*0
Ival<-integrate(GpostI,lower=-Inf,,upper=Inf,yv=Y)
for(j in 1:length(th)){
Gy[jl1<-Gpost (th([j],Y)

plot (th,Gy/Ival$value,type='1l"',ylab=yl,xlab=expression(theta))

title(paste('n =',n))
abline(v=1log(2),col='red',lty=2)
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Addendum: The Gibbs posterior based on the absolute error loss can be approximated by a Normal distribution,
but some care is needed in constructing the approximation. The function

(y,t) =y —t|

is not differentiable wrt ¢ at ¢ = y, but is differentiable everywhere else. The log-posterior

log ), (6) = — Y _|y; — 0] + const.

i=1
is a piecewise linear function that is well approximated by a quadratic when n is large.

th<-seq(-2,2,by=0.01)

set.seed(3)

n<-10

Y<-rexp(n)

1Gy<-th*0

for(j in 1:length(th)){
1Gy[jl<-1log(Gpost (th[j1,Y))

yll<-expression(log({{pi[n]}~"\u2020"}(theta)))
plot(th,1Gy,type='1l"',ylab=yll,xlab=expression(theta))
title(paste('n =',n))
abline(v=1log(2),col='red',1ty=2)
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th<-seq(-2,2,by=0.01)

set.seed(3)

n<-100

Y<-rexp(n)

1Gy<-thx*0

for(j in 1:length(th)){
1Gy[jl<-1log(Gpost (th[j1,Y))

yll<-expression(log({{pil[n]}~"\u2020"}(theta)))
plot(th,1Gy,type='1l"',ylab=yll,xlab=expression(theta))
title(paste('n =',n))
abline(v=1log(2),col='red',lty=2)
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th<-seq(0.5,0.9,by=0.01)

set.seed(3)

n<-1000

Y<-rexp(n)

1Gy<-thx*0

for(j in 1:length(th)){
1Gy[jl<-1log(Gpost (th[j1,Y))

yll<-expression(log({{pil[n]}~"\u2020"}(theta)))
plot(th,1Gy,type='1l"',ylab=yll,xlab=expression(theta))
title(paste('n =',n))
abline(v=1log(2),col='red',lty=2)
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6
However, writing |y — 8| = 1/(y — 0)%, we have that at § where the derivatives exist,
U(y,0) == sgnly; — 0| sgn(z) = —1(_o0,0)(2) + L(0,00) (2)
i=1
{(y,0) =0 V6

so the second derivative cannot be used to approximate the log-posterior. Instead we may use the frequentist
theory and replace the second derivative at 6 by using the square of the first derivative. Here, we have

> (i 0y =n

suggesting the approximation

~

log i}, (6) = log 7}, (6) — (6 — )’

where § is the posterior mode, so that

7 (8) ~ Normal(8,1/n).
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th<-seq(0.5,0.9,by=0.01)

set.seed(3)

n<-1000

Y<-rexp(n)

1Gy<-th*0

for(j in 1:length(th)){
1Gy[jl1<-1log(Gpost (th[j],Y))

yll<-expression(log({{pi[n]}~"\u2020"}(theta)))
plot(th,1Gy,type='1l"',ylab=yll,xlab=expression(theta))
lines(th,max(1Gy)-0.5*n*(th-th[which.max(1Gy)])"2,col="red")

title(paste('n =',n))

abline(v=1log(2),col='red',1ty=2)

legend(0.785,max(1Gy) ,c('Exact', 'Quadratic Appr.'),col=c('black', 'red'),lty=1)

n =1000
— Exact
—— Quadratic Appr.
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