557: MATHEMATICAL STATISTICS II Hypothesis Testing: Recap of Basic Concepts

A statistical hypothesis test is a **decision rule** that takes as an input observed sample data and returns an action relating to two mutually exclusive **hypotheses** that reflect two competing hypothetical states of nature. The decision rule partitions the sample space X into two regions that respectively reflect support for the two hypotheses. The following terminology is used:

- Hypotheses:
 - Two hypotheses characterize the two possible states of nature. The null hypothesis is denoted H₀, the alternative hypothesis is denoted H₁.
 - In parametric models, the null and alternative hypotheses define a partition of the 'effective' parameter space Θ (that is, the only possible values of θ that are to be considered). Suppose that disjoint subsets Θ_0 , Θ_1 correspond to H_0 and H_1 respectively. We write

$$\begin{array}{rcl} H_0 & : & \theta \in \Theta_0 \\ H_1 & : & \theta \in \Theta_1 \end{array}$$

- Tests:
 - A test, \mathcal{T} , of H_0 versus H_1 defines a partition of sample space \mathbb{X} into two regions. The hypothesis H_0 is rejected in favour of H_1 depending on where the data **x** (or a suitably chosen statistic $T(\mathbf{x})$) fall within \mathbb{X} .
 - A **test statistic**, $T(\mathbf{x})$, is the function of data \mathbf{x} used in a statistical hypothesis test.
 - The **critical region**, \mathcal{R} , is the region within which $T(\mathbf{x})$ must lie in order for hypothesis H_0 to be rejected in favour of H_1 . The complement of \mathcal{R} will be written \mathcal{R}' .
 - A **test function**, $\phi_{\mathcal{R}}(T(\mathbf{x}))$, is an indicator function that reports the result of the test,

$$\phi_{\mathcal{R}}(T(\mathbf{x})) = \begin{cases} 1 & T(\mathbf{x}) \in \mathcal{R} \\ 0 & T(\mathbf{x}) \in \mathcal{R}' \end{cases}$$

- Errors:
 - A **Type I error** occurs when the null hypothesis *H*⁰ is **rejected** when it is in fact **true**.
 - A **Type II error** occurs when the null hypothesis *H*⁰ is **accepted** when it is in fact **false**.
 - For test with test statistic *T* and critical region $\mathcal{R} \subset X$, and $\theta \in \Theta_0$, define the **Type I error probability** $\xi(\theta)$ by

$$\xi(\theta) = \Pr\left[T \in \mathcal{R}; \theta\right] \qquad \theta \in \Theta_0 \tag{1}$$

If Θ_0 comprises a single value θ_0 , then $\xi = \Pr[T \in \mathcal{R}; \theta_0]$.

- Test properties:
 - The **size** of a statistical test is

$$\overline{\alpha} = \sup_{\theta \in \Theta_0} \xi(\theta)$$

which is equal to ξ if Θ_0 comprises a single value.

- Suppose $\alpha \geq \overline{\alpha}$. If $T(\mathbf{x}) \in \mathcal{R}$, then H_0 is rejected at **level** α , and rejected at level $\alpha + \epsilon$ for $\epsilon > 0$.
- The **power function**, $\beta(\theta)$, is defined by

$$\beta(\theta) = \Pr\left[T \in \mathcal{R}; \theta\right] \qquad \theta \in \Theta$$

so that $\beta(\theta) = \xi(\theta)$ for $\theta \in \Theta_0$.

Note that this notation is not universally used; commonly the **power** of a statistical test is denoted $1 - \beta(\theta)$ and computed for $\theta \in \Theta_1$, whereas the **Type II error probability** is $\beta(\theta)$ for $\theta \in \Theta_1$.