
MATH 557 – ASYMPTOTIC NORMALITY OF THE MLE

We consider a Taylor expansion of the function ℓpx; θq “ log fXpx; θq with respect to θ around θ0. We
have any value of θ

ℓpx; θq “ ℓpx; θ0q ` 9ℓpx; θ0qpθ ´ θ0q `
1

2
pθ ´ θ0qJ :ℓpx; θ0qpθ ´ θ0q ` R3px; θ˚q (1)

where R3px; θ˚q is a remainder term, for some θ˚ such that }θ0 ´ θ˚} ď }θ0 ´ θ}. Evaluating (1) for each
of x1, . . . , xn and summing the result, we have

ℓnpθq “ ℓnpθ0q ` 9ℓnpθ0qJpθ ´ θ0q `
1

2
pθ ´ θ0qJ :ℓnpθ0qpθ ´ θ0q ` R3px1:n; θ

˚q. (2)

Evaluating this expression at θ “ pθn and rearranging we have

ℓnppθnq ´ ℓnpθ0q “ 9ℓnpθ0qJppθn ´ θ0q `
1

2
ppθn ´ θ0qJ :ℓnpθ0qppθn ´ θ0q ` R3px1:n; θ

˚q (3)

where }θ0 ´ θ˚} ď }θ0 ´ pθn}. The left hand side of (3) converges to zero by previously established
results. Consider now the right hand side of (3). The first term is

9ℓnpθ0qJppθn ´ θ0q “
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Consider now a Taylor expansion of 9ℓnpθq around θ0 evaluated at pθn:

0k “ 9ℓnppθnq “ 9ℓnpθ0q ` :ℓnpθ0qppθn ´ θ0q `
1

2
ppθn ´ θ0qJ;ℓnpθ:qppθn ´ θ0q

where }θ0 ´ θ:} ď }θ0 ´ pθn}. On rearrangement, we obtain that

9ℓnpθ0q “ ´:ℓnpθ0qppθn ´ θ0q ´
1

2
ppθn ´ θ0qJ;ℓnpθ:qppθn ´ θ0q

and hence, dividing through by
?
n we have

1
?
n

9ℓnpθ0q “ ´
1

?
n

:ℓnpθ0qppθn ´ θ0q ´
1

?
n

1

2
ppθn ´ θ0qJ;ℓnpθ:qppθn ´ θ0q. (4)

Note that the right hand side of (4) can be rewritten
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• In its random variable form, the left hand side of (4) is
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that is, a sample average quantity scaled by
?
n. But by definition of θ0,

Ef0rUpXi; θ0qs “

ż

9ℓpy; θ0qf0pyq dy “ 0k

1



as, by definition θ0 minimizes KLpf0, fXpX; θqq, and therefore must be a solution of this equation.
Therefore, by the Central Limit Theorem
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UpXi; θ0q
d

ÝÑ Normalkp0k,Jf0pθ0qq (6)

where
Jf0pθ0q “ Ef0rUpX; θ0qUpX; θ0qJs ” Varf0rUpX; θ0qs pk ˆ kq.

Thus the left hand side of (4) converges in distribution to a Normal random variable given by (6).

• For the right hand side of (4), consider the terms in (5). Specifically, suppose that the third-
derivative term ;ℓpX; θq is bounded in expectation, that is, for all θ

Ef0r;ℓpX; θqs ă Mpθq pk ˆ k ˆ kq.

Then we have by the strong law of large numbers that
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with Ef0r;ℓpX; θ:qs a finite array. Hence, as by earlier results pθn
p

ÝÑ θ0, we have by Slutsky’s
theorem that
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and hence we may write that
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which may be alternately denoted
„
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Therefore we write from (4) that
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where the distribution of the left hand size is given by (6). Under regularity conditions, we have
that

´
1

n
:ℓnpθ0q

p
ÝÑ Ef0r:ℓpY ; θ0qs “ If0pθ0q pk ˆ kq

where we presume that If0pθ0q is non-singular. By Slutsky’s theorem, we therefore have that

?
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d
ÝÑ Normalkp0k, tIf0pθ0qu´1Jf0pθ0qtIf0pθ0qu´1q.

• The remainder term in (3), when considered as a random quantity R3pX1:n; θ
˚q, can be shown to

have the property
1

?
n
R3pX1:n; θ

˚q “ opp1q

as R3px1:n; θ
˚q depends on the third derivative ;ℓ, which is presumed above to be bounded in

expectation, and also the term is Op||pθn ´ θ0||3q, and we established that pθn
p

ÝÑ θ0.
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