MATH 557 — ASYMPTOTIC THEORY

Suppose that
e data 1., = (21,...,%y,) are realizations of independent and identically distributed (i.i.d.) ran-
dom variables X1, ..., X,, drawn from distribution with pdf fo(x). We term this model the true

model.

e we wish to represent the data using a parametric pdf fx (z; 6y), where 6, is k dimensional param-
eter. We may term this model the working model.

We wish to understand how to estimate 5, and what happens to the estimator of 6y when n becomes
large. In a standard analysis, we can use maximum likelihood estimation, and standard asymptotic
theory. However, this analysis assume that fy(z) = fx(x;00), that is, the parametric model is correctly
specified; if fo(x) # fx(x;00), the model is incorrectly specified, and the theory needs to be reconsidered.

1. Interpreting 6 in the working model: Recall that we define the ‘true’ value of 6, as

0o = argmin K L(fo, fx (X;0)) (1)

Note that
KL(fo, fx(9)) = Jlog fo(x) fo(z) dx — flog fx(z;0) fo(z) dx

or equivalently, denoting log fx (z;6) by ¢(z;6),
Oy = arg max Ey [£(X;0)]. (2)

2. Maximum likelihood: We use a random sample z1,...,2, and aim to maximize the sample-
based expectation (or sample mean) to produce an estimator. Specifically, the estimator based on
(2) will be

~ 1 &
n = — Xi;0).
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The justification for this is the weak law of large numbers; this says that sample means converge in
probability to expected values, and here that implies
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as n — oo for any fixed 6, provided the expectation exists.

We will assume that the log density ¢(y; 0) is at least three times differentiable with respect to 6;
under this assumption, the estimate is defined as the solution to the score equations, the system of

k equations given by
0 )1y
%{n;a%m}=m

or equivalently,
n

;Z;{E(xiﬁ)} = ZU(%;Q) = 0Oy, (4)
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say, where U (z;0) = {(x;0) = 04, (x;6)/00. Denote the solution of (4) by 0, = gn(mln)
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3. Taylor expansion: We consider a Taylor expansion of the function ¢(x; #) with respect to § around
6p. We have any value of 6

. 1 .

U(w;0) = £(z;00) + £(300) (6 — bo) + 5 (6 — 00) " (;60)(0 — o) + Ra(x;0%) ()
where P20(2:0)

. :E;
and R3(x; 0*) is a remainder term, for some 6* such that ||§y — 6*|| < ||fp — 6|. Evaluating (5) for
each of z1, ..., z, and summing the result, we have
. 1 .
0n(6) = £0(80) + £,(60) T (6 — 6o) + 50— 00) " £n(00)(0 — 0o) + R3(z1:0;6%). (6)

Evaluating this expression at § = 0, and rearranging we have
~ . ~ 1 .~ . ~
{n(0n) = n(00) = £n(00)" (B = 00) + 5 (B = 00) "€n(00) (B — 00) + Rs(21:0:0%)  (7)
where |6y — 0%|| < |60 — 6,

4. Asymptotic behaviour: Consider now the previous equation (7) written in terms of random
variables, with 6,, = 0,,(X1.,):

0n(6n) — 0n(60) = £n(60)" (6 — o) + %(9} —00) "4 (60) (6 — 0p) + Rs(X1m; 60%)

First consider the behaviour, for arbitrary 6, of the quantity
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(tal0) - i ((X526) — 6(X;:00)
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We may rewrite this expression with terms involving the true density fj, that cancel :

i Xz,90

where {y(x) = log fo(z). For any 6, as n — o0, we have by the weak law of large numbers that
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Z (X1:0) — lo(X 12 0X5500) — 6o(X2) (8
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%Z (X::0) — 6o(X3)) 2 Ey, {log (W)] = —KL(fo, fx(:;0))

as X1,...,Xn ~ fo. Therefore

1 n
= U(X536) —
nic
By definition of 6 via (1), K L( fo, fx(6)) attains its minimum value at § = 6y, so

KL(fo, fx(:;60)) — KL(fo, fx(;0)) <0

and the random variable on the left hand side of (8) converges in probability to a non-positive
constant. Therefore, we have that
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i (X1260) > KL(fo. Fx(60)) ~ KL(fo. fx(:0)

Prs [4n(00) = £n(0)] — 1 )

2



as n — oo. That is, with probability tending to 1, the log likelihood ¢,,(6p) is not less than ¢,,(6)
for any other §. If we make an identifiability assumption, this statement may be strengthened:
the model fx (z;6) is identifiable if, for two parameter values ot = 9%,

fx(z:0") = fx(z;05) forallz — 6f = 6%
If the model is identifiable, then the “true” value 6y is uniquely defined, and we have

Prs,[0n(60) > €n(0)] — 1 6 # 6y, (10)

~

The theory holds for fixed §. However, in equation (7), the first term is ¢,,(6,(X.,)), that is,
where the parameter at which the log-likelihood is evaluated is itself a random variable, namely

the estimator §n(X 1:n)- To determine the behaviour of En(gn(X 1:n)) under identifiability and the
differentiability assumption above:

e Fix a > 0 and consider the set in the data sample space
Br(a) = {z1m |0 — 0ol = a, £n(0) < £n(60)}
thatis, B, (a) is the set of all data configurations such that, for all # lying on the ball of radius

a centered at 0, the log-likelihood at 6 exceeds that at 6.
e With probability tending to one, £,,(8) < £,,(6p) for all 6 by (10), so

Prs,(Bn(a)) — 1 as n — 0.

e As the log-likelihood is differentiable with respect to 6, ¢,,(f) must have a local maximum
inside By, (a); denote the maximizing value by 60, (z1.,), and note that

én(é\a(xlzn)) = 0y

so that the maximizing value is a solution to the usual likelihood estimating equation. This
proves the existence of a local maximum.

~

Note: Strictly, 6,(x1.,) is not necessarily the mle, as it is only guaranteed to be a local maxi-
mum of the likelihood in the neighbourhood of the true 6.

e Hence, as n — o0, A
PrfO[HHa(Xlzn) - GOH < CL] —s 1

so therefore the sequence of estimators {ga(X 1m),n = 1} converges in probability to 6.
This holds for a arbitrarily small.

e For any q, there is at least one local maximum in the neighbourhood of §,. Let gn(xl;n) be
the root of the likelihood equations closest to 6; this does not depend on the choice of a.

Therefore én(X 1m) == 6y and é\n(Xlzn) is consistent for 6y, and by “continuous mapping” (as
£,(0) is a continuous function in 6)

(i .0010) ~ ()} 20

n

so that, from (3), asn — o

n

DX 0n(X1:n)) > Ey, [6(Y3160)] (11)



5. Asymptotic Normality: The next result uses the Mean Value Theorem. For a continuous function
such as ¢,,(#), with defined second derivative ¢, (#), it is guaranteed that there exists an ‘interme-
diate’ 6 = cb,, + (1 — ¢)fp for some ¢, 0 < ¢ < 1, such that

n(0) = 00 (00) + ,(0)(6,, — 60)

The left hand side is zero as 8, is the mle. Provided En(g) is non-singular, we may write after
rescaling and rearrangement that

~ 1. ~)1! 1.
Vi, o) = {15 {va (rio)] (12
e In its random variable form, second term on the right hand side of (12) is

Vi (; N U(X: 90))
i=1

that is, a sample average quantity scaled by /n. But by definition of 6,

E 1, [U(Xi:00)] = fé@; 00) fol) dy = O

as, by definition 6y minimizes K L( fo, fx(X;6)), and therefore must be a solution of this
equation. Therefore, by the Central Limit Theorem

i=1

NG (i MU 90)> ~% Normaly(0y., T, (60)) (13)

where
T (00) = Ef, [U(X;00)U(X;600)"] = Vary, [U(X;60)] (kx k x k).

e For the first term on the right hand side of (12), as én -2, 6y, we have that

1. ~ a.s.
——L,(0) = Ly, (00).
~ 0 (8) 5 Ty, (00)
Therefore we write for an asymptotic approximation to (12)

Vil ) = { = Euton) | { Tt | + 000

where the distribution of the second term given by (13), and where 0,(1) denotes a term that
converges in probability to zero. We therefore have that

V(B — bo) ~% Normaly,(0x, {Zy, (60)} " T, (60){Z 5, (60)} ).

6. Correct specification: Under correct specification, fo(x) = fx(z;6p), and we have from earlier
results that
T (00) = Lo, (6o)

and hence from the general result we deduce that

V(B — 65) —% Normaly, (05, {Zg, (60)} ).



