557: MATHEMATICAL STATISTICS II
THE FISHER INFORMATION

A random sample of size n is available from a distribution with pdf fy(x). We seek to use a parametric
“approximating” model fx (z;6), where § € © C R*, defined in the family Fy. We define the “true”
value of 6, denoted 6, using a minimum Kullback-Leibler divergence criterion:

b0 = argmin KL(fo, fx(:;0)) = arg min {[Efo [log <m>] }

which, after expansion, equates to

Oy = aurgmgux{[Ef0 [log fx(X;6)]} = arg max {/logfx(:r; 0) fo(x) dac} .

We seek to solve this problem using calculus: we solve

O (s log fx(X:0)]) = 04

which, under regularity conditions that allow the interchange of integration and differentiation, may
be re-written

£, [U(X:)] =y, | g lor fx(X:0)}| = 0.

Thus at the solution 6 = 6y, we have by construction that

[Efo |:689 {log fX(X; 9)}990:| = Ok.

To verify that the solution corresponds to a maximum, we inspect the second derivative matrix if it is
available: again, passing the derivatives through the integral, we obtain the (k x k) Hessian matrix

5?2
£, | 5o e Qg [x (Xs0)}| = Eg [0(X:0)]

say, which we require to be negative definite; alternatively, we require that
Iy, (0) = Ep [-W(X;0)]
be positive definite.

Correct specification: If f; € Fy, that is, the true fy is a member of the parametric family, then there is,
under the assumption of identifiability, a unique 6y such that fy(z) = fx(x;6p). In this case, we write

0
[EX % {log fx(X; 9)}9:90 ;90 = Ok.

and
Ty, (0) = Ex [-P(X;0); 00]

The quantity Zy, (6) is termed the Fisher Information, which is most commonly computed at § = 6.

An alternative representation of the second partial derivative matrix is available under correct specifi-
cation: we have that

——={log fx(x;0)} = = = Uo fx(x; Y )_00 \ _ WX\ V)
0000 - {1 g X( ) )} 9{ {1 g X( 79)}} X(w; ) { (x; ) }



say, where

o1 Ofx(x0)  [ofx(z o) T
Usmoyy” = L0l [OLRO
Writing fx (z; ) for the (k x k) second partial derivative (Hessian) matrix
;o O fx(w;0)
Fx(@:0) = = ooeT
we have that +
O [ {fx(x:0)}7 _ fx(@;0) | fx(@:0) | [ fx(@:0)
90 | fx(x:0) fx(:0) | fx(2:0) | | fx(z;0)
But as before '
Ix(z;0) | 0 o '
{fX(fL‘; 9)} = 9 {log fx(z;0)} = U(x;0)
so therefore i (@:6)
gy = Ix(@0) N
U(z;0) = (@ 0) U(z;0){U(x;0)}

Moving to the random variable version, and taking expectations with respect to the data generating
distribution fy yields the identity

Ej [V (X;0)] = Ef, [M] —Ey, [U(X;@){U(X;@)}T

Now for the first term on the right hand side, we have

fx(X;0) fx(x:0)
Ef |=—"F%| = d
Under correct specification, fo(x) = fx(x;6p), and so in this case we have that
fx(X30) fx(;0)
Ex | ————=%; = x;60)dx
X [fX(X;H) 0 fx(x;e)fX( 0)
and when evaluating at § = 6y we have that the integral is
Fx (w3 00) / ;
= fx(x;0p)dx = x;00)dx =0
Fx (2 go)fx( 0) fx (x;60) kexk

as under regularity conditions

62

[ Fetasonde= [ 220

52
{/x(@:0)}g_g, do = 50907 {/fx(fﬂ;@)dﬁ}ezgo = Ogxk
Therefore, in this case
T, (00) = Ex[~W(X; 00); 60] = Ex |U(X;60){U(X:00)} ;0] .

Also,
Ex U(X;eo){U(X;eo)}T;eo} = Varx [U(X: 00); 0]

—the (k x k) covariance matrix of the random vector U(X;6y) —as Ex[U(X;0p); 00| = O.



