
MATH 557 - EXERCISES 1 : SOLUTIONS

1. (a) We have

fX(x;α, β) =

{
Γ(α+ β)

Γ(α)Γ(β)

}n
{

n∏
i=1

xi

}α−1{ n∏
i=1

(1− xi)

}β−1

suggesting the sufficient statistic T(X) =

(
n∏

i=1
xi,

n∏
i=1

(1− xi)

)⊤
and the result follows using the

Fisher-Neyman Factorization Theorem.

(b) Writing λ = log θ, we realize that this is the Poisson(log θ) model. Hence by properties of the

Exponential Family T (X) =
n∑

i=1
Xi is a sufficient statistic for log θ.

(c) We have

fX(x; θ) =

n∏
i=1

1(θ,2θ)(xi)

θn
=

1(x(n)/2,x(1))(θ)

θn

yielding T(X) =
(
X(1), X(n)

)⊤ and the result follows using the factorization theorem.

2. (a) We have

fX(x;λ) = λn exp

{
−λ

n∑
i=1

xi

}
= λn exp {−λT (x)}

say, so that for two points x and y the ratio

fX(x;λ)

fX(y;λ)
= exp {−λ (T (x)− T (y))}

which is a constant if and only if T (x) = T (y). Therefore T (x) is minimal sufficient.

(b) Given x(1), . . . , x(m), we can construct the joint pdf for the order statistic data by noting that if
X(m) = x(m), then we have X(r) > x(m) for the n − m order statistics X(r), r = m + 1, . . . , n.
Thus, as the “survivor” function takes the form 1− FX(x;λ) = e−λx, we have

fX(x;λ) = m!

(
n

m

)
× λm exp

{
−λ

m∑
i=1

x(i)

}
× exp

{
−(n−m)λx(m)

}
where the combinatorial term counts the number of possible arrangements of the random sam-
ple points. Thus a sufficient statistic is

T (X) =
m∑
i=1

X(i) + (n−m)X(m)

by the factorization theorem.

3. We have for t = 0, 1, . . . ,

fX(x; θ) =
θ

n∑
i=1

xi

e−nθ

n∏
i=1

xi!
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and T (X) ∼ Poisson(nθ) from distributional results, so that

fX|T (x|t) =
θ

n∑
i=1

xi

e−nθ/
n∏

i=1
xi!

(nθ)te−nθ/t!
=

t!

x1! . . . , xn!

(
1

n

)t

x ∈ At

and zero otherwise, where At ≡ {x : x1 + · · ·+ xn = t}.

4. (a) Suppose, for two points x and y in the parameter space, c(x,y) is a function of these two
arguments. We have that

fi(x)

fi(y)
= c(x,y), i = 0, . . . , k ⇐⇒ fi(x)

fi(y)
=

f0(x)

f0(y)
, i = 1, . . . , k

⇐⇒ fi(x)

f0(x)
=

fi(y)

f0(y)
, i = 1, . . . , k

⇐⇒ Ti(x) = Ti(y)

for the given statistic T(X) = (T1(X), . . . , Tk(X))⊤ = (Ti(X))⊤i=1,...,k. Therefore, by the theorem
from 2 (a), T(X) is minimal sufficient. This result implies that for selecting a model from a group
of models, likelihood ratios provide sufficient statistics.

(b) If T∗(X) is sufficient for θ, then by the factorization theorem there exist g and h such that

fθ(x) = g (T∗(x); θ)h(x).

Thus, choosing θi, i = 1, . . . , k, such that fi = fθi ,

T(X) =

(
fi(X)

f0(X)

)⊤

i=1,...,k

=

(
gi(T

∗(X); θi)h(X)

g0(T∗(X); θ0)h(X)

)⊤

i=1,...,k

=

(
gi(T

∗(X); θi)

g0(T∗(X); θ0)

)⊤

i=1,...,k

Hence for any sufficient T∗, T is a function of T∗. Therefore T is minimal sufficient.

(c) Let T be minimal sufficient for θ, so that if W is also sufficient for θ, there exists h such that
h(W ) = T . Let T ∗ = r(T ) where r is a 1-1 mapping. Then T ∗ = r(h(W )), so T ∗ is a function of
every sufficient statistic.

(d) In the notation of the earlier parts, let F1 = {fβ : β = 1, 2} and F = {fβ : β > 0}, where fβ is
the Exponential density with expectation β, so that

fβ(x) =
1

β
e−x/β1(0,∞)(x).

If X(1) = min{X1, . . . , Xn}, define

T (X) =
f2(X)

f1(X)
=

1

2n
e
− 1

2

n∑
i=1

Xi

1(0,∞)(X(1))

e
−

n∑
i=1

Xi

1(0,∞)(X(1))

= 2−n exp

{
nX

2

}
.

However, since

fβ(x) =
1

βn e
−nx/β 1(0,∞)(x(1)) =

1

(2β)n
1

T (x)2/β
1(0,∞)(x(1))

T (X) is sufficient for β by the factorization theorem. Therefore T (X) is minimal sufficient for
β by part (b). Since T (·) is a 1-1 transformation, X is minimal sufficient for β by part (c).
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5. (a) The joint pmf takes the form of an n-sample multinomial without the combinatorial term (here
we observe the Xis individually, not merely the totals in each of the categories):

fX(x;θ) =
3∏

j=1

θ

n∑
i=1

1{j}(xi)

j =
3∏

j=1

θ
nj

j

where

nj =

n∑
i=1

1{j}(xi)

counts the number of times Xi takes the value j, for j = 1, 2, 3. But n3 = n− n1 − n2, hence

fX(x;θ) = θn1
1 θn2

2 (1− θ1 − θ2)
n−n1−n2

Thus, by the factorization Theorem, T = (N1, N2)
⊤ is sufficient for θ = (θ1, θ2)

⊤.

(b) When looking at N1 and N2, we have the traditional multinomial pmf, so

fT(t1, t2;θ) =
n!

n1!n2!(n− n1 − n2)!
θn1
1 θn2

2 (1− θ1 − θ2)
n
3

where T(x) = (n1, n2)
⊤ and n3 = n− n1 − n2 .

(c) Using the using calculus approach, we form the log likelihood, partially differentiate in turn
with respect to θ1 and θ2, equate to zero, and then solve the resulting two equations simulta-
neously. We have

l(θ1, θ2;x) = c(n) + n1 log θ1 + n2 log θ2 + n3 log(1− θ1 − θ2)

so that
∂l

∂θ1
=

n1

θ1
− n3

1− θ1 − θ2

∂l

∂θ2
=

n2

θ2
− n3

1− θ1 − θ2

Equating to zero and subtracting the second from the first equation, we obtain that

n1

θ1
=

n2

θ2
∴ θ1

θ2
=

n1

n2
.

Substituting back into the first equation, we have

n1

n3
=

θ1
1− θ1 − θ2

=
θ1

1− θ1 − n2θ1/n1

Cross multiplying, we get
n1 − n1θ1 − n2θ1 = n3θ1

and hence
n1 = (n1 + n2 + n3)θ1 ∴ θ1 =

n1

n1 + n2 + n3
=

n1

n

Thus, by a similar argument for θ2, we deduce

θ̂(x) = (n1/n, n2/n)
⊤.

and hence the estimator is
θ̂(X) = (N1/n,N2/n)

⊤.

Note that the case covered here presumes n1, n2, n3 > 0. If this does not hold, the maximum
likelihood estimator does not lie in the parameter space and is not defined.
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