557: MATHEMATICAL STATISTICS II
INTERVAL ESTIMATION: WORKED EXAMPLES

Example 1: Inverting a Test Statistic
Suppose that X1,...,X,, ~ Normal(#, 02) for o2 known. A confidence interval can be constructed by
recalling the UMP unbiased test at level « of
Hy : 6=06
Hy : 0+#06
with rejection region
R(bo) ={x : T< —cn(Bo)}U{x : T>cn(bo)}

where
c® 11— a/2)

Cn(eo) = \/ﬁ

+ 0.
The corresponding acceptance region is
A(0p) ={x : —cn(0o) <T < cup(fp)}

so that o
Pr[X € 4(00);60] = Pr[—cn(00) < X < cn(00);00] =1 — a.

From this we conclude that, under the distribution fx (x; ), we have that the probability that

c® (1 —a/2) - o071 -a/2)
——\/ﬁ _00<X<—\/ﬁ +90
is 1 — a. Rearranging, we have that with probability 1 — ¢,
— o® (1 -qa/2) - o011 -a/2)
X—-— X+ ——m———=.
N <l < X+ NG
Therefore a 1 — « confidence interval is defined by [L(X), U(X)] where
— 071 -a/2) — 01 —-a/2)
LX)=x - 2= = —%/% x4+ 22 LY
(%) 7 V) =X+

Example 2 : Using a Pivotal Quantity : Exponential Case
Suppose that X7, ..., X,, ~ Exponential(6). Then

T(X) = ZXZ' ~ Gamma(n, )
i=1

and hence
Q(X,0) =0T(X) ~ Gamma(n, 1)

is a pivotal quantity. We have that
Prie; < Q(X,0) < ;0] =1—«

if ¢; and ¢ are the ) and a3 quantiles of the Gamma(n, 1) distribution. Hence a 1 — « interval is

[L(X),U(X)] = [T(C;Q’ Tg()]
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Example 3 : Using a Pivotal Quantity : Normal variance case

Suppose that X1,..., X, ~ Normal(fy,0?) and Y3,...,Y,, ~ Normal(fs,03) are independent ran-
dom samples. Then

O1(X,02) = (”1_71 22 Ou(Y.02) = (n2—1 2ZY 7

O' O'

are pivotal quantities, as
Q1(X,0%) ~ Chisquared(n; — 1) Q2(X, 03) ~ Chisquared(ng — 1).
To construct a 1 — « confidence interval, note that
Prlc;; < Q1(X,0%) < c19503] =1 — «

if ¢11 and ¢;2 are the a; and a» quantiles of the Chi-squared distribution with n; —1 degrees of freedom.
Hence with probability 1 — «

(n1 — 1)s?

c11 < Q1(X, 07) < ez cin < 2 < c12
1
and therefore the 1 — « interval is
ny—1)s2 (n; —1)s?
11,(%), Uy (X)) = | L= st (m = Dst

C12 C11

with a similar interval for 3. Note also that by previous results

X o2 1 2 2
Ql( ,0’1)/(111 )_iQNFisheT(nl—l,HQ_l)

Q2(X,03)/(n2 = 1) 5301

is also a pivotal quantity, so by similar arguments to the above, a 1 — « interval for 07 /03 is

2 2
2.7 o2

where ¢; and ¢; are the «/2 and 1 — a/2 quantiles of the Fiisher(n; — 1,ny — 1) distribution.

Example 4 : Inverting a Likelihood Ratio Statistic : Exponential case
Suppose that X7, ..., X,, ~ Exponential(¢) and we wish to test the hypotheses

Hy : 60=0g
H1 . 97590

The likelihood ratio test for these hypotheses is based on the statistic

sup fx(x;0)
0 ©¢

sup fx(x;0)
0c ©

Ax(x) =

Under Hy, the ML estimator of 6 is En =1/X,s0

exp{ TZGQX} (QoT(X)
0" exp{—nfX} n

x(X) = >” exp{—T(X)0 + n}
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where, for any 6,

T(X) = ZXi ~ Gamma(n, ) 0T (X) ~ Gamma(n, 1).
i—1

The acceptance region A4(fy) is the set
{X : Ax(x) > Cl}

which is equivalent to the set
{t : (Qot)n exp{—teo} Z CQ} .
In general, there are two solutions a1 (6y) < az(6p) to the equation

(Hot)n exp{—te()} = C9 (1)

or equivalently
nlogt — 901: = C3 (2)

but the solutions can only be found numerically; we must choose c3 such that
Pr[al(ﬁo) < T(X) < CLQ(Q()); 90} =1-a. (3)

In practice, we might choose a range of values of c3, then find a;(6y) and a2 () as solutions to equation
(2), and then check equation (3) to see whether the probability is matched. In Figure 1 below, the
acceptance region is computed for n = 10,60y = 5 and a = 0.05

B) = 0.9551(8;)=3.5242

logA(x)
-10

Figure 1: The o = 0.05 acceptance region, 4(6y), for the Exponential model with 8y = 5 and n = 10 is
(0.9551,3.542). We move the value of k3 up the y-axis until the intersection points, a1(6y) and az2(6p),
of the horizontal line and the function g(t) = nlogt — 6yt define a region containing probability 1 — .

To invert 4(6y) to get the 1 — o confidence interval, we seek, for fixed data x and summary statistic
T'(x), the set
C(T(x))=1{0:T(x)ea(0)} =1{6: (0T(x))" exp{—0T(x)} > ko}



As the distribution is unimodal, a 1 — o confidence interval must take the form
C(T(x)) ={0: L(T(x)) <0 <U(T(x))}
Writing ¢ = T'(x), from equation (1) and by analogy with Figure 1, we must have
(tL(1))" exp{—tL(t)} = (tU(t))" exp{—tU(t)}. 4)
If a = tL(t) and b = tU(t), then the interval is
{0:a/t <0 <b/t}

where a and b satisfy
Prla/T <0 <b/T;0] =Prla<0T <b=1-«

where 0T ~ Gamma(n, 1). Thus from (4) we require that

ae 9 = bnefb

whilst
’ 1 n—1_-zx
/a mx e fdr=1-o.
Therefore, solving for a and b is numerically straightforward using a look-up table approach. The
code below in R demonstrates how this might be done; for a fine grid €, 2¢, ..., & — ¢, we compute the

quantiles g7, and gy corresponding to probabilities me and me + 1 — a, and then find the value of m
such that
qle™ — gle

is as close as possible to zero.

n<-10

eps<-le-6

eps.vec<-seq(eps,alpha-eps,by=eps)
gL.vec<-qgamma(eps.vec,n,1)

qU.vec<-qgamma (eps.vec+l-alpha,n,1)
d.vec<-exp(n*log(qL.vec)-qL.vec)-exp(n*log(qU.vec)-qU.vec)
a<-aL.vec[which.min(d.vec*d.vec)]
b<-qU.vec[which.min(d.vec*d.vec)]

which yields the following results

n | 5 10 15 20 25 30 35 40 45 50
a | 1758 4979 8.603 12439 16412 20482 24.626 28.829 33.080 37.372
b | 10.864 17.613 23979 30.137 36.162 42.089 47943 53.739 59.488 65.195

Note that this computation is independent of ¢ = T'(x); to obtain the confidence interval, we need to
divide a and b by t. For example, if n = 10 and ¢ = T'(x) = 2.281, we have

4.979 17.613
L(T(x) = 55g7 = 2183 U(T(x) = 5o = 7722

Note that as the distribution of Q(X, #) = 67'(X) does not depend on 0, it is a pivotal quantity, so
Pria < 60T <b| =Prla/T<0<b/T|=1—-«

already yields a 1 — « confidence interval; the additional constraint in equation (4) ensures that the
interval is as short as possible.



