
557: MATHEMATICAL STATISTICS II
HYPOTHESIS TESTING: WORKED EXAMPLES

Example 1. Suppose that X1, . . . , Xn ∼ N(θ, 1). To test

H0 : θ = 0

H1 : θ = 1

the most powerful test at level α is based on the statistic

λ(x) =
fX(x; 1)

fX(x; 0)
=

(2π)−n/2 exp

{
−1

2

n∑
i=1

(xi − 1)2
}

(2π)−n/2 exp

{
−1

2

n∑
i=1

x2i

} = exp

{
n∑

i=1

xi − n/2

}

with critical region R given by x ∈ R if

n∑
i=1

xi −
n

2
> log c

where c is defined by Pr[X ∈ R; θ = 0] = α. We can convert this to a rejection region of the form
X > cn. Now, given θ = 0, X ∼ N(0, 1/n), so

Pr[X ∈ R; θ = 0] = Pr[X > cn; θ = 0] = 1− Φ(
√
n cn) = α ∴ cn =

Φ−1(1− α)√
n

For α = 0.05, Φ−1(1− α) = 1.645. Hence we reject H0 in favour of H1 if

X >
1.645√

n

For example, for n = 25, cn = 0.329. The power function β(θ) is given by

β(θ) = Pr[X ∈ R; θ] = Pr[X > cn; θ] = 1− Φ(
√
n(cn − θ))

which we evaluate specifically at θ = 1. Note that β(θ) is an increasing function of θ so that as θ
increases, the power to reject H0 in favour of H1 increases.

Example 2. Suppose that X1, . . . , Xn ∼ Exp(1/θ). To test

H0 : θ = 2

H1 : θ > 2

Let θ0 = 2, θ1 ∈ Θ1 ≡ (2,∞). The most powerful test of the hypotheses

H0 : θ = θ0
H1 : θ = θ1

is given by the Neyman-Pearson Lemma to be

λ(x) =
fX(x; θ1)

fX(x; θ0)
=

(
θ0
θ1

)n exp

{
−

n∑
i=1

xi/θ1

}
exp

{
−

n∑
i=1

xi/θ0

} =

(
2

θ1

)n

exp

{
−

n∑
i=1

xi

[
1

θ1
− 1

2

]}
> c.
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so that, in terms of the sufficient statistic,

T (X) =
n∑

i=1

Xi >
log c− n log(2/θ1)

1

2
− 1

θ1

say. Hence the critical region is of the form T (X) > cn, and as under H0, T (X) ∼ Gamma(n, 1/2), we
require that

Pr[T (X) > cn; θ = 2] = α ∴ cn = qn,1/2(1− α)

where qa,b(1− α) is the inverse cdf for the Gamma(a, b) distribution evaluated at 1− α. Consider tests
where RT ≡ {t : t > c}; this test has power function

β(θ) = Pr[T (X) > c ; θ] =

∫ ∞

c

1

θnΓ(n)
tn−1e−t/θ dt (1)

which can be computed numerically. Now, note from equation (1) that β(θ) is a decreasing function of
c, so therefore the most powerful test across all possible values of θ1 ∈ Θ1 that attain size/level α is the
one with c = cn. Below is a table of β(θ) for different values of n and θ, when α = 0.05 and c = cn:

θ
n 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
2 0.071 0.095 0.121 0.148 0.176 0.204 0.233 0.261 0.288 0.315
3 0.076 0.105 0.139 0.174 0.211 0.248 0.285 0.321 0.357 0.391
4 0.079 0.115 0.154 0.197 0.242 0.287 0.332 0.376 0.418 0.458
5 0.083 0.123 0.169 0.219 0.272 0.324 0.376 0.426 0.473 0.518
10 0.097 0.160 0.235 0.317 0.401 0.481 0.556 0.624 0.683 0.735
20 0.120 0.223 0.348 0.478 0.598 0.701 0.783 0.846 0.893 0.926

Example 3. Suppose that X1, . . . , Xn ∼ Bernoulli(θ). A test of

H0 : θ ≤ θ0
H1 : θ > θ0

is required. The likelihood ratio for θ1 < θ2 for this model is

λ(x) =
fX(x; θ2)

fX(x; θ1)
=

θ
T (x)
2 (1− θ2)

n−T (x)

θ
T (x)
1 (1− θ1)n−T (x)

=

(
θ2/(1− θ2)

θ1/(1− θ1)

)T (x)(1− θ2
1− θ1

)n

where T (X) =
n∑

i=1
Xi. Thus λ(x) is a monotone increasing function of T (x) as for θ1 < θ2

θ2
(1− θ2)

>
θ1

(1− θ1)

and by the Karlin-Rubin theorem, the UMP test at level α is based on the critical region

R ≡

{
x : T (x) =

n∑
i=1

xi > t0

}

To find t0, we need to solve
Pr[T (X) > t0 ; θ0] = α. (2)

Now if θ = θ0, then T (X) ∼ Binomial(n, θ0), so t0 need only take integer values on {0, . . . , n}. Note
that the equation (2) can not be solved for all α, as T (X) has a discrete distribution.
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Example 4. Consider the likelihood arising from a random sample X1, . . . , Xn following a one-
parameter Exponential Family model:

fX(x; θ) = h(x){c(θ)}n exp{w(θ)T (x)}

where T (X) =
n∑

i=1
t(Xi) is a sufficient statistic. For θ1 < θ2

fX(x; θ2)

fX(x; θ1)
=

(
c(θ2)

c(θ1)

)n

exp{(w(θ2)− w(θ1))T (x)}.

This is a monotone function of T (x) if w(θ) is a monotone function; if w(θ) is non-decreasing, then the
test of the hypothesis

H0 : θ ≤ θ0
H1 : θ > θ0

that uses the rejection region R ≡ {x : T (x) ≥ t0}, where Pr[T (X) ≥ t0 ; θ = θ0] = α, is the UMP α
level test.

Example 5. Suppose that X1 . . . , Xn1 ∼ N(θ1, σ
2) and Y1, . . . , Yn2 ∼ N(θ2, σ

2) are independent ran-
dom samples. To test

H0 : θ1 = θ2 = θ, σ2 unspecified
H1 : θ1 ̸= θ2, σ

2 unspecified

the likelihood ratio statistic is

λ(x,y) =

sup
(θ,σ2)∈Θ0

fX,Y(x,y; θ, σ2)

sup
(θ1,θ2,σ2)∈Θ1

fX,Y(x,y; θ1, θ2, σ2)
=

fX,Y(x,y; θ̂, σ̂0)

fX,Y(x,y; θ̂1, θ̂2, σ̂1)

Note that in the denominator, the supremum over Θ1 is almost surely identical to the supremum over
Θ. Under H0, the maximum likelihood estimators of θ and σ2 are

θ̂ =

n1∑
i=1

Xi +
n2∑
i=1

Yi

n1 + n2
=

n1X + n2Y

n1 + n2

σ̂2
0 =

1

n1 + n2

[
n1∑
i=1

(Xi − θ̂)2 +

n2∑
i=1

(Yi − θ̂)2

]

whereas under H1, the maximum likelihood estimators of θ1, θ2 and σ2 are θ̂1 = X , θ̂2 = Y , and

σ̂2
1 =

1

n1 + n2

[
n1∑
i=1

(Xi − θ̂1)
2 +

n2∑
i=1

(Yi − θ̂2)
2

]
Therefore

λ(x,y) =

(
σ̂2
1

σ̂2
0

)(n1+n2)/2

Now λ(x,y) ≤ c is equivalent to

σ̂2
1

σ̂2
0

=

n1∑
i=1

(Xi − θ̂1)
2 +

n2∑
i=1

(Yi − θ̂2)
2

n1∑
i=1

(Xi − θ̂)2 +
n2∑
i=1

(Yi − θ̂)2
≤ c1

3



say. In the denominator

n1∑
i=1

(Xi − θ̂)2 =

n1∑
i=1

(Xi − θ̂1 + θ̂1 − θ̂)2 =

n1∑
i=1

(Xi −X)2 + n1

(
X − n1X + n2Y

n1 + n2

)2

=

n1∑
i=1

(Xi −X)2 +
n1n

2
2

(n1 + n2)2
(
X − Y

)2
with an equivalent expression for

n2∑
i=1

(Yi − θ̂)2 =

n2∑
i=1

(Yi − Y )2 +
n2
1n2

(n1 + n2)2
(
X − Y

)2
Therefore, after substitution into the inequality above, we have

n1∑
i=1

(Xi −X)2 +
n2∑
i=1

(Yi − Y )2

n1∑
i=1

(Xi −X)2 +
n2∑
i=1

(Yi − Y )2 +
n1n2

n1 + n2
(X − Y )2

≤ c1

which is equivalent to the inequality
n1n2

n1 + n2
(X − Y )2

n1∑
i=1

(Xi −X)2 +
n2∑
i=1

(Yi − Y )2
≥ c2

or more familiarly

T (X,Y)2 =
(X − Y )2

s2P

(
1

n1
+

1

n2

) ≥ (n1 + n2 − 2)c2 = c2 (3)

say, where

s2P =
1

n1 + n2 − 2

[
n1∑
i=1

(Xi −X)2 +

n2∑
i=1

(Yi − Y )2

]
is the unbiased estimator of σ2 under H1. The statistic on the left hand side of equation (3) is, under H0,
the square of a Student-t random variable with n1+n2− 2 degrees of freedom, and thus the likelihood
ratio test is equivalent to the traditional two-sample t-test for the equality of means. The appropriate
value of c can be computed using tables of that distribution; we have for a level α test

c = St−1
n1+n2−2(1− α/2)

where St−1
n (p) is the inverse cdf of the Student-t density with n degrees of freedom evaluated at prob-

ability p. Thus the rejection region RT is defined by RT ≡ {t : (t ≤ −c) ∪ (t ≥ c)}.

Power Function: The power function β can be formed in terms of the difference δ = θ1 − θ2, and a
specific σ. We have

β(δ, σ) = Pr[T (X,Y) ∈ RT ; δ, σ] = Pr[T (X,Y) ≤ −c; δ, σ] + Pr[T (X,Y) ≥ c; δ, σ].

To compute these probabilities, we need to compute the distribution of T (X,Y) when the difference
between the means is δ. It turns out that this distribution is the non-central Student-t distribution: if
Z ∼ N(µ, 1) and V ∼ χ2

ν are independent random variables, then

T =
Z√
V/ν

∼ Student(ν, µ)
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for which the pdf can be computed using standard methods from MATH 556. The statistic T (X,Y)
from equation (3) can be written in this fashion, with

Z =

√
n1n2

n1 + n2

(X − Y )

σ
V =

n1∑
i=1

(Xi −X)2 +
n2∑
i=1

(Yi − Y )2

σ
µ =

√
n1n2

n1 + n2

(θ1 − θ2)

σ
=

√
n1n2

n1 + n2

δ

σ

The term δ/σ is the standardized difference between θ1 and θ2, and the form of µ indicates that we
can look at power on this standardized scale for different sample sizes. In R, the functions pt and
qt compute, respectively, the cdf and inverse cdf for both the Student-t and non-central Student-t
distributions; for the probabilities required to compute β(θ, σ) the R commands are
n<-n1+n2
alpha<-0.05
sigma<-1
delta<-seq(-2,2,by=0.01)
cval<-qt(1-alpha/2,n-2)
mu<-sqrt((n1*n2/(n1+n2)))*(delta/sigma)
beta.power<-pt(-cval,df=n-2,ncp=mu)+1-pt(cval,df=n-2,ncp=mu)

The plot below depicts β(δ/σ) for α = 0.05; note that the power is higher as n = n1 + n2 increases, but
that the power for n = 20 is also higher if n1 = n2 = 10 than if n1 = 5 and n2 = 15.
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Example 6. Randomized Tests
A test T with test function ϕR(T (x)) taking values in {0, 1} (with probability one) is termed a non-
randomized test; given the observed value of statistic T (x), the null hypothesis is (deterministically)
rejected if ϕR(T (x)) = 1, and is not rejected otherwise. For such a test

EfT ;θ
[ϕR(T (X)); θ] = Pr[ϕR(T (X)) = 1; θ] = Pr[T (X) ∈ R; θ] = β(θ).

In the Neyman-Pearson Lemma, for testing parametric models fX;θ and two possible values θ0 and θ1,
at level α, the critical region R is defined by

fX(x; θ1) > cfX(x; θ0) =⇒ x ∈ R

fX(x; θ1) < cfX(x; θ0) =⇒ x ∈ R′

where k is defined by noting the requirement Pr[X ∈ R; θ0] = α. However, it may occur that

fX(x; θ1) = cfX(x; θ0)

in which case the result of the test is ambiguous. A potential resolution of the ambiguity is to construct
a randomized test, T ⋆, where the decision to reject H0 is potentially randomly chosen, but that matches
the power of T . Consider the test function ϕ⋆

R(x) defined by

ϕ⋆
R(x) =


1 fX(x; θ1) > cfX(x; θ0)

γ fX(x; θ1) = cfX(x; θ0)

0 fX(x; θ1) < cfX(x; θ0)

for 0 ≤ γ ≤ 1, so that, with a non-zero probability, ϕ⋆
R(x) takes a value not equal to zero or one. In this

randomized test, the constant γ represents the probability with which H0 is rejected in the case that

fX(x; θ1) = cfX(x; θ0).

Note that the requirement Pr[X ∈ R; θ0] = α implies that we must choose γ so that

ET [ϕ
⋆
R(T (X)); θ0] = Pr[ϕ⋆

R(T (X)) = 1; θ0] + γ Pr[ϕ⋆
R(T (X)) = γ; θ0]

The final term needs some explanation; it is equal to the probability of the set

A ≡ {x : fX(x; θ1) = cfX(x; θ0)}

under the model that assumes θ = θ0.

For example, suppose that X1, . . . , Xn ∼ Bernoulli(θ) and consider a test of the simple hypotheses

with values θ0 < θ1. Let T (X) be defined by T (X) =
n∑

i=1
Xi. If

λT (x) =
fX(x; θ1)

fX(x; θ0)
=

(
θ1
θ0

)T (x)(1− θ1
1− θ0

)n−T (x)

then λT (x) is an increasing function of T (x). Therefore, there exist constants c and γ such that a test
T ⋆ can be constructed with test function

ϕ⋆
R(x) =


1 T (x) > c

γ T (x) = c

0 T (x) ≤ c
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such that

α = ET [ϕ
⋆
R(T (X)); θ0] = Pr[ϕ⋆

R(T (X)) = 1; θ0] + γ Pr[ϕ⋆
R(T (X)) = γ; θ0]

= Pr[T (X) > c; θ0] + γ Pr[T (X) = c; θ0]

=

n∑
j=c+1

(
n

j

)
θj0(1− θ0)

j + γ

(
n

c

)
θc0(1− θ0)

c.

The introduction of the random element allows this equation to be solved exactly, whatever the value
of α; this was not possible under the non-randomized rule.

For a specific numerical example, let n = 20, θ0 = 0.3 and θ1 = 0.5. For α = 0.05, the probability
distribution of T (X) is Binomial(n, θ), so that the probability Pr[T (x) > c; θ = 0.3] can be computed:
Hence choosing c equal to 8 or 9 gives Pr[T (x) > c; θ = 0.3] equal to 0.113 and 0.048 respectively, so

c 5 6 7 8 9 10 11 12 13

Pr[T (x) = c; θ = 0.3] 0.179 0.192 0.164 0.114 0.065 0.031 0.012 0.004 0.001

Pr[T (x) > c; θ = 0.3] 0.584 0.392 0.228 0.113 0.048 0.017 0.005 0.001 0.000

that α = 0.05 cannot be matched exactly in a non-randomized test (that is, if γ = 0). However choosing
c = 9 and γ = 0.0308 in the randomized test yields

Pr[T (X) > c; θ0] + γ Pr[T (X) = c; θ0] = 0.048 + 0.308× 0.065 = 0.05 = α

so the randomized test that specifies
n∑

i=1

xi > 9 =⇒ Reject H0

n∑
i=1

xi = 9 =⇒ Reject H0 with probability γ = 0.0308

n∑
i=1

xi < 9 =⇒ Do Not Reject H0

has size/level precisely α. The power function is

β(θ) =
n∑

j=c+1

(
n

j

)
θj(1− θ)j + γ

(
n

c

)
θc(1− θ)c

Example 7. Suppose that X1, . . . , Xn ∼ Uniform(0, θ). To test

H0 : θ ≤ θ0
H1 : θ > θ0.

The likelihood ratio for θ1 < θ2 for this model is

λ(x) =
fX(x; θ2)

fX(x; θ1)
=


(
θ1
θ2

)n

T (X) ≤ θ1

∞ θ1 ≤ T (X) ≤ θ2
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where T (X) = X(n) = max{X1, . . . , Xn}. Thus λ(x) is a non decreasing function of T (x) as for θ1 < θ2,
and by the Karlin-Rubin theorem, the UMP test at level α is based on the critical region

R ≡
{
x : T (x) = x(n) > t0

}
.

To find t0, we need to solve

Pr[X(n) > t0 ; θ0] = 1−
(
t0
θ0

)n

= α ∴ t0 = θ0(1− α)1/n

with power function (for θ > θ0)

β(θ) = 1−
(
θ0
θ

)n

(1− α).

Now consider the randomized test T ⋆ with test function

ϕ⋆
R(x) =

{
1 x(n) > θ0

α x(n) ≤ θ0

We have for θ > θ0 that

β⋆(θ) = ET [ϕ
⋆
R(T (X)); θ] = Pr[ϕ⋆

R(T (X)) = 1; θ] + αPr[ϕ⋆
R(T (X)) = α; θ]

= Pr[X(n) > θ0; θ] + αPr[X(n) ≤ θ0; θ]

= 1−
(
θ0
θ

)n

+ α

(
θ0
θ

)n

= 1−
(
θ0
θ

)n

(1− α)

thus matching the power of the UMP test described above. Therefore the UMP test is not unique.

Note that for the hypotheses

H0 : θ = θ0
H1 : θ ̸= θ0

the likelihood ratio test statistic is

λ(x) =
fX(x; θ0)

fX(x; θ̂)
=


(
x(n)

θ0

)n

x(n) ≤ θ0

0 x(n) > θ0

Therefore the likelihood ratio test λ(x) ≤ c is has rejection region

(X(n) > θ0) ∪ (X(n)/θ0 ≤ c1/n)

To choose c, we require that the size/level is α; as

Pr[(X(n) > θ0) ∪ (X(n)/θ0 ≤ c1/n); θ = θ0] = Pr[X(n) ≤ c1/nθ0; θ = θ0] =
cθn0
θn0

= c

we choose c = α. The power function β(θ) is

Pr[(X(n) > θ0) ∪ (X(n)/θ0 < α1/n); θ] =


α

(
θ0
θ

)n

0 < θ < θ0

1− (1− α)

(
θ0
θ

)n

θ > θ0
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