MATH 557 - MID-TERM 2017 - SOLUTIONS

i - {HEDY"

1. (a) Wehave

suggesting the sufficient statistic T(X) = (] i, [[(1 — ;)" and the result follows using

the Fisher-Neyman Factorization Theorem. 3 MARKS

(b) Writing A = log6, we realize that this is the Poisson(logf) model. Hence by elementary

n
calculation, T'(X) = )~ X; is a sufficient statistic for log 6. 3 MARKS
i=1

(c) The joint pdf is only non-zero if X; > 6 for all i, and hence can be written
L (¢) 1o
) . (%(1),00) '
fx(x;0) = —gn oXP {—9 le - n}

and it follows that T(X) = (X(y), > X;) is a sufficient statistic. 4 MARKS
i=1

2. (a) Note first that by standard expansion into a quartic polynomial

4

z—0\* . ;
< > =wo(6,0) + ij(ﬁ,a)xj =wp(0,0) + ij(e, o)tj(x)

o 5 -
j=1 Jj=1

say, where w;(6, o) are constant functions of 6 and o. Thus

k
fx(z;0,0) = h(zx)c(f,0) exp {ij(ﬁ, a)tj(:n)}

J=1

where h(z) = 1, ¢(0,0) = exp{wo(0,0) — k(0,0)}, t;(z) = 27,j = 1,...,4, and hence the
distribution is an Exponential Family distribution. By inspection, and using the Neyman
factorization theorem in this Exponential family setting, we have

T(X) = (N1(X), 1(X), T3(X), Tu(X)) T T;(X)=> (X)) => X}  j=1,...4
=1 =1

is a sufficient statistic. As this is a regular Exponential Family distribution, it follows that
this statistic is also minimal sufficient; this is easily verified using the minimal sufficiency
theorem, as the log density is a polynomial function. 6 MARKS

(b) This model is also a location family with standard member
fo(z) = cexp{—z*} r e R.

Hence we may write for¢ = 1,...,n, X; 4 Z; + 0, where Z; ~ fy. Consider the minimum
and maximum order statistics X(;) and X(,), and range R = X,,) — X(1). As

4

R=Xu —Xa) = Zwm) — 2y

it follows that R is ancillary, as its distribution does not depend on 6. 4 MARKS
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3. (a) The likelihood is

n

n 6—1
Z(x;0) = {H ]1(0,1)(551')} 0" {H(l - zi)} = h(x)0"{T(x)}*"" o 0"{T(x)}’
i=1

=1

n

say, where T'(x) = [[ (1 — z;). The log-likelihood is therefore
i=1
{(x;0) = const. + nlog 6 + 0log T'(x)

with derivative

{(x;0) = % + log T'(x)
and this equating to zero we find that the MLE is
O = 1 ; Sl
8T S iog(1— )

i=1
It is easy to check that the second derivative is negative at this solution, taking the value
n
—— <0.
n

5 MARKS
(b) The likelihood is

n n n a—1
f(x; a, ﬂ) = {H 1[(0’/3)(.%'1')} ;ﬁ {H .’L'z}
=1 =1

n
Let T'(x) = [] =i, and note that
i=1

[T 205 (@) = 106/ (@wm)
=1

The log-likelihood is therefore

nloga —nalog B+ (a—1)logT(x) B>z

(x50, B) = {

—00 B < xm)

It is evident that as the parameter space dictates that a > 0, this log-likelihood is monotonic
decreasing in 3 for § > z(,) (and equal to negative infinity on (0, z(,))), so therefore the
MLE for 8 must be z(,,). For o, the partial derivative is

ol(x; o, B)

n
= — — 1
9 L og B + log T'(x)

so therefore equating to zero and solving at 3 = B = Z(n), we have

~ n n
aTl = — — =
nlog f3,, — log T'(x)

3

(log () — log ;)

1

At this solution, the second derivative is —n/ &i < 0.
5 MARKS
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4.  (a) Itis useful to re-write this density as

1 T ]l(,oo’o](x) T ]]-(O,oo)(x)
fx(x;01,02) = 01+ 0, {GXP{QZ}} {exp{—el}}

_ 1 exp {fﬂl(—oo,o} (z) } exp {_J«"Jl(o,oo) (z) }
01 + 62 02 01

_ exp {_ 2L o) () 2L(0,00)(2) }
01+ 02 02 01

and hence the likelihood can be written

: (1Y LT

for the statistics
n n
T = Z 1(0700)(:%)1‘@ Ty = — Z ]l(—oo,O] (.7}1).1‘@
i=1 1=1

and hence the MLEs must be functions of these sufficient statistics as required.
6 MARKS

(b) For a sample of size n = 1, we have that

1 21 1

920 (61 +62)2 63 (01 + 62)2

90007 2D
(61 + 62)* (01+62)2 63
Now, by direct calculation

) o0 1 9%
1 ; = s eXpi{— = 0+ 0,)
N (0,00)(T)T fx (7501, 02) d /0 x(el 02 exp{—x/61} dz (01 + 02)

Er, [T1;601,062] =/

and similarly

92
1, [T2; 01, 02] @+ 03)
and hence
B S 1
T (0) _ (01 + 02)2 01(01 + 02) (91 + 92)2
e 1 2
(91 +92)2 92(91 —|—92)
205
1+22 1
_ 1 N 1
(91 + 92)2 1 . %
02
Evaluating at 6 = 0, gives the result. 4 MARKS
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