
MATH 557 - PRACTICE MID-TERM SOLUTIONS

1. (a) Y is suf�cient for θ, as, given Y = y, the conditional distribution of X is concentrated on
{−y, y} irrespective of the value of θ. 4 MARKS

(b) The likelihood is

L (x; θ) = fX(x; θ) =

n∏
i=1

1(−θ,2θ)(xi)

3θ
=

1(T (x),∞)(θ)

3nθn

where T (x) = max{−x(1), x(n)/2}. This function is monotonic decreasing in θ, so therefore

θ̂ML = T (x). By the factorization theorem, θ̂ML(X) is suf�cient. 6 MARKS

2. (a) The family Normal(0, θ) for 0 < θ < ∞ is not complete, as if g(t) = t, then

ET [g(T ); θ] = ET [T ; θ] = 0

for all θ, even though g(T ) is not zero with probability 1.

4 MARKS

(b) The joint pdf is

fX(x; θ1, θ2) =

n∏
i=1

1(θ1,∞)(xi)

θn2
exp

{
− 1

θ2

n∑
i=1

(xi − θ1)

}

=

n∏
i=1

1(x(1),∞)(θ1)

θn2
exp

−

n∑
i=1

xi

θ2
− nθ1/θ2)


Therefore, by the minimal suf�ciency theorem, as the ratio fX(x; θ1, θ2)/fX(y; θ1, θ2) is in-
dependent of (θ1, θ2) for all possible values of the parameters if and only if

x(1) = y(1) and

n∑
i=1

xi =

n∑
i=1

yi

it follows that T(X) = (X(1),
n∑

i=1
Xi) is a minimal suf�cient statistic. 6 MARKS

3. (a) From lectures (must show for full marks), the ML estimator is X , and as τ(λ) = e−2λ, by
invariance τ̂ML(X) = exp{−2X}. 4 MARKS

(b) We have that

EX1 [τ̂1(X);λ] = EX1 [(−1)X1 ;λ] =

∞∑
x=0

(−1)x
λxe−λ

x!
= e−λ

∞∑
x=0

(−λ)x

x!
= e−2λ

4 MARKS

(c) It is unbiased, but only takes values in the set {−1, 1}, whatever the values of λ and the data.
Clearly, −1 is not sensible as an estimate of λ, and this estimator is not reasonable, despite
its unbiasedness. 2 MARKS
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4. (a) Consider

T (X) =
1

n

n∑
i=1

1(−∞,c](Xi).

Then

ET [T ; θ] =
1

n

n∑
i=1

Pθ[Xi ≤ c] =
nϕ(θ)

n
= ϕ(θ)

5 MARKS

(b) We have for the de�ned Y1, . . . , Yn that

fYi(y; θ) = θy(1− θ)1−y

and hence
n∑

i=1

1(−∞,a](Xi) =
n∑

i=1

Yi ∼ Binomial(n, θ).

For this model, if T0 ≡ T0(y) =
n∑

i=1
yi, we have VarT0 [T0; θ] = nθ(1− θ), and so

VarT [T ; θ] =
nθ(1− θ)

n2
=

θ(1− θ)

n
.

5 MARKS

Note: for this model, considering the likelihood de�ned for the Yi, if ℓ(.; .) denotes the log likeli-
hood, we have

∂ℓ(y; θ)

∂θ
=

∂

∂θ
{T0 log θ + (n− T0) log(1− θ)} =

T0

θ
− n− T0

1− θ
=

T0 − nθ

θ(1− θ)

The Fisher information with respect to θ, when the true value is θ0, is

Iθ0(θ) = EY

[
− d2

dθ2
{log fY (Y ; θ)}

]
=

(
EY [Y ; θ0]

θ2
+

1− EY [Y ; θ0]

(1− θ)2

)
=

θ0

θ2
+

1− θ0
(1− θ)2

and hence

Iθ0(θ0) =
1

θ0(1− θ0)
.

Note also that

EY

[(
d

dθ
{log fY (Y ; θ)}

)2

; θ0

]
= EY

[(
Y

θ
− 1− Y

1− θ

)2

; θ0

]
= EY

[
Y

θ2
+

(1− Y )

(1− θ)2
; θ0

]
as Y 2 ≡ Y, (1− Y )2 ≡ (1− Y ) and Y (1− Y ) ≡ 0. Hence

EY

[(
d

dθ
{log fY (Y ; θ)}

)2

; θ0

]
=

θ0

θ2
+

1− θ0
(1− θ)2

Hence here

Iθ0(θ) = EY

[
− d2

dθ2
{log fY (Y ; θ)}

]
= EY

[(
d

dθ
{log fY (Y ; θ)}

)2

; θ0

]
.
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