
557: MATHEMATICAL STATISTICS II

RESULTS FROM CLASSICAL HYPOTHESIS TESTING

Most Powerful Tests

To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider
a family tests C for testing H0 and H1 with corresponding subsets Θ0 and Θ1.

• The uniformly most powerful (UMP) test T is the test whose power function β(θ) dominates

the power function, β†(θ), of any other test T † ∈ C at all θ ∈ Θ1,

β(θ) ≥ β†(θ) ∀ θ ∈ Θ1.

• A test with power function β(θ) is unbiased if for all θ0 ∈ Θ0, θ1 ∈ Θ1,

β(θ1) ≥ β(θ0).

• A simple hypothesis is one which speci�es the distribution of the data completely. Consider a
parametric model fX(x; θ)with parameter space Θ = {θ0, θ1}, and the test of

H0 : θ = θ0
H1 : θ = θ1

Then both H0 and H1 are simple hypotheses.

Theorem (The Neyman-Pearson Lemma)
Consider a parametric model fX(x; θ)with parameter space Θ = {θ0, θ1}. A test of

H0 : θ = θ0
H1 : θ = θ1

is required. Consider a test T with rejection regionR that satis�es

fX(x; θ1) > cfX(x; θ0) =⇒ x ∈ R
fX(x; θ1) < cfX(x; θ0) =⇒ x ∈ R′

for some k ≥ 0, and Pr[X ∈ R|θ = θ0] = α. Then T is UMP in the class, Cα, of tests at level α. Further,
if such a test exists with k > 0, then all tests at level α also have size α (that is, α is the least upper
bound of the power function β(θ)), and have rejection region identical to that of T , except perhaps if
x ∈ A and

Pr[X ∈ A; θ0] = Pr[X ∈ A; θ1] = 0.

Proof As Pr[X ∈ R; θ0] = α, the test T has size and level α. Consider the test function ϕR(x) for this
test, and ϕR†(x) be the test function for any other α level test, T †. Denote by β(θ) and β†(θ) be the
power functions for these two tests. Now

g(x) = (ϕR(x)− ϕR†(x))(fX(x; θ1)− cfX(x; θ0)) ≥ 0

as
x ∈ R ∩R† =⇒ ϕR(x) = ϕR†(x) = 1 ∴ g(x) = 0

x ∈ R ∩R†′ =⇒ ϕR(x) = 1, ϕR†(x) = 0, fX(x; θ1) > cfX(x; θ0) ∴ g(x) > 0

x ∈ R′ ∩R† =⇒ ϕR(x) = 0, ϕR†(x) = 1, fX(x; θ1) < cfX(x; θ0) ∴ g(x) > 0

x ∈ R′ ∩R†′ =⇒ ϕR(x) = ϕR†(x) = 0 ∴ g(x) = 0.
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Thus ∫
X
(ϕR(x)− ϕR†(x))(fX(x; θ1)− cfX(x; θ0)) dx ≥ 0

but this inequality can be written in terms of the power functions as

(β(θ1)− β†(θ1))− k(β(θ0)− β†(θ0)) ≥ 0 (1)

As β(θ) and β†(θ) are bounded above by α, and β(θ0) = α as T is a size α, we have that

β(θ0)− β†(θ0) = α− β†(θ0) ≥ 0 ∴ β(θ1)− β†(θ1) ≥ 0

Thus β(θ1) ≥ β†(θ1), and hence T is UMP, as θ1 is the only point in Θ1, and the test with power

function β† is arbitrarily chosen.

Now consider any UMP test T † ∈ Cα. By the result above, T is UMP at level α, so β(θ1) = β†(θ1). In
this case, if c > 0, we have from equation (1) that

β(θ0)− β†(θ0) = α− β†(θ0) ≤ 0.

But, by assumption, T † is a level α test, so we also have α− β†(θ0) ≥ 0, and hence β†(θ0) = α, that is,
T

† is also a size α test. Therefore∫
X
(ϕR(x)− ϕR†(x))(fX(x; θ1)− cfX(x; θ0)) dx = 0 (2)

where the integrand in equation (2) is a non-negative function. Let A be the collection of sets of
probability (that is, density) zero under both fX(x; θ0) and fX(x; θ1), then∫

A
(ϕR(x)− ϕR†(x))(fX(x; θ1)− cfX(x; θ0)) dx = 0 A ∈ A

irrespective of the nature of R†, so the functions ϕR(x) and ϕR†(x) may not be equal for x in such a
set A. Apart from that speci�c case, the integral in equation (2) can only be zero if at least one of the
two factors is identically zero for all x. The second factor cannot be identically zero for all x, as the
densities must integrate to one. Thus, for all x ∈ X \ A , ϕR(x) = ϕR†(x), and hence R† satis�es the
same conditions asR.

Notes:

• To �nd the value c that appears in the Theorem, we need to compute Pr [X ∈ R; θ0] for a �xed
level/size α.

• It is possible that, for given alternative hypotheses, no UMP test exists. Also, for discrete data,
it may not be possible to solve the equation Pr [X ∈ R; θ0] = α for every value of α, and hence
only speci�c values of αmay be attained.

• The test can be reformulated in terms of the statistic λ(x) and regionRλ ≡ {t ∈ R+ : t > c}:

λ(x) =
fX(x; θ1)

fX(x; θ0)
x ∈ R ⇐⇒ λ(x) ∈ Rλ

• If T (X) is a suf�cient statistic for θ, then by the factorization theorem

fX(x; θ1)

fX(x; θ0)
=

g(T (x); θ1)h(x)

g(T (x); θ0)h(x)
=

g(T (x); θ1)

g(T (x); θ0)

so that
λ(x) ∈ Rλ ⇐⇒ T (x) ∈ RT

say. Thus any test based on T (x)with critical regionRT is a UMP α level test, and

α = Pr[T (X) ∈ RT ; θ0]
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Composite Null Hypotheses
Often the null and alternative hypotheses do not specify the distribution of the data completely. For
example, the speci�cation

H0 : θ = θ0
H1 : θ ̸= θ0

could be of interest. If, in general, a UMP test of size α is required, then its power must equal the
power of the most powerful test of

H0 : θ = θ0
H1 : θ = θ1

for all θ1 ∈ Θ1.

Models with a Monotone Likelihood Ratio
For one class of models, �nding UMP tests for composite hypotheses is possible in general. A para-
metric family F of probability models indexed by parameter θ ∈ Θ has amonotone likelihood ratio if
for θ2 > θ1, and for x in the union of the supports of the two densities fX(x; θ1) and fX(x; θ2),

λ(x) =
fX(x; θ2)

fX(x; θ1)

is a monotone function of x.

Theorem (Karlin-Rubin Theorem)
Suppose that a test of the hypotheses

H0 : θ ≤ θ0
H1 : θ > θ0

is required. Suppose that T (X) is a suf�cient statistic for θ, and that fT for θ ∈ Θ has a monotone
(non-decreasing) likelihood ratio, that is for θ2 ≥ θ1 and t2 ≥ t1

fT (t2; θ2)

fT (t2; θ1)
≥ fT (t1; θ2)

fT (t1; θ1)
.

Then for any t0, the test T with critical regionRT de�ned by

T (x) > t0 =⇒ T (x) ∈ RT

T (x) ≤ t0 =⇒ T (x) ∈ R′
T

is a UMP α level test, where
α = Pr[T > t0; θ0].

Proof Let β(θ) be the power function of T . Now, for t2 ≥ t1,

fT (t2; θ2)

fT (t2; θ1)
≥ fT (t1; θ2)

fT (t1; θ1)
⇐⇒ fT (t1; θ1)fT (t2; θ2) ≥ fT (t1; θ2)fT (t2; θ1) (3)

Integrating both sides with respect to t1 on (−∞, t2), we obtain

FT (t2; θ1)fT (t2; θ2) ≥ FT (t2; θ2)fT (t2; θ1) ∴ fT (t2; θ2)

fT (t2; θ1)
≥ FT (t2; θ2)

FT (t2; θ1)
.
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Alternatively, integrating both sides of equation (3) with respect to t2 on (t1,∞), we similarly obtain

fT (t1; θ2)

fT (t1; θ1)
≤ 1− FT (t1; θ2)

1− FT (t1; θ1)

But setting t1 = t2 = t in these two inequalities yields

1− FT (t; θ2)

1− FT (t; θ1)
≥ FT (t; θ2)

FT (t; θ1)

which, on rearrangement yields

1− FT (t; θ2)

FT (t; θ2)
≥ 1− FT (t; θ1)

FT (t; θ1)
∴ FT (t; θ2) ≤ FT (t; θ1) (4)

as FT (t; θ) is non-decreasing in t, and the function g(x) = (1− x)/x is non-increasing for 0 < x < 1.
Finally,

β(θ2)−β(θ1) = Pr[T > t0|θ2]−Pr[T > t0|θ1] = (1−FT (t; θ2))−(1−FT (t; θ1)) = FT (t; θ1)−FT (t; θ2) ≥ 0

so β(θ) is non-decreasing in θ. Hence

sup
θ≤ θ0

β(θ) = β(θ0) = Pr[T > t0|θ0] = α

so T is an α level test. Now, let θ⋆ > θ0, and consider the simple hypotheses

H⋆
0 : θ = θ0

H⋆
1 : θ = θ⋆.

Let k⋆ be de�ned by

k⋆ = inf
t∈ T0

fT (t; θ
⋆)

fT (t; θ0)

where T0 = {t : t > t0, and fT (t; θ
⋆) > 0 or fT (t; θ0) > 0}. Then

T > t0 ⇐⇒ fT (t; θ
⋆)

fT (t; θ0)
> k⋆

so that, by the Neyman-Pearson Lemma, T is UMP for testing H⋆
0 versus H⋆

1 ; for any other test T ⋆ of
H⋆

0 at level α with power function β⋆ that satis�es β⋆(θ0) ≤ α, we have that β(θ⋆) ≥ β⋆(θ⋆). But for

any α level test T † of H0, we have β†(θ0) ≤ α. Thus taking T ⋆ ≡ T
†, we can conclude that

β(θ⋆) ≥ β†(θ⋆).

This inequality holds for all θ⋆ ∈ Θ1, so T must be UMP at level α.

Note: The theorem also covers the case where we are interested in hypotheses

H0 : θ ≥ θ0
H1 : θ < θ0

and we have a non-increasingmonotone likelihood ratio, that is for θ2 ≥ θ1 and t2 ≥ t1

fT (t2; θ2)

fT (t2; θ1)
≤ fT (t1; θ2)

fT (t1; θ1)
.
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THE LIKELIHOOD RATIO TEST

The Likelihood Ratio Test (LRT) statistic for testing H0 against H1

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

is based on the statistic

λX(x) =

sup
θ∈Θ0

fX(x; θ)

sup
θ∈Θ

fX(x; θ)

say, where Θ ≡ Θ0 ∪ Θ1; H0 is rejected if λX(x) is small enough, that is, λX(x) ≤ k for some k to be
de�ned. Note that Θ is not necessarily the entire parameter space, just the union of Θ0 and Θ1.

Theorem If T (X) is a suf�cient statistic for θ, then

λX(x) = λT (T (x)) =

sup
θ∈Θ0

fT (T (x); θ)

sup
θ∈Θ

fT (T (x); θ)
∀ x ∈ X

Proof As T (X) is suf�cient, for any θ0, θ1,

fX(x ; θ0)

fX(x ; θ1)
=

g(T (x); θ0)h(x)

g(T (x); θ1)h(x)
=

g(T (x); θ0)

g(T (x); θ1)
=

fT (T (x); θ0)

fT (T (x); θ1)

by the Neyman factorization theorem, where the last equality follows as the normalizing constants in
numerator and denominator are identical. Hence, at the suprema, the LRT statistics are equal.

Union and Intersection Tests
The construction of union and intersection tests is necessary to formulate the assessment of size and
power for tests involving composite hypotheses.

• Suppose �rst that we require a test T for the null hypothesis expressed as

H0 : θ ∈ Θ0 ≡
∩
γ∈ G

Θ0γ

where Θ0γ , γ ∈ G are a collection of subsets of Θ. Suppose that Tγ is a test for the hypotheses

H0γ : θ ∈ Θ0γ

H1γ : θ ∈ Θ′
0γ

with test statistic Tγ(X) and critical regionRγ . Then the rejection region for T is

RG ≡
∪
γ∈ G

Rγ =⇒ T rejectsH0 if x ∈
∪
γ∈ G

{x : Tγ(x) ∈ Rγ}

that is, if any one of the Tγ rejects H0γ . This test is termed a Union-Intersection Test (UIT).

• Suppose now that we require a test T for the null hypothesis expressed as

H0 : θ ∈ Θ0 ≡
∪
γ∈ G

Θ0γ
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Then, by the same logic as above, the rejection region for T is

RG ≡
∩
γ∈ G

Rγ =⇒ T rejectsH0 if x ∈
∩
γ∈ G

{x : Tγ(x) ∈ Rγ}

that is, if all of the Tγ reject H0γ . This test is termed an Intersection-Union Test (IUT). Note that
if αγ is the size of the test of H0γ , then the IUT is a level α test, where

α = sup
γ∈ G

αγ

as, for each γ and for any θ ∈ Θ0,

α ≥ αγ = Pr[X ∈ Rγ ; θ] ≥ Pr[X ∈ R; θ]

Theorem Consider testing

H0 : θ ∈ Θ0 ≡
∩
γ∈ G

Θ0γ

H1 : θ ∈ Θ′
0

using the global likelihood ratio statistic

λ(x) =

sup
θ∈Θ0

fX(x; θ)

sup
θ∈Θ

fX(x; θ)

equipped with the usual critical regionR ≡ {x : λ(x) < c}, and the collection of likelihood ratio
statistics λγ(x)

λγ(x) =

sup
θ∈Θ0γ

fX(x; θ)

sup
θ∈Θ

fX(x; θ)

De�ne statistic T (x) = inf
γ∈ G

λγ(x), and consider the critical region

RG ≡ {x : λγ(x) < c, some γ ∈ G} ≡ {x : T (x) < c},

Then

(a) T (x) ≥ λ(x) for all x.

(b) If βT and βλ are the power functions for the tests based on T (X) and λ(X) respectively, then

βT (θ) ≤ βλ(θ) for all θ ∈ Θ

(c) If the test based on λ(X) is an α level test, then the test based on T (X) is also an α level test.

Proof For (a), as Θ0 ⊂ Θ0γ , we have

λγ(x) ≥ λ(x) for each γ ∴ T (x) = inf
γ∈ G

λγ(x) ≥ λ(x)

and thus for (b), for any θ,

βT (θ) = Pr[T (X) < c; θ] ≤ Pr[λ(X) < c; θ] = βλ(θ).

Hence
sup
θ∈Θ0

βT (θ) ≤ sup
θ∈Θ0

βλ(θ) ≤ α

which proves (c).
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P-VALUES

Consider a test of hypothesis H0 de�ned by region Θ0 of the parameter space. A p-value, p(X), is a
test statistic such that 0 ≤ p(x) ≤ 1 for each x. A p-value is valid if, for every θ ∈ Θ0 and 0 ≤ α ≤ 1

Pr[p(X) ≤ α ; θ] ≤ α.

That is, a valid p-value is a test statistic that produces a test at level α of the form

p(x) ≤ α =⇒ x ∈ R
p(x) > α =⇒ x ∈ R′

The most common construction of a valid p-value is given by the following theorem.

Theorem Suppose that T (X) is a test statistic constructed so that a large value of T (X) supports H1.
Then the statistic p(x) given for each x ∈ X by

p(x) = sup
θ∈Θ0

Pr[T (X) ≥ T (x); θ] = sup
θ∈Θ0

pθ(X) (5)

say, is a valid p-value.

Proof For θ ∈ Θ0, we have

pθ(x) = Pr[T (X) ≥ T (x); θ] = Pr[−T (X) ≤ −T (x); θ] = Fθ(−T (x)) ≡ FS(s)

say, de�ning FS ≡ Fθ as the cdf of S = −T (X); clearly 0 ≤ p(x) ≤ 1 as 0 ≤ pθ(x) ≤ 1 for all θ.

This recalls a result from distribution theory; if X ∼ FX , the U = FX(X) ∼ Uniform(0, 1).
Suppressing the dependence on θ for convenience, de�ne random variable Y by

Y = Fθ(−T (X)) ≡ FS(S) (= pθ(X))

and let Ay ≡ {s : FS(s) ≤ y}. If Ay is a half-closed interval (−∞, sy], then

FY (y) = Pr[Y ≤ y] = Pr[FS(S) ≤ y] = Pr[S ∈ Ay] = FS(sy) ≤ y

by de�nition of Ay, as sy ∈ Ay. If Ay is a half-open interval (−∞, sy)

FY (y) = Pr[Y ≤ y] = Pr[FS(S) ≤ y] = Pr[S ∈ Ay] = lim
s−→sy

FS(s) ≤ y

by continuity of probability. Putting the components together, for 0 ≤ α ≤ 1,

Pr[pθ(X) ≤ α; θ] ≡ Pr[Y ≤ α] ≤ α

But by the de�nition in equation (5), p(x) ≥ pθ(x), so

Pr[p(X) ≤ α; θ] ≤ Pr[pθ(X) ≤ α; θ] ≤ α

and the result follows.
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