MATH 557 - MID-TERM 2017 - SOLUTIONS

1. (a) We have

$$f_{\mathbf{X}}(\mathbf{x}; \alpha, \beta) = \left\{ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^n \left\{ \prod_{i=1}^n x_i \right\}^{\alpha - 1} \left\{ \prod_{i=1}^n (1 - x_i) \right\}^{\beta - 1}$$

suggesting the sufficient statistic $\mathbf{T}(\mathbf{X}) = (\prod_{i=1}^n x_i, \prod_{i=1}^n (1-x_i))^{\top}$ and the result follows using the Fisher-Neyman Factorization Theorem.

- (b) Writing $\lambda = \log \theta$, we realize that this is the $Poisson(\log \theta)$ model. Hence by elementary calculation, $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for $\log \theta$.
- (c) The joint pdf is only non-zero if $X_i > \theta$ for all i, and hence can be written

$$f_{\mathbf{X}}(\mathbf{x}; \theta) = \frac{\mathbb{1}_{(x_{(1)}, \infty)}(\theta)}{\theta^n} \exp \left\{ -\frac{1}{\theta} \sum_{i=1}^n x_i - n \right\}$$

and it follows that $\mathbf{T}(\mathbf{X}) = (X_{(1)}, \sum_{i=1}^{n} X_i)$ is a sufficient statistic.

4 MARKS

2. (a) Note first that by standard expansion into a quartic polynomial

$$\left(\frac{x-\theta}{\sigma}\right)^4 = w_0(\theta,\sigma) + \sum_{j=1}^4 w_j(\theta,\sigma)x^j = w_0(\theta,\sigma) + \sum_{j=1}^4 w_j(\theta,\sigma)t_j(x)$$

say, where $w_i(\theta, \sigma)$ are constant functions of θ and σ . Thus

$$f_X(x; \theta, \sigma) = h(x)c(\theta, \sigma) \exp \left\{ \sum_{j=1}^k w_j(\theta, \sigma)t_j(x) \right\}$$

where h(x) = 1, $c(\theta, \sigma) = \exp\{w_0(\theta, \sigma) - \kappa(\theta, \sigma)\}$, $t_j(x) = x^j$, j = 1, ..., 4, and hence the distribution is an Exponential Family distribution. By inspection, and using the Neyman factorization theorem in this Exponential family setting, we have

$$\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}), T_3(\mathbf{X}), T_4(\mathbf{X}))^{\top}$$
 $T_j(\mathbf{X}) = \sum_{i=1}^n t_j(X_i) = \sum_{i=1}^n X_i^j$ $j = 1, \dots, 4$

is a sufficient statistic. As this is a regular Exponential Family distribution, it follows that this statistic is also minimal sufficient; this is easily verified using the minimal sufficiency theorem, as the log density is a polynomial function.

6 MARKS

(b) This model is also a location family with standard member

$$f_0(x) = c \exp\{-x^4\}$$
 $x \in \mathbb{R}$.

Hence we may write for $i=1,\ldots,n$, $X_i\stackrel{d}{=}Z_i+\theta$, where $Z_i\sim f_0$. Consider the minimum and maximum order statistics $X_{(1)}$ and $X_{(n)}$, and range $R=X_{(n)}-X_{(1)}$. As

$$R = X_{(n)} - X_{(1)} \stackrel{d}{=} Z_{(n)} - Z_{(1)},$$

it follows that R is ancillary, as its distribution does not depend on θ . 4 MARKS

3. (a) The likelihood is

$$\mathscr{L}(\mathbf{x};\theta) = \left\{ \prod_{i=1}^{n} \mathbb{1}_{(0,1)}(x_i) \right\} \theta^n \left\{ \prod_{i=1}^{n} (1-x_i) \right\}^{\theta-1} = h(\mathbf{x}) \theta^n \{ T(\mathbf{x}) \}^{\theta-1} \propto \theta^n \{ T(\mathbf{x}) \}^{\theta}$$

say, where $T(\mathbf{x}) = \prod_{i=1}^{n} (1 - x_i)$. The log-likelihood is therefore

$$\ell(\mathbf{x}; \theta) = \text{const.} + n \log \theta + \theta \log T(\mathbf{x})$$

with derivative

$$\dot{\ell}(\mathbf{x}; \theta) = \frac{n}{\theta} + \log T(\mathbf{x})$$

and this equating to zero we find that the MLE is

$$\widehat{\theta}_n = -\frac{n}{\log T(\mathbf{x})} = -\frac{n}{\sum_{i=1}^n \log(1 - x_i)}$$

It is easy to check that the second derivative is negative at this solution, taking the value

$$-\frac{n}{\widehat{\theta}_n^2} < 0.$$

5 Marks

(b) The likelihood is

$$\mathscr{L}(\mathbf{x}; \alpha, \beta) = \left\{ \prod_{i=1}^{n} \mathbb{1}_{(0,\beta)}(x_i) \right\} \frac{\alpha^n}{\beta^{n\alpha}} \left\{ \prod_{i=1}^{n} x_i \right\}^{\alpha-1}$$

Let $T(\mathbf{x}) = \prod_{i=1}^{n} x_i$, and note that

$$\prod_{i=1}^{n} \mathbb{1}_{(0,\beta)}(x_i) \equiv \mathbb{1}_{(0,\beta)}(x_{(n)})$$

The log-likelihood is therefore

$$\ell(\mathbf{x}; \alpha, \beta) = \begin{cases} n \log \alpha - n\alpha \log \beta + (\alpha - 1) \log T(\mathbf{x}) & \beta > x_{(n)} \\ -\infty & \beta \leq x_{(n)} \end{cases}$$

It is evident that as the parameter space dictates that $\alpha > 0$, this log-likelihood is monotonic decreasing in β for $\beta > x_{(n)}$ (and equal to negative infinity on $(0, x_{(n)})$), so therefore the MLE for β must be $x_{(n)}$. For α , the partial derivative is

$$\frac{\partial \ell(\mathbf{x}; \alpha, \beta)}{\partial \alpha} = \frac{n}{\alpha} - n \log \beta + \log T(\mathbf{x})$$

so therefore equating to zero and solving at $\beta = \widehat{\beta}_n = x_{(n)}$, we have

$$\widehat{\alpha}_n = -\frac{n}{n \log \widehat{\beta}_n - \log T(\mathbf{x})} = \frac{n}{\sum_{i=1}^n (\log x_{(n)} - \log x_i)}$$

At this solution, the second derivative is $-n/\hat{\alpha}_n^2 < 0$.

5 Marks

4. (a) It is useful to re-write this density as

$$f_X(x;\theta_1,\theta_2) = \frac{1}{\theta_1 + \theta_2} \left\{ \exp\left\{\frac{x}{\theta_2}\right\} \right\}^{\mathbb{1}_{(-\infty,0]}(x)} \left\{ \exp\left\{-\frac{x}{\theta_1}\right\} \right\}^{\mathbb{1}_{(0,\infty)}(x)}$$

$$= \frac{1}{\theta_1 + \theta_2} \exp\left\{\frac{x\mathbb{1}_{(-\infty,0]}(x)}{\theta_2}\right\} \exp\left\{-\frac{x\mathbb{1}_{(0,\infty)}(x)}{\theta_1}\right\}$$

$$= \frac{1}{\theta_1 + \theta_2} \exp\left\{-\frac{-x\mathbb{1}_{(-\infty,0]}(x)}{\theta_2} - \frac{x\mathbb{1}_{(0,\infty)}(x)}{\theta_1}\right\}$$

and hence the likelihood can be written

$$\mathscr{L}(\mathbf{x}; \theta_1, \theta_2) = \left(\frac{1}{\theta_1 + \theta_2}\right)^n \exp\left\{-\frac{T_2}{\theta_2} - \frac{T_1}{\theta_1}\right\}$$

for the statistics

$$T_1 = \sum_{i=1}^n \mathbb{1}_{(0,\infty)}(x_i)x_i$$
 $T_2 = -\sum_{i=1}^n \mathbb{1}_{(-\infty,0]}(x_i)x_i$

and hence the MLEs must be functions of these sufficient statistics as required.

6 MARKS

(b) For a sample of size n = 1, we have that

$$\frac{\partial^{2} \theta}{\partial \theta \partial \theta^{\top}} \left\{ \log f_{X}(X; \theta) \right\} = \begin{bmatrix} \frac{1}{(\theta_{1} + \theta_{2})^{2}} - \frac{2T_{1}}{\theta_{1}^{3}} & \frac{1}{(\theta_{1} + \theta_{2})^{2}} \\ \frac{1}{(\theta_{1} + \theta_{2})^{2}} & \frac{1}{(\theta_{1} + \theta_{2})^{2}} - \frac{2T_{2}}{\theta_{2}^{3}} \end{bmatrix}$$

Now, by direct calculation

$$\mathbb{E}_{T_1}[T_1; \theta_1, \theta_2] = \int_{-\infty}^{\infty} \mathbb{1}_{(0,\infty)}(x) x f_X(x; \theta_1, \theta_2) \, dx = \int_0^{\infty} x \frac{1}{(\theta_1 + \theta_2)} \exp\{-x/\theta_1\} \, dx = \frac{\theta_1^2}{(\theta_1 + \theta_2)}$$

and similarly

$$\mathbb{E}_{T_2}[T_2; \theta_1, \theta_2] = \frac{\theta_2^2}{(\theta_1 + \theta_2)}$$

and hence

$$\mathcal{I}_{\theta}(\theta) = \begin{bmatrix} -\frac{1}{(\theta_1 + \theta_2)^2} + \frac{2}{\theta_1(\theta_1 + \theta_2)} & -\frac{1}{(\theta_1 + \theta_2)^2} \\ -\frac{1}{(\theta_1 + \theta_2)^2} & \frac{2}{\theta_2(\theta_1 + \theta_2)} \end{bmatrix}$$
$$= \frac{1}{(\theta_1 + \theta_2)^2} \begin{bmatrix} 1 + \frac{2\theta_2}{\theta_1} & -1 \\ -1 & 1 + \frac{2\theta_1}{\theta_2} \end{bmatrix}.$$

Evaluating at $\theta = \theta_0$ gives the result.

4 MARKS