
MATH 557 – ASYMPTOTIC THEORY

Suppose that

• data x1:n “ px1, . . . , xnq are realizations of independent and identically distributed (i.i.d.) ran-
dom variables X1, . . . , Xn drawn from distribution with pdf f0pxq. We term this model the true
model.

• we wish to represent the data using a parametric pdf fXpx; θ0q, where θ0 is k dimensional param-
eter. We may term this model the working model.

We wish to understand how to estimate θ0, and what happens to the estimator of θ0 when n becomes
large. In a standard analysis, we can use maximum likelihood estimation, and standard asymptotic
theory. However, this analysis assume that f0pxq ” fXpx; θ0q, that is, the parametric model is correctly
specified; if f0pxq ‰ fXpx; θ0q, the model is incorrectly specified, and the theory needs to be reconsidered.

1. Interpreting θ0 in the working model: Recall that we define the ‘true’ value of θ0 as

θ0 “ argmin
θ

KLpf0, fXpX; θqq (1)

Note that
KLpf0, fXpθqq “

ż

log f0pxqf0pxq dx ´

ż

log fXpx; θqf0pxq dx

or equivalently, denoting log fXpx; θq by ℓpx; θq,

θ0 “ argmax
θ
Ef0 rℓpX; θqs . (2)

2. Maximum likelihood: We use a random sample x1, . . . , xn and aim to maximize the sample-
based expectation (or sample mean) to produce an estimator. Specifically, the estimator based on
(2) will be

pθn “ argmax
θ

1

n

n
ÿ

i“1

ℓpXi; θq.

The justification for this is the weak law of large numbers; this says that sample means converge in
probability to expected values, and here that implies

1

n

n
ÿ

i“1

ℓpXi; θq
p

ÝÑ Ef0 rℓpX; θqs (3)

as n ÝÑ 8 for any fixed θ, provided the expectation exists.

We will assume that the log density ℓpy; θq is at least three times differentiable with respect to θ;
under this assumption, the estimate is defined as the solution to the score equations, the system of
k equations given by

B

Bθ

#

1

n

n
ÿ

i“1

ℓpxi; θq

+

“ 0k

or equivalently,
1

n

n
ÿ

i“1

B

Bθ
tℓpxi; θqu “

1

n

n
ÿ

i“1

Upxi; θq “ 0k (4)

say, where Upx; θq “ 9ℓpx; θq “ Bℓ1px; θq{Bθ. Denote the solution of (4) by pθn ” pθnpx1:nq.
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3. Taylor expansion: We consider a Taylor expansion of the function ℓpx; θq with respect to θ around
θ0. We have any value of θ

ℓpx; θq “ ℓpx; θ0q ` 9ℓpx; θ0qpθ ´ θ0q `
1

2
pθ ´ θ0qJ :ℓpx; θ0qpθ ´ θ0q ` R3px; θ˚q (5)

where
:ℓpx; θq “

B2ℓpx; θq

BθBθJ
pk ˆ kq.

and R3px; θ˚q is a remainder term, for some θ˚ such that }θ0 ´ θ˚} ď }θ0 ´ θ}. Evaluating (5) for
each of x1, . . . , xn and summing the result, we have

ℓnpθq “ ℓnpθ0q ` 9ℓnpθ0qJpθ ´ θ0q `
1

2
pθ ´ θ0qJ :ℓnpθ0qpθ ´ θ0q ` R3px1:n; θ

˚q. (6)

Evaluating this expression at θ “ pθn and rearranging we have

ℓnppθnq ´ ℓnpθ0q “ 9ℓnpθ0qJppθn ´ θ0q `
1

2
ppθn ´ θ0qJ :ℓnpθ0qppθn ´ θ0q ` R3px1:n; θ

˚q (7)

where }θ0 ´ θ˚} ď }θ0 ´ pθn}.

4. Asymptotic behaviour: Consider now the previous equation (7) written in terms of random
variables, with pθn “ pθnpX1:nq:

ℓnppθnq ´ ℓnpθ0q “ 9ℓnpθ0qJppθn ´ θ0q `
1

2
ppθn ´ θ0qJ :ℓnpθ0qppθn ´ θ0q ` R3pX1:n; θ

˚q

First consider the behaviour, for arbitrary θ, of the quantity

1

n
pℓnpθq ´ ℓnpθ0qq “

1

n

n
ÿ

i“1

pℓpXi; θq ´ ℓpXi; θ0qq .

We may rewrite this expression with terms involving the true density f0 that cancel :

1

n

n
ÿ

i“1

ℓpXi; θq ´
1

n

n
ÿ

i“1

ℓpXi; θ0q “
1

n

n
ÿ

i“1

pℓpXi; θq ´ ℓ0pXiqq ´
1

n

n
ÿ

i“1

pℓpXi; θ0q ´ ℓ0pXiqq (8)

where ℓ0pxq “ log f0pxq. For any θ, as n ÝÑ 8, we have by the weak law of large numbers that

1

n

n
ÿ

i“1

pℓpXi; θq ´ ℓ0pXiqq
p

ÝÑ Ef0

„

log

ˆ

fXpX; θq

f0pXq

˙ȷ

“ ´KLpf0, fXp.; θqq

as X1, . . . , Xn „ f0. Therefore

1

n

n
ÿ

i“1

ℓpXi; θq ´
1

n

n
ÿ

i“1

ℓpXi; θ0q
p

ÝÑ KLpf0, fXpθ0qq ´ KLpf0, fXp.; θqq

By definition of θ0 via (1), KLpf0, fXpθqq attains its minimum value at θ “ θ0, so

KLpf0, fXp.; θ0qq ´ KLpf0, fXp.; θqq ď 0

and the random variable on the left hand side of (8) converges in probability to a non-positive
constant. Therefore, we have that

Prf0rℓnpθ0q ě ℓnpθqs ÝÑ 1 (9)
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as n ÝÑ 8. That is, with probability tending to 1, the log likelihood ℓnpθ0q is not less than ℓnpθq

for any other θ. If we make an identifiability assumption, this statement may be strengthened:
the model fXpx; θq is identifiable if, for two parameter values θ: “ θ;,

fXpx; θ:q “ fXpx; θ;q for all x ùñ θ: “ θ;.

If the model is identifiable, then the “true” value θ0 is uniquely defined, and we have

Prf0rℓnpθ0q ą ℓnpθqs ÝÑ 1 θ ‰ θ0. (10)

The theory holds for fixed θ. However, in equation (7), the first term is ℓnppθnpX1:nqq, that is,
where the parameter at which the log-likelihood is evaluated is itself a random variable, namely
the estimator pθnpX1:nq. To determine the behaviour of ℓnppθnpX1:nqq under identifiability and the
differentiability assumption above:

• Fix a ą 0 and consider the set in the data sample space

Bnpaq ” tx1:n : }θ ´ θ0} “ a, ℓnpθq ă ℓnpθ0qu

that is, Bnpaq is the set of all data configurations such that, for all θ lying on the ball of radius
a centered at θ0, the log-likelihood at θ0 exceeds that at θ.

• With probability tending to one, ℓnpθq ă ℓnpθ0q for all θ by (10), so

Prf0pBnpaqq ÝÑ 1 as n ÝÑ 8.

• As the log-likelihood is differentiable with respect to θ, ℓnpθq must have a local maximum
inside Bnpaq; denote the maximizing value by pθapx1:nq, and note that

9ℓnppθapx1:nqq “ 0k

so that the maximizing value is a solution to the usual likelihood estimating equation. This
proves the existence of a local maximum.

Note: Strictly, pθapx1:nq is not necessarily the mle, as it is only guaranteed to be a local maxi-
mum of the likelihood in the neighbourhood of the true θ0.

• Hence, as n ÝÑ 8,
Prf0r}pθapX1:nq ´ θ0} ă as ÝÑ 1

so therefore the sequence of estimators tpθapX1:nq, n ě 1u converges in probability to θ0.
This holds for a arbitrarily small.

• For any a, there is at least one local maximum in the neighbourhood of θ0. Let pθnpx1:nq be
the root of the likelihood equations closest to θ0; this does not depend on the choice of a.

Therefore pθnpX1:nq
p

ÝÑ θ0 and pθnpX1:nq is consistent for θ0, and by “continuous mapping” (as
ℓnpθq is a continuous function in θ)

ˇ

ˇ

ˇ

ˇ

1

n

!

ℓnppθnpX1:nqq ´ ℓnpθ0q

)

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0

so that, from (3), as n ÝÑ 8

1

n

n
ÿ

i“1

ℓpXi; pθnpX1:nqq
p

ÝÑ Ef0 rℓpY ; θ0qs (11)
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5. Asymptotic Normality: The next result uses the Mean Value Theorem. For a continuous function
such as 9ℓnpθq, with defined second derivative :ℓnpθq, it is guaranteed that there exists an ‘interme-
diate’ rθ “ cpθn ` p1 ´ cqθ0 for some c, 0 ă c ă 1, such that

9ℓnppθnq “ 9ℓnpθ0q ` :ℓnprθqppθn ´ θ0q

The left hand side is zero as pθn is the mle. Provided :ℓnprθq is non-singular, we may write after
rescaling and rearrangement that

?
nppθn ´ θ0q “

"

´
1

n
:ℓnprθq

*´1 "

?
n

ˆ

1

n
9ℓnpθ0q

˙*

(12)

• In its random variable form, second term on the right hand side of (12) is

?
n

˜

1

n

n
ÿ

i“1

UpXi; θ0q

¸

that is, a sample average quantity scaled by
?
n. But by definition of θ0,

Ef0rUpXi; θ0qs “

ż

9ℓpy; θ0qf0pyq dy “ 0k

as, by definition θ0 minimizes KLpf0, fXpX; θqq, and therefore must be a solution of this
equation. Therefore, by the Central Limit Theorem

?
n

˜

1

n

n
ÿ

i“1

UpXi; θ0q

¸

d
ÝÑ Normalkp0k,Jf0pθ0qq (13)

where
Jf0pθ0q “ Ef0rUpX; θ0qUpX; θ0qJs ” Varf0rUpX; θ0qs pk ˆ k ˆ kq.

• For the first term on the right hand side of (12), as pθn
p

ÝÑ θ0, we have that

´
1

n
:ℓnprθq

a.s.
ÝÑ If0pθ0q.

Therefore we write for an asymptotic approximation to (12)

?
nppθn ´ θ0q “

"

´
1

n
:ℓnpθ0q

* "

1
?
n

9ℓnpθ0q

*

` opp1q

where the distribution of the second term given by (13), and where opp1q denotes a term that
converges in probability to zero. We therefore have that

?
nppθn ´ θ0q

d
ÝÑ Normalkp0k, tIf0pθ0qu´1Jf0pθ0qtIf0pθ0qu´1q.

6. Correct specification: Under correct specification, f0pxq ” fXpx; θ0q, and we have from earlier
results that

Jθ0pθ0q “ Iθ0pθ0q

and hence from the general result we deduce that
?
nppθn ´ θ0q

d
ÝÑ Normalkp0k, tIθ0pθ0qu´1q.
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