
557: MATHEMATICAL STATISTICS II
THE FISHER INFORMATION

A random sample of size n is available from a distribution with pdf f0(x). We seek to use a parametric
“approximating” model fX(x; θ), where θ ∈ Θ ⊆ Rk, defined in the family Fθ. We define the “true”
value of θ, denoted θ0, using a minimum Kullback-Leibler divergence criterion:

θ0 = argmin
θ

KL(f0, fX(.; θ)) = argmin
θ

{
Ef0

[
log

(
f0(X)

fX(X; θ)

)]}
which, after expansion, equates to

θ0 = argmax
θ

{Ef0 [log fX(X; θ)]} = argmax
θ

{∫
log fX(x; θ)f0(x) dx

}
.

We seek to solve this problem using calculus: we solve

∂

∂θ
{Ef0 [log fX(X; θ)]} = 0k

which, under regularity conditions that allow the interchange of integration and differentiation, may
be re-written

Ef0 [U(X; θ)] ≡ Ef0

[
∂

∂θ
{log fX(X; θ)}

]
= 0k.

Thus at the solution θ = θ0, we have by construction that

Ef0

[
∂

∂θ
{log fX(X; θ)}θ=θ0

]
= 0k.

To verify that the solution corresponds to a maximum, we inspect the second derivative matrix if it is
available: again, passing the derivatives through the integral, we obtain the (k × k) Hessian matrix

Ef0

[
∂2

∂θ∂θ⊤
{log fX(X; θ)}

]
= Ef0 [Ψ(X; θ)]

say, which we require to be negative definite; alternatively, we require that

If0(θ) = Ef0 [−Ψ(X; θ)]

be positive definite.

Correct specification: If f0 ∈ Fθ, that is, the true f0 is a member of the parametric family, then there is,
under the assumption of identifiability, a unique θ0 such that f0(x) ≡ fX(x; θ0). In this case, we write

EX

[
∂

∂θ
{log fX(X; θ)}θ=θ0

; θ0

]
= 0k.

and
Iθ0(θ) = EX [−Ψ(X; θ); θ0]

The quantity Iθ0(θ) is termed the Fisher Information, which is most commonly computed at θ = θ0.

An alternative representation of the second partial derivative matrix is available under correct specifi-
cation: we have that

∂2

∂θ∂θ⊤
{log fX(x; θ)} =

∂

∂θ

{
∂

∂θ⊤
{log fX(x; θ)}

}
=

∂

∂θ


∂fX(x; θ)

∂θ⊤

fX(x; θ)

 =
∂

∂θ

{
{ḟX(x; θ)}⊤

fX(x; θ)

}
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say, where

{ḟX(x; θ)}⊤ =
∂fX(x; θ)

∂θ⊤
=

{
∂fX(x; θ)

∂θ

}⊤
.

Writing f̈X(x; θ) for the (k × k) second partial derivative (Hessian) matrix

f̈X(x; θ) =
∂2fX(x; θ)

∂θ∂θ⊤

we have that
∂

∂θ

{
{ḟX(x; θ)}⊤

fX(x; θ)

}
=

f̈X(x; θ)

fX(x; θ)
−

{
ḟX(x; θ)

fX(x; θ)

}{
ḟX(x; θ)

fX(x; θ)

}⊤

But as before {
ḟX(x; θ)

fX(x; θ)

}
=

∂

∂θ
{log fX(x; θ)} = U(x; θ)

so therefore

Ψ(x; θ) =
f̈X(x; θ)

fX(x; θ)
− U(x; θ){U(x; θ)}⊤

Moving to the random variable version, and taking expectations with respect to the data generating
distribution f0 yields the identity

Ef0 [Ψ(X; θ)] = Ef0

[
f̈X(X; θ)

fX(X; θ)

]
− Ef0

[
U(X; θ){U(X; θ)}⊤

]
Now for the first term on the right hand side, we have

Ef0

[
f̈X(X; θ)

fX(X; θ)

]
=

∫
f̈X(x; θ)

fX(x; θ)
f0(x)dx

Under correct specification, f0(x) ≡ fX(x; θ0), and so in this case we have that

EX

[
f̈X(X; θ)

fX(X; θ)
; θ0

]
=

∫
f̈X(x; θ)

fX(x; θ)
fX(x; θ0)dx

and when evaluating at θ = θ0 we have that the integral is∫
f̈X(x; θ0)

fX(x; θ0)
fX(x; θ0)dx =

∫
f̈X(x; θ0)dx = 0k×k

as under regularity conditions∫
f̈X(x; θ0)dx =

∫
∂2

∂θ∂θ⊤
{fX(x; θ)}θ=θ0

dx =
∂2

∂θ∂θ⊤

{∫
fX(x; θ)dx

}
θ=θ0

= 0k×k

Therefore, in this case

Iθ0(θ0) = EX [−Ψ(X; θ0); θ0] = EX

[
U(X; θ0){U(X; θ0)}⊤; θ0

]
.

Also,
EX

[
U(X; θ0){U(X; θ0)}⊤; θ0

]
= VarX [U(X; θ0); θ0]

– the (k × k) covariance matrix of the random vector U(X; θ0) – as EX [U(X; θ0); θ0] = 0k.
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