
MATH 557 - EXERCISES 3

SOLUTIONS

1. Let X ∼ Binomial(n, θ) for 0 < θ < 1.

(a) By standard results for expectations

ET [T ; θ] =
1

n
EX [X; θ] =

nθ

n
= θ

(b) Suppose that T ′(X) is an unbiased estimator of τ(θ), so that

ET ′ [T ′; θ] =

n∑
x=0

T ′(x)

(
n

x

)
θx(1− θ)n−x =

1

θ
.

Clearly T ′(x)must be �nite on 0 ≤ x ≤ n, otherwise the expectation is not �nite, in which case
T ′(X) is biased for any θ. But also, for 0 < θ < 1

n∑
x=0

T ′(x)

(
n

x

)
θx(1− θ)n−x ≤

n∑
x=0

T ′(x)

(
n

x

)
= M(n) < ∞

so therefore the expectation of T ′(X) is bounded above. Therefore, if θ < 1/M(n), the expecta-
tion cannot attain 1/θ, so the estimator is not unbiased; no unbiased estimator exists.

2. (a) The ML estimator of θ isM(X) = X(n) = max{X1, . . . , Xn}which has pdf

fM (m; θ) =
nmn−1

θn
0 < m < θ

and zero otherwise, which has expectation

EM [M ; θ] =

∫ θ

0

nmn

θn
dm =

n

n+ 1
θ

so therefore the statistic T = (n+ 1)M/n is unbiased for θ.

(b) The variance/MSE of T (X) is

VarT [T ; θ] = ET [T
2; θ]− θ2 =

(
n+ 1

n

)2

EM [M2; θ]− θ2

=

(
n+ 1

n

)2 ∫ θ

0
m2nm

n−1

θn
dm− θ2 =

(
n+ 1

n

)2( n

n+ 2

)
θ2 − θ2

(c) The Cramér-Rao bound is, in this case,

B(θ) =

(
d

dθ
{ET [T ; θ]}

)2

nEX [U(X; θ)2]
=

(τ̇(θ))2

n/θ2
=

1

n/θ2
=

θ2

n

and so the difference is

θ2

((
n+ 1

n

)2( n

n+ 2

)
− 1− 1

n

)
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3. (a) The likelihood, log-likelihood and derivative are

L (x; θ) = θn

(
n∏

i=1

xi

)θ−1

θ > 0

ℓ(x; θ) = n log θ + (θ − 1)
n∑

i=1

log xi

ℓ̇(x; θ) =
n

θ
+

n∑
i=1

log xi

and hence
θ̂n(X) = − n

n∑
i=1

logXi

=
n

T (X)
say.

(b) If X ∼ Beta(θ, 1) then if Y = − logX , we have from �rst principles

FY (y; θ) = Pr[Y ≤ y|θ] = Pr[− logX ≤ y|θ] = Pr[X ≥ e−y|θ] = 1− FX|θ(e
−y|θ)

∴ fY (y; θ) = e−yfX(e−y; θ) = e−yθ(e−y)θ−1 = θe−θy y > 0

so Y ∼ Exponential(θ) and hence T (X) ∼ Gamma(n, θ). Now for r = 1, 2, . . .

ET [T
−r; θ] =

∫ ∞

0

1

tr
θn

Γ(n)
tn−1e−θt dt =

θn

Γ(n)

Γ(n− r)

θn−r =
θr

(n− 1)(n− 2) . . . (n− r + 1)
.

Hence

ET [T
−1; θ] =

θ

(n− 1)
ET [T

−2; θ] =
θ2

(n− 1)(n− 2)

so that

VarT [T
−1; θ] =

θ2

(n− 1)(n− 2)
− θ2

(n− 1)2
=

θ2

(n− 1)2(n− 2)

Thus the expectation and variance of θ̂n(X) are

nθ

(n− 1)

n2θ2

(n− 1)2(n− 2)

so θ̂n(X) is not unbiased for θ.

(c) Writing T1(X) = θ̂n(X), the Cramér-Rao bound is

B(θ) =

(
d

dθ
{ET1 [T1; θ]}

)2

nEX [U(X; θ)2; θ]
=

(n/(n− 1))2

ET

[
(n/θ − T )2 ; θ

] =

(
n

n− 1

)2

n2

θ2
− 2

n

θ
ET [T ; θ] + ET [T 2; θ]

=

(
n

n− 1

)2

n2

θ2
− 2

n

θ

n

θ
+

n(n+ 1)

θ2

=
nθ2

(n− 1)2
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Thus the Cramér-Rao bound is notmet here despite the fact that this is an Exponential Family
distribution. The Exponential Family does yield unbiased estimators of parameters, but only
in speci�c parameterizations relating to the natural (or canonical) parameterization. Here

fX(x; θ) = θ exp{(θ − 1) log x}
so that, by properties of the score function U(x; θ), EX [− logX; θ] = 1/θ = τ(θ) say, and the
result yields that

T2(X) = − 1

n

n∑
i=1

logXi

is an unbiased estimator of τ(θ). As

T2(X) ∼ Gamma(n, nθ) ∴ VarT2 [T2; θ] =
1

nθ2

for which the Cramér-Rao bound is

B(θ) =

(
d

dθ
{ET2 [T2; θ]}

)2

nEX [U(X; θ)2; θ]
=

(τ̇(θ))2

ET

[
(n/θ − nT2)

2 ; θ
] =

1/θ4

n2VarT [T2; θ]
=

1

nθ2

so the bound is attained for this estimator of τ(θ).

4. (a) We have that

Iθ(θ) = EX

[
U(X; θ)2; θ

]
=

∫ {
∂

∂θ
log fX(x; θ)

}2

fX(x; θ) dx

=

∫ {
ḟ(x− θ)

f(x− θ)

}2

f(x− θ) dx =

∫ {
ḟ(x)

f(x)

}2

f(x) dx

after making the change of variables x −→ x− θ. Hence Iθ(θ) is constant in θ.

(b) For the Double Exponential model

Iθ(θ) =

∫ ∞

−∞

{
∂

∂θ
log fX(x; θ)

}2

fX(x; θ) dx =

∫ ∞

−∞

{
∂

∂θ
− |x− θ|

}2 1

2
e−|x−θ| dx

=

∫ θ

−∞

{
∂

∂θ
(x− θ)

}2 1

2
e(x−θ) dx+

∫ ∞

θ

{
∂

∂θ
− (x− θ)

}2 1

2
e−(x−θ) dx

=

∫ θ

−∞

1

2
e(x−θ) dx+

∫ ∞

θ

1

2
e−(x−θ) dx = 1

Note that the lack of differentiability of the pdf at θ does not render this computation invalid,
as this is a single point in a continuous distribution and hence has probability zero, that is, the
function is differentiable almost everywhere.

(c) For the Logistic model

Iθ(θ) =

∫ ∞

−∞

{
∂

∂θ
log fX(x; θ)

}2

fX(x; θ) dx =

∫ ∞

−∞

{
− ∂2

∂θ2
log fX(x; θ)

}
fX(x; θ) dx

=

∫ ∞

−∞

2e−(x−θ)

(1 + e−(x−θ))2
e−(x−θ)

(1 + e−(x−θ))2
dx ≡

∫ ∞

−∞

2e−2x

(1 + e−x)4
dx (x− θ −→ x)

= 2

∫ 1

0
u2(1− u)2

1

u(1− u)
du =

1

3
(x −→ u = e−x/(1 + e−x))
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5. For this pdf, the corresponding expectation is

EX [X; θ] =

∫ ∞

0
x

3θ3

(x+ θ)4
dx =

[
−xθ3

(x+ θ)3

]∞
0

+

∫ ∞

0

θ3

(x+ θ)3
dx = 0 +

[
− θ3

2(x+ θ)2

]∞
0

=
θ

2

so therefore

T (X) =
2

n

n∑
i=1

Xi

is an unbiased estimator of θ. By a similar calculation

EX [X2; θ] =

∫ ∞

0
x2

3θ3

(x+ θ)4
dx =

[
−x2θ3

(x+ θ)3

]∞
0

+

∫ ∞

0

2xθ3

(x+ θ)3
dx

= 0 +

[
− xθ3

(x+ θ)2

]∞
0

+

∫ ∞

0

θ3

(x+ θ)2
dx = 0 +

[
− θ3

(x+ θ)

]∞
0

dx = θ2

so therefore

VarX [X; θ] = θ2 − θ2

4
=

3θ2

4
∴ VarT [T ; θ] =

3θ2

n

6. In each case, we need ET |S [T |S] (which does not depend on θ by suf�ciency).

(a) The variance of T is λ, but by symmetry

T ∗ = ET |S [T |S] = E[X1|S] =
S

n
=

1

n

n∑
i=1

Xi

which has variance λ/n.

(b) We have, as T is binary,

ET [T ;λ] = ET [T
2;λ] = Prλ[X1 = 0] = e−λ ∴ VarT [T ;λ] = e−λ(1− e−λ)

and
T ∗ = ET |S [T |S] = E[1{0}(X1)|S] = Pr[X1 = 0|S]

The conditional density of X1 given S is, by independence of X1, . . . , Xn,

fX1|S(x1|s) =
fX1(x1)fS−1(s− x1)

fS(s)

where S−1 = S −X1 ∼ Poisson((n− 1)λ). Therefore

fX1|S(0|s) =
fX1(0)fS−1(s)

fS(s)
=

e−λ(n− 1)sλse−(n−1)λ

nsλse−nλ
=

(
n− 1

n

)s

and hence

T ∗ =

(
n− 1

n

)S

To compute ET ∗ [(T ∗)k;λ], we use the Poisson probability generating function (pgf): setting
tn = (n− 1)/n, we have

ET ∗ [(T ∗)k;λ] = E

[(
tkn

)S]
= exp

{
nλ(tkn − 1)

}
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so therefore

ET ∗ [T ∗;λ] = exp

{
nλ

(
n− 1

n
− 1

)}
= e−λ

and

ET ∗ [(T ∗)2;λ] = exp

{
nλ

((
n− 1

n

)2

− 1

)}
= exp

{
λ

(
1− 2n

n

)}
and therefore the variance is

exp

{
λ

(
1− 2n

n

)}
− e−2λ = e−2λ(exp{λ/n} − 1)

The ratio of variances is therefore

e−λ(1− e−λ)

e−2λ(exp{λ/n} − 1)
=

eλ − 1

exp{λ/n} − 1
> 1 n > 1.

(c) The variance of T is 4VarX1 [X1; θ] = 4θ2/12 = θ2/3. Now, we need the conditional distribution
X1|X(n) = t. Consider the theorem following decomposition with the random variable Rn

recording the index of the variable in the original sample that corresponds to the maximal
order statistic: we have Pr[Rn = 1] = 1/n by symmetry, so

fX1|X(n)
(x1|t; θ) = fX1|X(n)

(x1|t, Rn = 1; θ) Pr[Rn = 1] + fX1|X(n)
(x1|t, Rn > 1; θ) Pr[Rn > 1]

= 1t(x1)
1

n
+

1

t

(
n− 1

n

)
which has expectation

t

n
+

t

2

(
n− 1

n

)
=

t(n+ 1)

2n

Therefore

T ∗ = ET |S [T |S] = E[2X1|X(n)] = 2E[X1|X(n)] = 2
X(n)(n+ 1)

2n
=

(
n+ 1

n

)
X(n).

The distribution of X(n) is available from results for maximum order statistics

fX(n)
(x; θ) =

nxn−1

θn
1(0,θ)(x)

with, therefore

ET ∗ [(T ∗)k; θ] =
n

θn

∫ θ

0
xn+k−1 dx =

nθk

n+ k

so that

ET ∗ [T ∗; θ] =
n

n+ 1
θ ET ∗ [(T ∗)2; θ] =

nθ2

n+ 2
∴ VarT ∗ [T ∗; θ] =

nθ2

(n+ 1)2(n+ 2)

Therefore an unbiased estimator based on T ∗ is (n+ 1)X(n)/n, which has variance

θ2

n(n+ 2)
<

θ2

3
n > 1.
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7. The joint pdf is

fX(x; θ) =
1

θn

n∏
i=1

1(θ,2θ)(Xi) =
1

θn
1(0,X(1))(θ)1(X(n)/2,∞)(θ)

so therefore S = (X(1), X(n)) is a jointly suf�cient statistic for θ. Also, by properties of the uniform
distribution

ET [T ; θ] =
2

3

(
θ +

θ

2

)
= θ and VarT [T ; θ] =

4

9

θ2

12
=

θ2

27
.

By the Rao-Blackwell theorem, we can improve the variance of the estimator by conditioning on the
suf�cient statistic. We have

T ∗ = ET |S [T |S] = E[2X1/3|X(1), X(n)] =
2

3
E[X1|X(1), X(n)] =

X(1) +X(n)

3

as, given (X(1), X(n)), X1 ∼ Uniform(X(1), X(n)). The expectation of U is computed from the dis-
tribution of the order statistics. We have that

EX(n)
[X(n); θ] = θ +

n

n+ 1
θ =

(2n+ 1)θ

n+ 1

and from �rst principles, for θ < x < 2θ, the cdf of X(1) is

FX(1)
(x; θ) = 1−

(
1− x− θ

θ

)n

= 1−
(
2θ − x

θ

)n

so that

fX(1)
(x; θ) = n

(2θ − x)n−1

θn
1(θ,2θ)(x)

Therefore

EX(1)
[X(1); θ] =

n

θn

∫ 2θ

θ
x(2θ − x)n−1 dx =

1

θn
[−x(2θ − x)n]2θθ +

1

θn

∫ 2θ

θ
(2θ − x)n dx

= θ +
1

θn

[
− 1

n+ 1
(2θ − x)n+1

]2θ
θ

= θ +
1

(n+ 1)
θ =

(n+ 2)θ

n+ 1

Therefore T ∗ has expectation
1

3

[
(2n+ 1)θ

n+ 1
+

(n+ 2)θ

n+ 1

]
= θ

and, by the Rao-Blackwell result, T ∗ has lower variance than T .

By standard methods concerning order statistics, the joint density of (U, V ) = (X(1), X(n))/θ − 1 is

fU,V (u, v) = n(n− 1)(v − u)n−2 0 < u < v < 1

Setting R = (V − U) and M = (U + V ), so that U = (M − R)/2 and V = (R + M)/2, yielding
Jacobian 1/2, and joint pdf

fM,R(m, r) =
n(n− 1)

2
rn−2

on the triangle de�ned by the inequalities

0 < (m− r) < (m+ r) < 2.
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The marginal form is obtained by integrating out r from the joint. For 0 < m < 2

fM (m) =

∫ min{m,2−m}

0

n(n− 1)

2
rn−2 dr =

n(n− 1)

2

[
rn−1

n− 1

]min{m,2−m}

0

=
n

2
(min{m, 2−m})n−1

=


n

2
mn−1 m ≤ 1

n

2
(2−m)n−1 1 < m ≤ 2

Therefore, by symmetry EM [M ] = 1, and

EM [M2] =

∫ 1

0

n

2
mn+1 dm+

∫ 2

1

n

2
m2(2−m)n−1 dm

=
n

2(n+ 2)
+

1

2

[
−m2(2−m)n

]2
1
+

∫ 2

1
m(2−m)n dm

=
n

2(n+ 2)
+

1

2
+

[
− 1

n+ 1
m(2−m)n+1

]2
1

+
1

n+ 1

∫ 2

1
(2−m)n+1 dm

=
n

2(n+ 2)
+

1

2
+

1

(n+ 1)
+

1

n+ 1

[
− 1

n+ 2
(2−m)n+2

]2
1

=
n

2(n+ 2)
+

1

2
+

1

(n+ 1)
+

1

n+ 1

1

n+ 2

=
n(n+ 1) + (n+ 1)(n+ 2) + 2(n+ 2) + 2

2(n+ 1)(n+ 2)
=

n2 + 3n+ 4

(n+ 1)(n+ 2)

Hence the variance is

VarM [M ] =
n2 + 3n+ 4− (n+ 1)(n+ 2)

(n+ 1)(n+ 2)
=

2

(n+ 1)(n+ 2)

Now, the estimator of interest is

T ∗ =
X1 +Xn

3
=

θ(U + V )

3
+ θ =

θM

3
+ θ

so the variance of T ∗ is
2θ2

9(n+ 1)(n+ 2)
<

θ2

27

when n > 1.

8. (a) By invariance, the ML estimator of τ(θ) is

τ̂(T ) =

(
1− T

n

)2

= 1− 2T

n
+

T 2

n2
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(b) We have that T ∼ Binomial(n, θ), so ET [T ; θ] = nθ and ET [T
2; θ] = nθ(1− θ) + n2θ2, so

ET [τ̂(T ); θ] = 1− 2θ +
θ(1− θ)

n
+ θ2 = (1− θ)2 +

θ(1− θ)

n

so the bias is
θ(1− θ)

n

(c) Again use Rao-Blackwell: the statistic T ′ = 1{0}(X1 +X2) is unbiased for τ , as

ET ′ [T ′; θ] = Pr[X1 +X2 = 0] = (1− θ)2

Therefore if we can compute the expectation of T ′ given T , then the resulting estimator T ∗ will
have lower variance than T .

ET ′|T [T
′|T ] = Pr[X1 +X2 = 0|T ]

Now, for 0 ≤ t ≤ n,

Pr[X1 +X2 = 0|T = t; θ] =

Pr

[
X1 = 0, X2 = 0,

n∑
i=3

Xi = t; θ

]
Pr

[
n∑

i=1
Xi = t; θ

]

=

(1− θ)2
(
n− 2

t

)
θt(1− θ)n−t−2(

n

t

)
θt(1− θ)n−t

=

(
n− 2

t

)
(
n

t

) =
(n− 2)!

t!(n− 2− t)!

t!(n− t)!

n!

=
(n− t)(n− t− 1)

n(n− 1)
=

(
1− t

n

)(
1− t

n− 1

)
Therefore the suggested estimator is(

1− T

n

)(
1− T

n− 1

)
= 1− T

n
− T

n− 1
+

T 2

n(n− 1)

which has expectation

1− θ − nθ

n− 1
+

nθ(1− θ) + n2θ2

n(n− 1)
= (1− θ)2

that is, the estimator

T ∗ =

(
1− T

n

)(
1− T

n− 1

)
is unbiased, so therefore must be the best unbiased estimator by Rao-Blackwell.
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