MATH 557 – ASYMPTOTIC THEORY

Suppose that

- data $x_{1:n} = (x_1, \ldots, x_n)$ are realizations of independent and identically distributed (i.i.d.) random variables X_1, \ldots, X_n drawn from distribution with pdf $f_0(x)$. We term this model the *true* model.
- we wish to represent the data using a parametric pdf $f_X(x; \theta_0)$, where θ_0 is *k* dimensional parameter. We may term this model the *working* model.

We wish to understand how to estimate θ_0 , and what happens to the estimator of θ_0 when *n* becomes large. In a standard analysis, we can use maximum likelihood estimation, and standard asymptotic theory. However, this analysis assume that $f_0(x) \equiv f_X(x;\theta_0)$, that is, the parametric model is *correctly specified*; if $f_0(x) \neq f_X(x;\theta_0)$, the model is *incorrectly specified*, and the theory needs to be reconsidered.

1. Interpreting θ_0 in the working model: Recall that we define the 'true' value of θ_0 as

$$\theta_0 = \arg\min_{\theta} KL(f_0, f_X(X; \theta)) \tag{1}$$

Note that

$$KL(f_0, f_X(\theta)) = \int \log f_0(x) f_0(x) \, dx - \int \log f_X(x; \theta) f_0(x) \, dx$$

or equivalently, denoting $\log f_X(x;\theta)$ by $\ell(x;\theta)$,

$$\theta_0 = \arg\max_{\theta} \mathbb{E}_{f_0} \left[\ell(X; \theta) \right].$$
(2)

2. **Maximum likelihood:** We use a random sample x_1, \ldots, x_n and aim to maximize the samplebased expectation (or sample mean) to produce an estimator. Specifically, the estimator based on (2) will be

$$\hat{\theta}_n = \arg \max_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(X_i; \theta).$$

The justification for this is the *weak law of large numbers*; this says that sample means converge in probability to expected values, and here that implies

$$\frac{1}{n}\sum_{i=1}^{n}\ell(X_{i};\theta) \xrightarrow{p} \mathbb{E}_{f_{0}}\left[\ell(X;\theta)\right]$$
(3)

as $n \longrightarrow \infty$ for any fixed θ , provided the expectation exists.

We will assume that the log density $\ell(y; \theta)$ is at least three times differentiable with respect to θ ; under this assumption, the estimate is defined as the solution to the *score equations*, the system of k equations given by

$$\frac{\partial}{\partial \theta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(x_i; \theta) \right\} = \mathbf{0}_k$$

or equivalently,

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\partial}{\partial\theta}\left\{\ell(x_{i};\theta)\right\} = \frac{1}{n}\sum_{i=1}^{n}U(x_{i};\theta) = \mathbf{0}_{k}$$
(4)

say, where $U(x;\theta) = \dot{\ell}(x;\theta) = \partial \ell_1(x;\theta) / \partial \theta$. Denote the solution of (4) by $\hat{\theta}_n \equiv \hat{\theta}_n(x_{1:n})$.

3. **Taylor expansion:** We consider a Taylor expansion of the function $\ell(x; \theta)$ with respect to θ around θ_0 . We have any value of θ

$$\ell(x;\theta) = \ell(x;\theta_0) + \dot{\ell}(x;\theta_0)(\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^\top \ddot{\ell}(x;\theta_0)(\theta - \theta_0) + \mathcal{R}_3(x;\theta^*)$$
(5)

where

$$\ddot{\ell}(x;\theta) = \frac{\partial^2 \ell(x;\theta)}{\partial \theta \partial \theta^{\top}} \qquad (k \times k).$$

and $\mathcal{R}_3(x; \theta^*)$ is a remainder term, for some θ^* such that $\|\theta_0 - \theta^*\| \leq \|\theta_0 - \theta\|$. Evaluating (5) for each of x_1, \ldots, x_n and summing the result, we have

$$\ell_n(\theta) = \ell_n(\theta_0) + \dot{\ell}_n(\theta_0)^\top (\theta - \theta_0) + \frac{1}{2} (\theta - \theta_0)^\top \ddot{\ell}_n(\theta_0) (\theta - \theta_0) + \mathcal{R}_3(x_{1:n}; \theta^*).$$
(6)

Evaluating this expression at $\theta = \hat{\theta}_n$ and rearranging we have

$$\ell_n(\widehat{\theta}_n) - \ell_n(\theta_0) = \dot{\ell}_n(\theta_0)^\top (\widehat{\theta}_n - \theta_0) + \frac{1}{2} (\widehat{\theta}_n - \theta_0)^\top \ddot{\ell}_n(\theta_0) (\widehat{\theta}_n - \theta_0) + \mathcal{R}_3(x_{1:n}; \theta^*)$$
(7)

where $\|\theta_0 - \theta^*\| \leq \|\theta_0 - \hat{\theta}_n\|$.

4. Asymptotic behaviour: Consider now the previous equation (7) written in terms of random variables, with $\hat{\theta}_n = \hat{\theta}_n(X_{1:n})$:

$$\ell_n(\widehat{\theta}_n) - \ell_n(\theta_0) = \dot{\ell}_n(\theta_0)^\top (\widehat{\theta}_n - \theta_0) + \frac{1}{2} (\widehat{\theta}_n - \theta_0)^\top \ddot{\ell}_n(\theta_0) (\widehat{\theta}_n - \theta_0) + \mathcal{R}_3(X_{1:n}; \theta^*)$$

First consider the behaviour, for arbitrary θ , of the quantity

$$\frac{1}{n}\left(\ell_n(\theta) - \ell_n(\theta_0)\right) = \frac{1}{n}\sum_{i=1}^n \left(\ell(X_i;\theta) - \ell(X_i;\theta_0)\right)$$

We may rewrite this expression with terms involving the true density f_0 that cancel :

$$\frac{1}{n}\sum_{i=1}^{n}\ell(X_i;\theta) - \frac{1}{n}\sum_{i=1}^{n}\ell(X_i;\theta_0) = \frac{1}{n}\sum_{i=1}^{n}(\ell(X_i;\theta) - \ell_0(X_i)) - \frac{1}{n}\sum_{i=1}^{n}(\ell(X_i;\theta_0) - \ell_0(X_i))$$
(8)

where $\ell_0(x) = \log f_0(x)$. For any θ , as $n \longrightarrow \infty$, we have by the weak law of large numbers that

$$\frac{1}{n}\sum_{i=1}^{n}(\ell(X_i;\theta) - \ell_0(X_i)) \xrightarrow{p} \mathbb{E}_{f_0}\left[\log\left(\frac{f_X(X;\theta)}{f_0(X)}\right)\right] = -KL(f_0, f_X(.;\theta))$$

as $X_1, \ldots, X_n \sim f_0$. Therefore

$$\frac{1}{n}\sum_{i=1}^{n}\ell(X_i;\theta) - \frac{1}{n}\sum_{i=1}^{n}\ell(X_i;\theta_0) \xrightarrow{p} KL(f_0, f_X(\theta_0)) - KL(f_0, f_X(.;\theta))$$

By definition of θ_0 via (1), $KL(f_0, f_X(\theta))$ attains its minimum value at $\theta = \theta_0$, so

$$KL(f_0, f_X(.; \theta_0)) - KL(f_0, f_X(.; \theta)) \leq 0$$

and the random variable on the left hand side of (8) converges in probability to a non-positive constant. Therefore, we have that

$$\Pr_{f_0}[\ell_n(\theta_0) \ge \ell_n(\theta)] \longrightarrow 1$$
(9)

as $n \to \infty$. That is, with probability tending to 1, the log likelihood $\ell_n(\theta_0)$ is not less than $\ell_n(\theta)$ for any other θ . If we make an **identifiability** assumption, this statement may be strengthened: the model $f_X(x;\theta)$ is *identifiable* if, for two parameter values $\theta^{\dagger} = \theta^{\ddagger}$,

$$f_X(x;\theta^{\dagger}) = f_X(x;\theta^{\ddagger})$$
 for all $x \implies \theta^{\dagger} = \theta^{\ddagger}$.

If the model is identifiable, then the "true" value θ_0 is uniquely defined, and we have

$$\Pr_{f_0}[\ell_n(\theta_0) > \ell_n(\theta)] \longrightarrow 1 \qquad \theta \neq \theta_0.$$
(10)

The theory holds for fixed θ . However, in equation (7), the first term is $\ell_n(\hat{\theta}_n(X_{1:n}))$, that is, where the parameter at which the log-likelihood is evaluated is itself a random variable, namely the estimator $\hat{\theta}_n(X_{1:n})$. To determine the behaviour of $\ell_n(\hat{\theta}_n(X_{1:n}))$ under identifiability and the differentiability assumption above:

• Fix a > 0 and consider the set in the data sample space

$$B_n(a) \equiv \{x_{1:n} : \|\theta - \theta_0\| = a, \ell_n(\theta) < \ell_n(\theta_0)\}$$

that is, $B_n(a)$ is the set of all data configurations such that, for all θ lying on the ball of radius a centered at θ_0 , the log-likelihood at θ_0 exceeds that at θ .

• With probability tending to one, $\ell_n(\theta) < \ell_n(\theta_0)$ for all θ by (10), so

$$\Pr_{f_0}(B_n(a)) \longrightarrow 1 \quad \text{as } n \longrightarrow \infty.$$

• As the log-likelihood is differentiable with respect to θ , $\ell_n(\theta)$ must have a local maximum inside $B_n(a)$; denote the maximizing value by $\hat{\theta}_a(x_{1:n})$, and note that

$$\dot{\ell}_n(\widehat{\theta}_a(x_{1:n})) = \mathbf{0}_k$$

so that the maximizing value is a solution to the usual likelihood estimating equation. This proves the **existence** of a local maximum.

Note: Strictly, $\hat{\theta}_a(x_{1:n})$ is not necessarily the mle, as it is only guaranteed to be a local maximum of the likelihood in the neighbourhood of the true θ_0 .

• Hence, as $n \longrightarrow \infty$,

$$\Pr_{f_0}[\|\widehat{\theta}_a(X_{1:n}) - \theta_0\| < a] \longrightarrow 1$$

so therefore the sequence of estimators $\{\hat{\theta}_a(X_{1:n}), n \ge 1\}$ converges in probability to θ_0 . This holds for *a* arbitrarily small.

• For any *a*, there is at least one local maximum in the neighbourhood of θ_0 . Let $\hat{\theta}_n(x_{1:n})$ be the root of the likelihood equations closest to θ_0 ; this does not depend on the choice of *a*.

Therefore $\hat{\theta}_n(X_{1:n}) \xrightarrow{p} \theta_0$ and $\hat{\theta}_n(X_{1:n})$ is **consistent** for θ_0 , and by "continuous mapping" (as $\ell_n(\theta)$ is a continuous function in θ)

$$\left|\frac{1}{n}\left\{\ell_n(\widehat{\theta}_n(X_{1:n})) - \ell_n(\theta_0)\right\}\right| \xrightarrow{p} 0$$

so that, from (3), as $n \longrightarrow \infty$

$$\frac{1}{n}\sum_{i=1}^{n}\ell(X_{i};\widehat{\theta}_{n}(X_{1:n})) \xrightarrow{p} \mathbb{E}_{f_{0}}\left[\ell(Y;\theta_{0})\right]$$
(11)

5. Asymptotic Normality: The next result uses the Mean Value Theorem. For a continuous function such as $\dot{\ell}_n(\theta)$, with defined second derivative $\ddot{\ell}_n(\theta)$, it is guaranteed that there exists an 'intermediate' $\tilde{\theta} = c\hat{\theta}_n + (1-c)\theta_0$ for some c, 0 < c < 1, such that

$$\dot{\ell}_n(\widehat{\theta}_n) = \dot{\ell}_n(\theta_0) + \ddot{\ell}_n(\widetilde{\theta})(\widehat{\theta}_n - \theta_0)$$

The left hand side is zero as $\hat{\theta}_n$ is the mle. Provided $\ddot{\ell}_n(\tilde{\theta})$ is non-singular, we may write after rescaling and rearrangement that

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \left\{ -\frac{1}{n} \ddot{\ell}_n(\tilde{\theta}) \right\}^{-1} \left\{ \sqrt{n} \left(\frac{1}{n} \dot{\ell}_n(\theta_0) \right) \right\}$$
(12)

• In its random variable form, second term on the right hand side of (12) is

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}U(X_i;\theta_0)\right)$$

that is, a sample average quantity scaled by \sqrt{n} . But by definition of θ_0 ,

$$\mathbb{E}_{f_0}[U(X_i;\theta_0)] = \int \dot{\ell}(y;\theta_0) f_0(y) \, dy = \mathbf{0}_k$$

as, by definition θ_0 minimizes $KL(f_0, f_X(X; \theta))$, and therefore must be a solution of this equation. Therefore, by the Central Limit Theorem

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}U(X_{i};\theta_{0})\right) \stackrel{d}{\longrightarrow} \operatorname{Normal}_{k}(\mathbf{0}_{k},\mathcal{J}_{f_{0}}(\theta_{0}))$$
(13)

where

$$\mathcal{J}_{f_0}(\theta_0) = \mathbb{E}_{f_0}[U(X;\theta_0)U(X;\theta_0)^\top] \equiv \operatorname{Var}_{f_0}[U(X;\theta_0)] \qquad (k \times k \times k).$$

• For the first term on the right hand side of (12), as $\hat{\theta}_n \xrightarrow{p} \theta_0$, we have that

$$-\frac{1}{n}\ddot{\ell}_n(\widetilde{\theta}) \xrightarrow{a.s.} \mathcal{I}_{f_0}(\theta_0).$$

Therefore we write for an asymptotic approximation to (12)

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \left\{ -\frac{1}{n} \ddot{\ell}_n(\theta_0) \right\} \left\{ \frac{1}{\sqrt{n}} \dot{\ell}_n(\theta_0) \right\} + \mathbf{o}_p(1)$$

where the distribution of the second term given by (13), and where $o_p(1)$ denotes a term that converges in probability to zero. We therefore have that

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \xrightarrow{d} \operatorname{Normal}_k(\mathbf{0}_k, \{\mathcal{I}_{f_0}(\theta_0)\}^{-1} \mathcal{J}_{f_0}(\theta_0) \{\mathcal{I}_{f_0}(\theta_0)\}^{-1})$$

6. **Correct specification:** Under correct specification, $f_0(x) \equiv f_X(x; \theta_0)$, and we have from earlier results that

$$\mathcal{J}_{\theta_0}(\theta_0) = \mathcal{I}_{\theta_0}(\theta_0)$$

and hence from the general result we deduce that

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \operatorname{Normal}_k(\mathbf{0}_k, \{\mathcal{I}_{\theta_0}(\theta_0)\}^{-1}).$$