
MATH 557 - EXERCISES 4
SOLUTIONS

1. (a) To find the UMP test, consider

H0 : θ = 1

H1 : θ = θ1

for θ1 > 1. By Neyman-Pearson, the rejection region is constructed by looking at

fX(x; θ1)

fX(x; 1)
=

n∏
i=1

θ1(1− xi)
θ1−1

1
= θn1{T (x)}θ1−1

where T (x) =
n∏

i=1
(1− xi). Hence the rejection region is defined by

θn1{T (x)}θ1−1 > c or equivalently T (x) > c1

where the requirement

Pr[T (X) ∈ RT ; θ = 1] = Pr[T (X) > c1; θ = 1] = α

determines k1 for any α. To simplify further
n∏

i=1

(1−Xi) > c1 ⇐⇒ −
n∑

i=1

log(1−Xi) < − log c1 = c

say. Now, if θ = 1, the data are uniformly distributed on (0,1). Also, if X ∼ Uniform(0, 1),
then 1−X ∼ Uniform(0, 1), and

− log(1−X) ∼ Exponential(1)

Therefore the critical region is defined by Pr[T (X) > c1; θ = 1] = Pr[V < c; θ = 1] = α, where

V = − log T (X) = −
n∑

i=1

log(1−Xi) ∼ Gamma(n, 1).

Thus c is the α quantile of the Gamma(n, 1) distribution. This is the UMP test for any θ1 > 1,
so it is the UMP test for the required hypotheses.

(b) Under H1, the ML estimate of θ is

θ̂n = argmax
θ∈R+

θn{T (x)}θ−1 = − n

log T (x)
= − n

n∑
i=1

log(1−Xi)

= − n

log T (x)

Thus the LRT is based on the rejection region RX defined by

λX(x) =
Ln(1)

Ln(θ̂n)
=

1

θ̂
n

n{T (x)}θ̂n−1
≤ c

which is equivalent to
n log θ̂n + (θ̂n − 1) log T (x) ≥ − log c

or
−n log(− log T (x))− log T (x) ≥ − log c− n log n+ n

which may be written
−n log V + V ≥ c

where V ∼ Gamma(n, 1) as above. To solve this for c requires numerical steps.
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2. Can use the Karlin-Rubin theorem in both cases.

(a) The likelihood ratio for θ1 < θ2 for this model is

λ(x) =
fX(x; θ2)

fX(x; θ1)
=

θn1
θn2

exp

{
T (x)

(
1

θ1
− 1

θ2

)}

which is an increasing function of T (x) =
n∑

i=1
xi. Thus the rejection region takes the form

R ≡

{
x : T (x) =

n∑
i=1

xi > t0

}

To find t0, we need to solve Pr[T (X) > t0 ; θ0] = α. Here T (X) ∼ Gamma(n, 1/θ), so t0 is the
1− α quantile of this distribution.

(b) The likelihood ratio for θ1 < θ2 for this model is

λ(x) =
fX(x; θ2)

fX(x; θ1)
=

θ
n/2
1

θ
n/2
2

exp

{
T (x)

2

(
1

θ1
− 1

θ2

)}

which is an increasing function of T (x) =
n∑

i=1
(xi− 1)2. Thus the rejection region takes the form

R ≡

{
x : T (x) =

n∑
i=1

xi > t0

}

To find t0, we need to solve Pr[T (X) > t0 ; θ0] = α. Here under the assumption θ = θ0,

T (X)

θ0
∼ χ2

n ≡ Gamma(n/2, 1/2)

so
Pr[T (X) > t0 ; θ0] = Pr[T (X)/θ0 > t0/θ0 ; θ0] = α.

implies that t0 = θ0qn,1−α, where qn,1−α is the 1 − α quantile of the Chisquared distribution
with n degrees of freedom.

3. Again using the Karlin-Rubin Theorem: The likelihood ratio for θ1 < θ2 for this model is

λ(x) =
fX(x; θ2)

fX(x; θ1)
=

(
θ2
θ1

)T (x)

exp {−n(θ2 − θ1)}

where T (x) =
n∑

i=1
xi. In this case, under θ = 2,

T (X) =
n∑

i=1

Xi ∼ Poisson(2n)

Thus the distribution of T (X) is discrete. A randomized test takes the form

ϕ⋆
R(x) =


1 T (x) > c

γ T (x) = c

0 T (x) ≤ c
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where c is the largest integer such that Pr[T (X) > c; θ] ≤ 0.05, and γ is selected so that

Pr[T (X) > c; θ] + γ Pr[T (X) = c; θ = 2] = 0.05

In the example, n = 6, and T (x) = 18, and by calculation c = 18

Pr[T (X) > 18; θ = 2] = 0.0374 Pr[T (X) = 18; θ = 2] = 0.0255

so that

γ =
0.05− Pr[T (X) > 18; θ = 2]

Pr[T (X) = 18; θ = 2]
=

0.05− 0.0374

0.0255
= 0.494

In this case, the hypothesis is rejected with probability γ = 0.494 as T (x) = 18.

4. In this model, if X =
n∑

i=1
Xi, the MLE of θ is θ̂n = X = X/n.

(a) This is not a 1-1 mapping, so some care is needed. Inverting the transformation yields that

θ =
1±

√
1− 4τ

2

so the likelihood needs to be worked out for both cases. In the first case

L(τ |x) =
(
1 +

√
1− 4τ

2

)x(
1−

√
1− 4τ

2

)n−x

and in the second

L(τ |x) =
(
1−

√
1− 4τ

2

)x(
1 +

√
1− 4τ

2

)n−x

where 0 < τ < 1/4. After some manipulation it follows that in both cases x < n−x or x > n−x,

τ̂ =
1

4
−
(
1

2
− x

n

)2

= x(1− x)

with the same result if x = n− x, and so the estimator is

τ̂n(X) = X(1−X)

so in fact the non 1-1 nature of the reparameterization is not problematic.

(b) Despite the non 1-1 nature of the reparameterization, the Delta method can still be used. If
g(t) = t(1− t), then ġ(t) = 1− 2t, which is non zero if t ̸= 1/2. Thus for θ ̸= 1/2, by the CLT

√
n(X − θ)

d−→ Z ∼ Normal(0, θ(1− θ))

and thus by the Delta method
√
n(τ̂n(X)− τ)

d−→ Z ∼ Normal(0, τ(1− 2θ)2)

or, for large n

τ̂n(X) .∼. Normal(τ , τ(1− 2θ)2/n)

If θ = 1/2, this approximation yields a degenerate limiting distribution, so a second order
Delta method must be used. We have that g̈(t) = −2, so

n(τ̂n(X)− 1/4)
d−→ −1

4
Q

where Q ∼ χ2
1, or, for large n

τ̂n(X) .∼.
1

4
− 1

4
Gamma(1/4, 2n)
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5. Note first that

ET1n [T1n] =
1

n

n∑
i=1

EX[X2
i ]− 1 =

1

n

n∑
i=1

(µ2 + 1)− 1 = µ2

and

ET2n [T2n] =
1

n2
EX

( n∑
i=1

Xi

)2
− 1

n
=

1

n2

n∑
i=1

EX[X2
i ] +

1

n2

n∑
i=1

n∑
j=1

EX[XiXj ]−
1

n

=
1

n2
n(µ2 + 1) + 0− 1

n
= µ2.

so both statistics are unbiased (and hence asymptotically unbiased). Thus the ARE is the ratio of the
asymptotic variances. For T1n, we know by the CLT that

√
n

(
1

n

n∑
i=1

X2
i − θ

)
d−→ Z ∼ Normal(0, γ)

where θ = µ2 + 1, and γ = VarfX [X
2
i ], so the asymptotic variance of T1n is γ. For T2n, we have by

the CLT √
n(X − µ)

d−→ Z ∼ Normal(0, 1)

so by the Delta Method, for µ ̸= 0

√
n(X

2 − µ2)
d−→ Z ∼ Normal(0, 4µ2)

and for µ = 0, as
√
nX

d−→ Normal(0, 1),

nX
2 d−→ Q ∼ χ2

1

where Q has variance 2. Hence

AREµ(T1n, T2n) =


4µ2

γ
µ ̸= 0

2

γ
µ = 0

Note however that there is a different rescaling in the µ = 0 case. So in terms of large sample
comparison,

T1n .∼. Normal(0, γ/n) T2n .∼. Gamma(1/2, n/2)

yielding a large sample variance ratio of 2/nγ.

6. In this case, X ∼ Exp(ϕ) and Y ∼ Exp(θϕ), so if λ1 = ϕ and λ2 = θϕ, the MLEs are λ̂1 = 1/X and
λ̂2 = 1/Y , so that by invariance

ϕ̂n = λ̂1 = 1/X θ̂n = λ̂2/λ̂1 = X/Y

Thus √
n(θ̂n − θ)

d−→ Z ∼ Normal(02, {Iθ0(θ0)}−1)

where Iθ0(θ0) is the Fisher Information. We have joint density

ϕ2θ exp {− [ϕx+ θϕy]} x, y > 0
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so that
ℓ(θ, ϕ) = 2 log ϕ+ log θ − (ϕx+ θϕy)

and
∂ℓ

∂ϕ
=

2

ϕ
− x− θy

∂ℓ

∂θ
=

1

θ
− ϕy

∂2ℓ

∂ϕ2 = − 2

ϕ2

∂2ℓ

∂θ2
= − 1

θ2
∂2ℓ

∂ϕ∂θ
= −y

yielding the matrix Ψ(X,Y ; θ, ϕ) and Fisher information

Ψ(X,Y ; θ, ϕ) =


2

ϕ2 Y

Y
1

θ2

 I(θ,ϕ) (θ, ϕ) =


1

θ2
1

ϕθ

1

ϕθ

2

ϕ2


as EY [Y ; θ, ϕ] = 1/ (ϕθ). Thus

I(θ,ϕ){(θ, ϕ)}−1 =

[
2θ2 −ϕθ

−ϕθ ϕ2

]

Thus
√
n

(
θ̂n − θ0
ϕ̂n − ϕ0

)
d−→ Z ∼ Normal

((
0
0

)
,

[
2θ20 −ϕ0θ0

−ϕ0θ0 ϕ2
0

])
or, for large n, (

θ̂n
ϕ̂0

)
.∼. Normal

((
θ0
ϕ0

)
,

[
2θ20 −ϕ0θ0

−ϕ0θ0 ϕ2
0

])

7. For the Poisson case, for λ > 0

ℓn(λ) = −nλ+ tn log λ−
n∑

i=1

log xi! where tn =
n∑

i=1

xi

ℓ̇n(λ) = −n+
tn
λ

ℓ̈n(λ) = − tn

λ2

and hence the MLE, from ℓ̇n(λ̂n) = 0, is λ̂n = tn/n = x, with estimator Tn/n = X . Then

Wn = n(θ̂n − θ0)
⊤În(θ̂n)(θ̂n − θ0) (WALD)

and
Rn = Z⊤

n Iθ0 (θ0)
−1 Zn with Zn =

1√
n
ℓ̇n(θ0). (SCORE)

we have, in the 1-d case

Wn = (θ̂n − θ0)
2(nÎn(θ̂n)) = −(θ̂n − θ0)

2ℓ̈n(θ̂n) Rn =
{Zn(θ0)}2

Iθ0(θ0)

Thus we have

MATH 557 EXERCISES 4 SOLUTIONS Page 5 of 6



• Wald Statistic:

Wn = −(θ̂n − θ0)
2ℓ̈n(θ̂n) = −(X − λ0)

2

(
−Sn

(X)2

)
= n

(X − λ0)
2

X
=

n(λ̂n − λ0)
2

λ̂n

• Rao Statistic: in this case, we can compute the Fisher Information exactly - we have

Iλ0(λ0) = EX [−Ψ(X;λ0)] = EX

[
X

λ2
0

;λ0

]
=

1

λ2
0

EX [X;λ0] =
λ0

λ2
0

=
1

λ0

so therefore

Rn =
{Zn}2

Iλ0(λ0)
=

λ0

n

(
Tn

λ0
− n

)2

=
n(X − λ0)

2

λ0

If the Fisher Information can be computed exactly, then the exact version should be used for
the Score statistic rather than an estimated version. Here that would imply that

Rn = −
{
ℓ̇n(θ0)

}2 {
ℓ̈n(θ0)

}−1
=

−
(
Tn

λ0
− n

)2

−Tn/λ
2
0

=
(Tn − nλ0)

2

Tn
=

n(X − λ0)
2

X

that is, identical to Wald.

• Likelihood Ratio Statistic: the likelihood ratio is

λX(x) =
Ln(λ0)

Ln(λ̂n)
=

e−nλ0λTn
0

e−nλ̂n λ̂
Tn

n

= exp
{
n(λ̂n − λ0)− Tn(log λ̂n − log λ0)

}
or equivalently

−2λX(x) = −2n(λ̂n − λ0) + 2Tn(log λ̂n − log λ0)

For a 1 − α confidence interval, we utilize the result that each of the test statistics has an ap-
proximate χ2

1 distribution as n −→ ∞. For Wn and Rn, we have{
λ : n(λ̂n − λ)2/λ̂n ≤ c1−α

}
and

{
λ : n(λ̂n − λ)2/λ ≤ c1−α

}
respectively, where c1−α is the 1− α quantile of the χ2

1 distribution. For the LRT, we have{
λ : −2n(λ̂n − λ) + 2tn(log λ̂n − log λ) ≤ c1−α

}
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