MATH 557 — ASYMPTOTIC NORMALITY OF THE MLE

We consider a Taylor expansion of the function ¢(x;0) = log fx (x;#) with respect to # around 6y. We
have any value of 0

. 1
U(w;0) = €3 00) + £z 00) (0 — bo) + 5 (6 — 00) T €(x500) (6 — 6p) + Ra(;6%) 1)
where R3(z; 0*) is a remainder term, for some 6* such that |0y — 6*| < |6 — 0]|. Evaluating (1) for each
of z1,...,x, and summing the result, we have

0n(0) = £,(00) + ,(00)T (0 — 6p) + %(9 —60) "0, (00)(6 — 0p) + Ra(z1.m; 6%). )

Evaluating this expression at 6 = 0, and rearranging we have

£00n) = 0(60) = En(00)T (B = 00) + 5B = 00)(00) B — ) + Ro(a1050°) ©

where |6 — 6% < 6o — 6. The left hand side of (3) converges to zero by previously established
results. Consider now the right hand side of (3). The first term is

ln(00)" (0 — 0y) = {\;ﬁén(go)}T {\/ﬁ(én - 90)} = {\/H <ién(9o)> }T {\/ﬁ(@l - 90)} -

Consider now a Taylor expansion of £,,() around f, evaluated at O:
A . . ~ 1 ~ ~
0k = £n(0n) = €n(00) + £a(60)(On — 00) + 5 (0 — 00) " 0,.(67)(8,, — 6)

where |6y — 61| < |60 — 6,]. On rearrangement, we obtain that

. . ~

0n(00) = —0(00) (Br, — 00) — = (0, — 00) "0 (67) (8, — 00)

i
2
and hence, dividing through by y/n we have

1 . 1 . A~ 11

%zn(eo) = —%zn(eg)(en — ) — %5(@1 — 00)"0,(61)(6,, — 6p). (4)
Note that the right hand side of (4) can be rewritten
[ { Lo} - 3 0o {2 }] (Vi@ - 00} ®

e In its random variable form, the left hand side of (4) is

\}ﬁén(GO) = \}Hié(&;@o) - \}HgU(Xi;GO) =vn (:L i U(Xi;90)>

i=1

that is, a sample average quantity scaled by 4/n. But by definition of 6,

Ef, [U(Xi;00)] = fé(y;Qo)fo(y) dy = O



as, by definition 6y minimizes K L( fo, fx (X)), and therefore must be a solution of this equation.
Therefore, by the Central Limit Theorem

f Z U(Xy;60) % Normaly, (0, 77, (60)) (6)

where
T (00) = Ef [U(X;00)U(X;600)"] = Var, [U(X;600)] (k% k).

Thus the left hand side of (4) converges in distribution to a Normal random variable given by (6).

For the right hand side of (4), consider the terms in (5). Specifically, suppose that the third-
derivative term ¢(X; 6) is bounded in expectation, that is, for all ¢

E;,[((X;60)] < M(6) (k x k x k).
Then we have by the strong law of large numbers that

T, (01) 5 B [1(X 1)

with E,[¢(X;6")] a finite array. Hence, as by earlier results 0, > 6y, we have by Slutsky’s
theorem that

1 ~ 1.
5 (0n —60)" {nénwf)} 5 O
and hence we may write that
1 ~ 1. ~
|:2(9n - GO)T {nfn(eT)}] {\/ﬁ(en - 00)} > O

which may be alternately denoted
1~ 1o ~
|:2(6n — GO)T {nﬁn(m)}] {\/ﬁ(en — 00)} = Op<1)'

Therefore we write from (4) that

1

vn
where the distribution of the left hand size is given by (6). Under regularity conditions, we have
that

bul60) = { = 2in(00) | {20~ 80)} + 0y(1)

~in(00) 2> Ep [0V 00)] = T (60) (ki x B)

where we presume that Zy, (6y) is non-singular. By Slutsky’s theorem, we therefore have that

V(B — o) %> Normaly, (0, {Zy, (60)} ™ T, (60){Zs, (60)} ).

The remainder term in (3), when considered as a random quantity R3(Xj.y; 0*), can be shown to
have the property

\/1%72'3()(1:71; 9*) = Op(l)

as R3(x1.,;0*) depends on the third derivative E, which is presumed above to be bounded in
expectation, and also the term is O(||6,, — 6o||*), and we established that 6,, > 6.



