MATH 559 - ASSIGNMENT 1-SOLUTIONS

For $n \geq 1$, suppose the de Finetti representation for the joint pmf of exchangeable discrete random variables Y_1, \ldots, Y_n is given by

$$p_{Y_1,...,Y_n}(y_1,...,y_n) = \int_{\Theta} \prod_{i=1}^n p_Y(y_i;\theta) \pi_0(d\theta)$$

where $p_Y(y;\theta)$ is a mass function in y, and θ is a parameter lying in a space $\Theta \subseteq \mathbb{R}^p$, for some (prior) distribution $\pi_0(d\theta)$ defined on Θ , where we may interpret Θ as the smallest set such that

$$\int_{\Theta} \pi_0(d\theta) = 1.$$

As pointed out by Bernardo & Smith, the Poisson model with mass function

$$p_Y(y;\theta) = \frac{\theta^y \exp\{-\theta\}}{y!}$$
 $y = 0, 1, 2, ...$

and zero otherwise, for parameter $\theta > 0$, arises by considering observables taking values on the non-negative integers that yield certain summary statistics, or as the limiting case of a discrete selection (multinomial) model.

For this Poisson model:

(a) Find the form of $p_{Y_1,...,Y_n}(y_1,...,y_n)$ if π_0 is the Gamma density with parameters (α_0,β_0) , that is

$$\pi_0(d\theta) = \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \theta^{\alpha_0 - 1} \exp\{-\beta_0 \theta\} d\theta$$

and
$$\Theta = \mathbb{R}^+ \equiv \{t \in \mathbb{R} : t > 0\}.$$

Solution: We have from above that, for any $n \ge 1$, and any vector of non-negative integers (y_1, \ldots, y_n) , the prior predictive (joint) mass function is

$$p_{Y_{1},...,Y_{n}}(y_{1},...,y_{n}) = \int_{0}^{\infty} \prod_{i=1}^{n} p_{Y}(y_{i};\theta)\pi_{0}(\theta) d\theta$$

$$= \int_{0}^{\infty} \prod_{i=1}^{n} \frac{\theta^{y_{i}} \exp\{-\theta\}}{y_{i}!} \frac{\beta_{0}^{\alpha_{0}}}{\Gamma(\alpha_{0})} \theta^{\alpha_{0}-1} \exp\{-\beta_{0}\theta\} d\theta$$

$$= \frac{\beta_{0}^{\alpha_{0}}}{\Gamma(\alpha_{0})} \frac{1}{\prod_{i=1}^{n} y_{i}!} \int_{0}^{\infty} \theta^{s_{n}+\alpha_{0}-1} \exp\{-(n+\beta_{0})\theta\} d\theta \qquad s_{n} = \sum_{i=1}^{n} y_{i}$$

$$= \frac{\beta_{0}^{\alpha_{0}}}{\Gamma(\alpha_{0})} \frac{1}{\prod_{i=1}^{n} y_{i}!} \frac{\Gamma(s_{n}+\alpha_{0})}{(n+\beta_{0})^{(s_{n}+\alpha_{0})}}.$$

5 MARKS

Note: the implied distribution of $S_n = \sum_{i=1}^n Y_i$ is known as the *Poisson-Gamma* distribution.

(b) For the choice of π_0 in (a), compute the implied (marginal) covariance between Y_1 and Y_2 .

Solution: We have that for i = 1, ..., n, by iterated expectation

$$\mathbb{E}_{Y_i}[Y_i] = \mathbb{E}_{\pi_0}[\mathbb{E}_{Y_i|\theta}[Y_i|\theta]]$$

and

$$\mathbb{E}_{Y_i}[Y_i^2] = \mathbb{E}_{\pi_0}[\mathbb{E}_{Y_i|\theta}[Y_i^2|\theta]] = \mathbb{E}_{\pi_0}[\operatorname{Var}_{Y_i|\theta}[Y_i|\theta] + \{\mathbb{E}_{Y_i|\theta}[Y_i|\theta]\}^2]$$

so combining terms together

$$\operatorname{Var}_{Y_{i}}[Y_{i}] = \mathbb{E}_{Y_{i}}[Y_{i}^{2}] - \{\mathbb{E}_{Y_{i}}[Y_{i}]\}^{2} = \mathbb{E}_{\pi_{0}}[\operatorname{Var}_{Y_{i}\mid\theta}[Y_{i}\mid\theta]] + \mathbb{E}_{\pi_{0}}[\{\mathbb{E}_{Y_{i}\mid\theta}[Y_{i}\mid\theta]\}^{2} - \{\mathbb{E}_{Y_{i}}[Y_{i}]\}^{2}]$$

as the term $\mathbb{E}_{Y_i}[Y_i]$ does not depend on θ . Thus, by the original iterated expectation result, the variance can be written

$$\operatorname{Var}_{Y_i}[Y_i] = \mathbb{E}_{\pi_0}[\operatorname{Var}_{Y_i|\theta}[Y_i|\theta]] + \operatorname{Var}_{\pi_0}[\mathbb{E}_{Y_i|\theta}[Y_i|\theta]]$$

which is known as the *iterated variance formula*. Thus, by properties of the Poisson distribution

$$\operatorname{Var}_{Y_i}[Y_i] = \mathbb{E}_{\pi_0}[\theta] + \operatorname{Var}_{\pi_0}[\theta]$$

and by properties of the Gamma distribution, we have finally

$$\operatorname{Var}_{Y_i}[Y_i] = \frac{\alpha_0}{\beta_0} + \frac{\alpha_0}{\beta_0^2} = \frac{\alpha_0(1+\beta_0)}{\beta_0^2}.$$

For the covariance, using iterated expectation we have

$$\begin{split} \mathbb{E}_{Y_i,Y_j}[Y_iY_j] &= \mathbb{E}_{\pi_0} \left[\mathbb{E}_{Y_i,Y_j|\theta}[Y_iY_j|\theta] \right] \\ &= \mathbb{E}_{\pi_0} \left[\mathbb{E}_{Y_i|\theta}[Y_i|\theta] \mathbb{E}_{Y_j|\theta}[Y_j|\theta] \right] \qquad Y_i,Y_j \text{ cond. indep.} \\ &= \mathbb{E}_{\pi_0}[\theta^2] \\ &= \mathrm{Var}_{\pi_0}[\theta] + \{ \mathbb{E}_{\pi_0}[\theta] \}^2. \end{split}$$

Thus

$$\mathrm{Cov}_{Y_i,Y_j}[Y_i,Y_j] = \mathbb{E}_{Y_i,Y_j}[Y_iY_j] - \mathbb{E}_{Y_i}[Y_i]\mathbb{E}_{Y_j}[Y_j] = \mathrm{Var}_{\pi_0}[\theta] = \frac{\alpha_0}{\beta_0^2}.$$

5 MARKS

(c) Suppose that a discrete prior is chosen, where the corresponding mass function takes the form

$$\pi_0(\theta) = \frac{1}{3} \mathbb{1}_{\{1\}}(\theta) + \frac{2}{3} \mathbb{1}_{\{2\}}(\theta)$$

that is, the prior places probability 1/3 on the value 1, and 2/3 on the value 2. Compute the implied (marginal) covariance between Y_1 and Y_2 for this prior.

Hint: in this case, $\Theta \equiv \{1,2\}$, and the integral in the de Finetti representation reduces to a sum.

Solution: Here, we can use the same methodology as above immediately to deduce the forms

$$\begin{split} \mathbb{E}_{Y_i}[Y_i] &= \mathbb{E}_{\pi_0}[\theta] \\ \operatorname{Var}_{Y_i}[Y_i] &= \mathbb{E}_{\pi_0}[\theta] + \operatorname{Var}_{\pi_0}[\theta] \\ \operatorname{Cov}_{Y_i,Y_j}[Y_i,Y_j] &= \operatorname{Var}_{\pi_0}[\theta]. \end{split}$$

For this discrete prior, we have

$$\mathbb{E}_{\pi_0}[\theta] = \frac{1}{3} \times 1 + \frac{2}{3} \times 2 = \frac{5}{3}$$

and

$$\mathbb{E}_{\pi_0}[\theta^2] = \frac{1}{3} \times 1 + \frac{2}{3} \times 4 = 3$$

so

$$\operatorname{Var}_{\pi_0}[\theta] = 3 - \left(\frac{5}{3}\right)^2 = \frac{2}{9}.$$

Hence

$$\mathbb{E}_{Y_i}[Y_i] = \frac{5}{3}$$

$$\operatorname{Var}_{Y_i}[Y_i] = \frac{5}{3} + \frac{2}{9} = \frac{17}{9}$$

$$\operatorname{Cov}_{Y_i,Y_j}[Y_i,Y_j] = \frac{2}{9}$$

5 MARKS

(d) For the prior in (a), find the posterior predictive distribution for Y_3 given $Y_1 = y_1$ and $Y_2 = y_2$.

Solution: By definition, we have that the posterior predictive distribution is given by

$$p_{Y_3|Y_1,Y_2}(y_3|y_1,y_2) = \frac{p_{Y_1,Y_2,Y_3}(y_1,y_2,y_3)}{p_{Y_1,Y_2}(y_1,y_2)}$$

provided the denominator is non-zero at the required arguments. Using the above form from (a), we deduce that

$$p_{Y_3|Y_1,Y_2}(y_3|y_1,y_2) = \frac{\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \frac{1}{\prod_{i=1}^3 y_i!} \frac{\Gamma(s_3 + \alpha_0)}{(3 + \beta_0)^{(s_3 + \alpha_0)}}}{\frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \frac{1}{\prod_{i=1}^2 y_i!} \frac{\Gamma(s_2 + \alpha_0)}{(2 + \beta_0)^{(s_2 + \alpha_0)}}}$$

$$= \frac{1}{y_3!} \frac{\Gamma(s_3 + \alpha_0)}{\Gamma(s_2 + \alpha_0)} \frac{(2 + \beta_0)^{(s_2 + \alpha_0)}}{(3 + \beta_0)^{(s_3 + \alpha_0)}}$$

5 MARKS