MATH 557 - EXERCISES 4

SOLUTIONS
1. (a) To find the UMP test, consider
Hy : 6=1
H1 0= (91

for #; > 1. By Neyman-Pearson, the rejection region is constructed by looking at

0 (1 —xi)‘gl_l
fx(x;01) }_[1 1

fx(x; 1) N 1

= 01 {T(x)}"

—

where T'(x) = [[ (1 — z;). Hence the rejection region is defined by

=1

YT(x)¥ > ¢ or equivalently T(x)>c
where the requirement
PriT(X) e Rp;0 =1] =Pr[T(X) > c1;0 =1] =«

determines k; for any «. To simplify further

n

H(l—XZ) > C <~ —Zlog(l—Xl) <—10g01:C
=1 i=1

say. Now, if # = 1, the data are uniformly distributed on (0,1). Also, if X ~ Uniform(0,1),
then1 — X ~ Uniform(0,1), and

—log(1 — X) ~ Exponential(1)
Therefore the critical region is defined by Pr[T(X) > ¢1;60 = 1] = Pr[V < ¢;0 = 1] = o, where

V=-logT(X)=—) log(l - X;) ~ Gamma(n,1).
=1

Thus c is the o quantile of the Gamma(n, 1) distribution. This is the UMP test for any 61 > 1,
so it is the UMP test for the required hypotheses.

(b) Under H;, the ML estimate of 6 is

> n n n

0, = argmax "{T(x)}’~! = — =—— =—
O T T R x| 08T

=1

Thus the LRT is based on the rejection region Rx defined by

O
)= B T e

which is equivalent to
nlogf, + (6, —1)logT(x) > —logc

or
—nlog(—logT(x)) —logT'(x) > —logc —nlogn +n

which may be written
—nlogV +V >c

where V' ~ Gamma(n, 1) as above. To solve this for ¢ requires numerical steps.

MATH 557 EXERCISES 4 SOLUTIONS Page 1 0f 6



2. Can use the Karlin-Rubin theorem in both cases.

(a) The likelihood ratio for 8; < 65 for this model is

n
which is an increasing function of 7'(x) = ) z;. Thus the rejection region takes the form
i=1

R = {X:T(X) :zn:xi > tg}
i=1

To find ty, we need to solve Pr[T'(X) > to; 0] = o. Here T'(X) ~ Gamma(n, 1/6), so t is the
1 — a quantile of this distribution.
(b) The likelihood ratio for 81 < 65 for this model is

_ fx(x362) 67/ T(x) /(1 1
)\(X) - fX(X§ 01) - 97:1/2 exp {2 <91 - 02>}

n
which is an increasing function of T'(x) = > (x; — 1)2. Thus the rejection region takes the form
i=1

R = {X:T(X):i$i>t0}

To find ty, we need to solve Pr[T'(X) > ¢ ; §y] = a. Here under the assumption 6 = 6y,

T(X)
to

~ X% = Gamma(n/2,1/2)
SO
PT[T(X) > 1o ; 90} = Pr[T(X)/@O > to/@o ; 90] = Q.

implies that ¢y = 0pgn,1—a, Where ¢, 1_, is the 1 — o quantile of the Chisquared distribution
with n degrees of freedom.

3. Again using the Karlin-Rubin Theorem: The likelihood ratio for #; < 65 for this model is

= st _ o

T(x)
(i 01) > exp{—n(f2 —01)}

n
where T'(x) = Y x;. In this case, under 6 = 2,
i=1

n
T(X) = ZXi ~ Poisson(2n)
i=1

Thus the distribution of 7'(X) is discrete. A randomized test takes the form

1 T(x)>c
Pr(x) =9 7 Tx)=c
0 T(x)<c
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where c is the largest integer such that Pr[7'(X) > ¢; 0] < 0.05, and + is selected so that
Pr[T(X) > ¢; 0] + yPr[T(X) = ¢;6 = 2] = 0.05
In the example, n = 6, and T'(x) = 18, and by calculation ¢ = 18
Pr[T(X) > 18;6 = 2] = 0.0374 Pr[T(X) = 18;6 = 2] = 0.0255

so that
~0.05—Pr[T(X) >18;0 =2]  0.05— 0.0374
- PrT(X)=186=2]  0.0255

In this case, the hypothesis is rejected with probability v = 0.494 as T'(x) = 18.

=0.494

4. In this model, if X = >_ X;, the MLE of  is 6,, = X = X/n.

1=1
(a) This is not a 1-1 mapping, so some care is needed. Inverting the transformation yields that
11— dr
N 2
so the likelihood needs to be worked out for both cases. In the first case

o (A2 ()

2

7

and in the second

Lirx) = (1 - Jg—ﬁ) <1 i ¢21—ﬁ>—

where 0 < 7 < 1/4. After some manipulation it follows that in both cases < n—z orz > n—z,

1 1 z\? . .

with the same result if t = n — z, and so the estimator is
Tn(X) = X(1-X)
so in fact the non 1-1 nature of the reparameterization is not problematic.

(b) Despite the non 1-1 nature of the reparameterization, the Delta method can still be used. If
g(t) =t(1 —t), then g(t) = 1 — 2t, which is non zero if ¢t # 1/2. Thus for 6 # 1/2, by the CLT
V(X —0) % Z ~ Normal(0,6(1 — 9))
and thus by the Delta method

ViFa(X) = 7) =% Z ~ Normal(0,7(1 — 20)%)
or, for large n
7n(X) &~ Normal(r,7(1 — 20)%/n)

If 0 = 1/2, this approximation yields a degenerate limiting distribution, so a second order
Delta method must be used. We have that §(t) = —2, so

n(Fa(X) —1/4) 4
where Q ~ X3, or, for large n
Tn(X) % - %Gamma(l/él, 2n)
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5. Note first that

and

n 2 n
Er,, [Ton] = %[Ex (Z&) —%:%Z X2+—ZZ[EXXX
=1 =1

=1 j=1

= T a 1 0 —_ — = .
nQn(,u +1)+ o=

so both statistics are unbiased (and hence asymptotically unbiased). Thus the ARE is the ratio of the
asymptotic variances. For T7,, we know by the CLT that

1 — d
-y X2-0 Z~N
Vvn (n ; ; ) — ormal(0,~)

where 6 = 2 + 1, and y = Vary, [X?], so the asymptotic variance of Ty, is . For T»,, we have by
the CLT

V(X = p) =% Z ~ Normal(0,1)
so by the Delta Method, for p # 0

V(X = 1) “L Z ~ Normal(0, 44:2)
and for ;1 = 0,as /nX —% Normal(0, 1),
nXx’ -4 Q~x}

where @ has variance 2. Hence

42
T p#0
ARE ,(T1n, Ton) =
2
= =0
v

Note however that there is a different rescaling in the ¢ = 0 case. So in terms of large sample
comparison,
T1, ~v Normal(0,v/n) Ty, v Gamma(1l/2,n/2)

yielding a large sample variance ratio of 2/n~.
6. In this case, X ~ Exp(¢) and Y ~ Ezp(0¢), so if \j = ¢ and \y = 0¢, the MLEs are = 1/X and
A2 = 1/Y, so that by invariance
bp=M=1/X  Op=X/M =X)Y

Thus N
VB, — 8) % Z ~ Normal (04, {Tg, (60)} 1)

where Zy,(60y) is the Fisher Information. We have joint density

¢*Oexp{—[pz +0¢y]}  z,y>0
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so that
0(0,¢) =2log ¢+ log b — (px + Ooy)

and o0 2 or 1
%:E—x—gy @:g—@J
o’ 2 o1 o _ _
02~ ¢ 00— 62 2600 — 7
yielding the matrix (X, Y’; 0, ¢) and Fisher information
2 1 1
2 v - —
2 92 ¢9
Yo o0 ¢

as Ey [Y;6,¢] =1/ (¢0). Thus

202 —¢0
Tos){(0,0)} " = [ VR ]

Thus

o~

2
0, — 0o d 5 N l < 0 > 205 —¢obo
\/ﬁ ( ¢n - ¢O > 7 orma ( 0 ’ _¢090 ¢8

~ 2
(Qn > + Normal << b6 )l 205 —oybo ])
®o o —obo ¢3

7. For the Poisson case, for A > 0

or, for large n,

lp(N) = —nA + ty log A — Z log x;! where t,, = Z ;
i=1 i=1
. tn - tn

and hence the MLE, from én(Xn) =0,is /):n = t,/n = T, with estimator T,,/n = X. Then

W, = n(0, — 00) " 1,(6,) (6, — 60) (WALD)
and )
R, =2 Ty, (o) ' Z,  with Z,= 7 ln(00). (SCORE)
we have, in the 1-d case
~ o~ ~ .~ Z,(00)}2
W, = (0, — 00)2(n1,(0,)) = — (0 — 00)20,,(6,,) R, = 12n(00)37
1%0(90)

Thus we have

MATH 557 EXERCISES 4 SOLUTIONS Page 5 of 6



o Wald Statistic:

—~

_Sn) _ n(Y —20)% (= No)?
- = =

Wy = _(/én - go)zfn(/e\n) = —(Y — )\0)2 ((X)2 _

e Rao Statistic: in this case, we can compute the Fisher Information exactly - we have

X 1 A 1
2 (Ao) = Ex [P (X; )] = Ex [)\% 0] ¥ x [ X5 Ao 2

so therefore

(Z.} Mo <Tn n>2 _ (X =)

R, = Sy
Tho(Xo) n \ o Ao

If the Fisher Information can be computed exactly, then the exact version should be used for
the Score statistic rather than an estimated version. Here that would imply that

(B )
R e e

that is, identical to Wald.

Likelihood Ratio Statistic: the likelihood ratio is

Zn(\ e oI ~ ~
(AO) = A%L = exp {n()\n — o) — T (log A\, — log )\0)}

Ax (x) =
x(x) Za) o]

or equivalently
—2Xx(x) = —2n(A, — o) + 275, (log Ay, — log Ao)

For a 1 — a confidence interval, we utilize the result that each of the test statistics has an ap-

proximate x? distribution as n — oco. For W,, and R,,, we have

{/\ 1O — N2/ A, < cl_a} and {)\ (O — A2\ < cl_a}
respectively, where ¢;_,, is the 1 — o quantile of the x? distribution. For the LRT, we have

{)\ : —2n(Ap — A) + 26, (log A — log A) < Cl—a}
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