
557: MATHEMATICAL STATISTICS II
THE EM ALGORITHM

The EM Algorithm is a method for producing the maximum likelihood estimates in incomplete data
problems, that is, models formulated for data that are only partially observed.

Suppose that random variables to be modelled can be partitioned (Y,Z) where

• Z = (Z1, . . . , Zm)⊤ are unobserved, termed the augmented data;
• Y = (Y1, . . . , Yn)

⊤ are observed, termed the incomplete data;
• (Y,Z) are termed the complete data.

where
fY(y; θ) =

∫
fZ,Y|θ(z,y; θ) dz

In this formulation, we have

• the incomplete data likelihood, fY(y; θ);
• the complete data likelihood, fZ,Y(z,y; θ).

The EM Algorithm facilitates maximization of the incomplete data likelihood by working with the
complete data likelihood and the conditional distribution

fZ|Y(z|y; θ) =
fZ,Y(z,y; θ)

fY(y; θ)
= K(z|y; θ) (1)

∴ log fY(y; θ) = log fZ,Y(z,y; θ)− logK(z|y; θ) (2)

However, the data z are not observed, so consider replacing the right-hand side of equation (2) by the
expectations with respect to the conditional density fZ|Y(z|y; θ′), for some θ′ ∈ Θ. This yields

log fY(y; θ) = EZ|Y[log fY,Z(Y,Z; θ)|Y = y; θ′]− EZ|Y[logK(Z|Y; θ)|Y = y; θ′]. (3)

Note that the notation indicates that we condition on a specific (but as yet unspecified) value of θ′ when
computing the expectations of log fY,Z(Y,Z; θ) and logK(Z|y; θ) at the θ at which the likelihood on
the left-hand side of equation (3) is being computed.

The algorithm produces a sequence of estimates that converges to the (incomplete data) maximum
likelihood estimate. Generically, starting from an initial value θ̂ = θ̂(0), the (t + 1)st value in the
sequence, θ̂(t+1), is constructed given the tth value, θ̂(t),

θ̂(t+1) = argmax
θ ∈Θ

EZ|Y[log fY,Z(Y,Z; θ)|Y = y; θ̂(t)]

Two components of this calculation are

• E-step : compute the expected conditional log-likelihood
• M-step : carry out the maximization of the expectation.

In the traditional notation, we write

Q(θ|θ′) = EZ|Y[log fY,Z(Y,Z; θ)|Y = y; θ̂(t)]

We wish to show that the sequence of estimates produced by

θ̂(t+1) = argmax
θ ∈Θ

Q(θ|θ̂(t)) t = 1, 2, . . .
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converges to the maximum likelihood estimate. First, note that for two pdfs f1 and f2 for random
variable Z, we have by the properties of the Kullback-Leibler divergence that

Ef1 [log f1(Z)]− Ef1 [log f2(Z)] = −Ef1 [log{f2(Z)/f1(Z)}] ≥ − logEf1 [{f2(Z)/f1(Z)}]

= − log

∫
Z
{f2(z)/f1(z)}f1(z) dz

= − log

∫
Z
f2(z) dz = 0

so therefore Ef1 [log f1(Z)] ≥ Ef1 [log f2(Z)], with equality if and only if f1 ≡ f2. For θ ∈ Θ, as

K(z|y; θ) = fZ|Y(z|y; θ)

is itself a (conditional) pdf for all θ ∈ Θ, and hence we have, for any θ,

Q(θ|θ̂(t))− log fY(y; θ) = EZ|Y[log fY,Z(Y,Z; θ)|Y = y; θ̂(t)]− log fY(y; θ)

= EZ|Y

[
logK(Z|Y; θ)|Y = y; θ̂(t)

]
≤ EZ|Y

[
logK(Z|Y; θ̂(t))|Y = y; θ̂(t)

]
= Q(θ̂(t)|θ̂(t))− log fY(y; θ̂(t)).

Thus the function
g(θ) = log fY(y; θ)−Q(θ|θ̂(t))

achieves its minimum value when θ = θ̂(t).

Now suppose that θ̂(t+1) is the value that maximizes Q(θ|θ̂(t)) over Θ; we have that

log fY(y; θ̂(t+1)) ≡ Q(θ̂(t+1)|θ̂(t)) +
(
log fY(y; θ̂(t+1))−Q(θ̂(t+1)|θ̂(t))

)
≥ Q(θ̂(t)|θ̂(t)) +

(
log fY(y; θ̂(t))−Q(θ̂(t)|θ̂(t))

)
= log fY(y; θ̂(t))

and the likelihood attained is increasing with the sequence θ̂(0), θ̂(1), θ̂(2), . . ..

Thus, provided log fY(y; θ) is bounded, we have that the sequence of log fY(y; θ̂(t)) converges to a
(local) maximum of log fY(y; θ).
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Example 1 Finite Mixture Model
Suppose that Y1 . . . , Yn are a random sample from the K component finite mixture model

fY |θ(y; θ) =

K∑
k=1

πkfk(yi; θk) y ∈ R

where f1, . . . , fK are component densities, and 0 < πk < 1 and
K∑
k=1

πk = 1.

Estimation of parameters θ = (θ1, . . . , θK)⊤ and π = (π1, . . . , πK) from the likelihood

fY(y; θ, π) =
n∏

i=1

{
K∑
k=1

πkfk(yi; θk)

}

is in general difficult. However, consider the augmented data X1, . . . , Xn, where

Pr[Zi = k] = πk i = 1, . . . ,K

are independent random variables so that

fY,Z(y, z; θ, π) =

n∏
i=1

K∏
k=1

{πkfk(yi; θk)}1{k}(Zi)

and

log fY,Z(y,Z; θ, π) =

n∑
i=1

K∑
k=1

1{k}(Zi) (log πk + log fk(yi; θk)) .

The conditional distribution fZ|Y,θ(z|y; θ) is a discrete distribution on the set {1, 2, . . . ,K} where for
each i = 1, . . . , n

Pr[Zi = k|Y = y, π; θ] =
πkfk(yi; θk)
K∑
j=1

πjfj(yi; θj)

= ωk(yi; θ, π) k = 1, . . . ,K

say, where Z1, . . . , Zn are conditionally independent. Thus

EZi|Yi
[1{k}(Zi)|yi; θ, π] = ωk(yi; θ, π)

and hence, for the EM update, we have

Q(θ, π|θ̂(t), π̂(t)) = EZ|Y[log fY,Z(y,Z; θ, π)|Y = y; θ̂(t), π(t)]

=
n∑

i=1

K∑
k=1

ωk(yi; θ̂
(t), π̂(t)) (log πk + log fk(yi; θk))

=
K∑
k=1

{
n∑

i=1

ωk(yi; θ̂
(t), π̂(t))

}
log πk +

K∑
k=1

n∑
i=1

ωk(yi; θ̂
(t), π̂(t)) log fk(yi; θk) (4)

We seek to maximize over (θ, π) to obtain (θ̂(t+1), π̂(t+1)) presuming that the values ωk(yi; θ̂
(t), π̂(t)) are

fixed.

3



From the form of equation (4) it is evident that the function is sum of two parts, the first only
depending on π, the second only dependent on θ. We can therefore maximize the two parts separately
to obtain (θ̂(t+1), π̂(t+1)).

The first part of equation (4) is of the form of a multinomial likelihood in π, therefore by direct
calculation it follows that

π̂
(t+1)
k =

n∑
i=1

ωk(yi; θ̂
(t), π̂(t))

K∑
j=1

n∑
i=1

ωj(yi; θ̂(t), π̂(t))

k = 1, . . . ,K

The second part of equation (4) is the sum of K log-likelihoods for the K mixture components which
can be maximized separately

θ̂
(t+1)
k = argmax

θk

n∑
i=1

ωk(yi; θ̂
(t), π̂(t)) log fk(yi; θk) (5)

For certain choices of the component densities, this maximization can be carried out analytically. For
example, if fk(yi; θk) is the Normal density with expectation µk and variance σ2

k, it follows that the
new maximizing value equals θ̂k(t+1) = (µ̂

(t+1)
k , σ̂

(t+1)
k ) where

µ̂
(t+1)
k =

n∑
i=1

ωk(yi; θ̂
(t), π̂(t))yi

n∑
i=1

ωk(yi; θ̂(t), π̂(t))

and

σ̂
(t+1)
k =

√√√√√√√
n∑

i=1
ωk(yi; θ̂(t), π̂(t))(yi − µ̂

(t+1)
k )2

n∑
i=1

ωk(yi; θ̂(t)π̂(t))

Note that in the normal model the terms in (5) correspond to likelihood components of the form

{fk(yi; θk)}ω
(t)
k =

(
1

2πσ2
k

)ω
(t)
k /2

exp

{
−
ω
(t)
k

2σ2
k

(yi − µ
(t)
k )2

}

so the terms ω(t)
k ≡ ωk(yi; θ̂

(t), π̂(t)) are acting as weighting factors.
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Example 2 The EM Algorithm: Genetics of Human Blood Groups
In human genetics, the genotype at a genomic locus is a pair of alleles corresponding to small
segments of DNA lying on the two chromosomal strands. The phenotype is the physical presentation
or trait arising from the genotype. At a certain locus that determines the phenotype of blood group,
the relationship between genotype and phenotype is somewhat complex; there are

• three alleles (A, B and O) yielding six possible genotypes (ordering is not important)
• only four phenotypes (A,B,AB and O).

The relationship between phenotype and genotype in this case is determined by the following table.
The third column, headed Z, denotes a label for the genotype class. However, only the phenotype
may be observed; let Y1, . . . , Yn denote the recorded phenotype for each of the n data.

Genotype Phenotype Z Y
AA A 1 1
AB AB 2 3
AO A 3 1
BB B 4 2
BO B 5 2
OO O 6 4

Suppose that inference about the proportions of the three alleles A,B and O, denoted θA, θB, θO is
required from a sample of size n of phenotype data. We formulate a data augmentation approach,
and use the EM algorithm to perform maximum likelihood estimation. An independence assumption
(based on so-called Hardy-Weinberg equilibrium) is needed; we assume that the probability of
observing a genotype is the product of the individual allele probabilities. For example

P(AA) = θA × θA P(AB) = θA × θB

and so on.

Define the augmented data

Pr[Zi = j] = Pr[ith genotype is in class j] j = 1, . . . , 6

that is

Pr[Zi = j] =



θ2A j = 1

θAθB j = 2

θAθO j = 3

θ2B j = 4

θBθO j = 5

θ2O j = 6

for i = 1, . . . , n

with Z1, . . . , Zn a random sample. This simplification yields a complete data likelihood

fY,Z(y, z; θ) ≡ fZ(z; θ)

=

n∏
i=1

{
θ
21{1}(zi)+1{2}(zi)+1{3}(zi)

A θ
1{2}(zi)+21{4}(zi)+1{5}(zi)

B θ
1{3}(zi)+1{5}(zi)+21{6}(zi)

O

}

say, where

nj =
n∑

i=1

1{j}(zi) j = 1, . . . , 6.
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The complete data likelihood is a multinomial-type likelihood in θ. In the standard notation, for the
EM steps, we have to

• E-step: compute
Q(θ|θ̂(t)) = EZ|Y[log fY,Z(y, z; θ)|Y = y; θ̂(t)]

taking the expectation over Z1, . . . , Zn etc.

• M-step: maximize Q(θ|θ̂(t)) to get θ̂(t+1).
Here the M-step is straightforward due to the multinomial likelihood. The E-step is also quite
straightforward, but some steps need clarification.

The log complete data likelihood takes the form

log fY,Z(y, z; θ) =

n∑
i=1

(
21{1}(zi) + 1{2}(zi) + 1{3}(zi)

)
log θA

+

n∑
i=1

(
1{2}(zi) + 21{4}(zi) + 1{5}(zi)

)
log θB

+
n∑

i=1

(
1{3}(zi) + 1{5}(zi) + 21{6}(zi)

)
log θO

which is linear and additive in the indicator functions.

Conditional on Y and θ, some expectations can be written down automatically. For example

EZi|Yi
[1{j}(Zi)|Yi = 3; θ] =

{
1 j = 2

0 j ̸= 2

EZi|Yi
[1{j}(Zi)|Yi = 4; θ] =

{
1 j = 6

0 j ≠ 6

as by definition Y = 3 =⇒ Z = 2 and Y = 4 =⇒ Z = 6. For the remaining conditional expectations,
we have by Bayes theorem

EZi|Yi
[1{j}(Zi)|Yi = 1; θ] =



θ2A
θ2A + 2θAθO

j = 1

2θAθO
θ2A + 2θAθO

j = 3

0 otherwise

as if Y = 1, then either Z = 1 or Z = 3, with conditional probability for each determined by noting
that

Pr[Z = 1|Y = 1] =
Pr[Z = 1, Y = 1]

Pr[Y = 1]
=

Pr[Z = 1, Y = 1]

Pr[Z = 1, Y = 1] + Pr[Z = 3, Y = 1]
=

P(AA)
P(AA) + P(AO)

Similarly,

EZi|Yi
[1{j}(Zi)|Yi = 2; θ] =



θ2B
θ2B + 2θBθO

j = 4

2θBθO
θ2B + 2θBθO

j = 5

0 otherwise
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Thus Q(θ|θ̂(t)) takes the form

Q(θ|θ̂(t)) = α̂
(t)
A log θA + α̂

(t)
B log θB + α̂

(t)
O log θO

where

α̂
(t)
A =

2n1θ̂
(t)2
A

θ̂
(t)2
A + 2θ̂

(t)
A θ̂

(t)
O

+ n3 +
2n1θ̂

(t)
A θ̂

(t)
O

θ̂
(t)2
A + 2θ̂

(t)
A θ̂

(t)
O

α̂
(t)
B = n3 +

2n2θ̂
(t)2
B

θ̂
(t)2
B + 2θ̂

(t)
B θ̂

(t)
O

+
2n2θ̂

(t)
B θ̂

(t)
O

θ̂
(t)2
B + 2θ̂

(t)
B θ̂

(t)
O

α̂
(t)
O =

2n1θ̂
(t)
A θ̂

(t)
O

θ̂
(t)2
A + 2θ̂

(t)
A θ̂

(t)
O

+
2n2θ̂

(t)
B θ̂

(t)
O

θ̂
(t)2
B + 2θ̂

(t)
B θ̂

(t)
O

+ 2n4.

and n1, . . . , n4 are the observed counts for phenotypes A,B,AB and O. By the results for the
multinomial likelihood, we can maximize Q(θ|θ̂(t)) analytically to get

θ
(t+1)
A =

α̂
(t)
A

α̂
(t)
A + α̂

(t)
B + α̂

(t)
O

θ
(t+1)
B =

α̂
(t)
B

α̂
(t)
A + α̂

(t)
B + α̂

(t)
O

θ
(t+1)
O =

α̂
(t)
O

α̂
(t)
A + α̂

(t)
B + α̂

(t)
O

Real Data Example: Data from Clarke et. al. (1959)
We have n1 = 186, n2 = 38, n3 = 13 and n4 = 284 for the numbers of A, B, AB and O phenotypes in a
sample of n = 521. Starting the iterative procedure at θ̂(0) = (1/3, 1/3, 1/3)⊤ yields the following first
ten iterations:

r θ̂
(t)
A θ̂

(t)
B θ̂

(t)
O

1 0.25047985 0.06110045 0.68841971
2 0.21845436 0.05049394 0.73105170
3 0.21418233 0.05016173 0.73565593
4 0.21366195 0.05014667 0.73619139
5 0.21359944 0.05014547 0.73625508
6 0.21359196 0.05014535 0.73626270
7 0.21359106 0.05014533 0.73626361
8 0.21359095 0.05014533 0.73626372
9 0.21359094 0.05014533 0.73626373
10 0.21359094 0.05014533 0.73626373

indicating that convergence to the maximum value is fairly rapid.
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Example 3 Censored Data
Suppose that Y1, . . . , Yn are the realized failure times of electronic components, and that in addition
there are m additional components that are censored at times tn+1, . . . , tn+m. Let Zn+1, . . . , Zn+m be
the unobserved failure times of these m components (so that we observe only that Zn+j > tn+j for
j = 1, . . . ,m). Under the assumption that the data are Exponential(θ) distributed, we have the
complete data likelihood as

fY,Z(y, z; θ) =

n∏
i=1

θe−θyi ×
n+m∏
i=n+1

θe−θzi = θn+m exp

{
−θ

[
n∑

i=1

yi +

n+m∑
i=n+1

ti

]}
so that

log fY,Z(y, z; θ) = (n+m) log θ − θ

[
n∑

i=1

yi +
n+m∑
i=n+1

ti

]
.

Bearing in mind the constraint that Zn+j > tn+j , we note that for i = n+ 1, . . . , n+m, in the
Exponential model that exhibits the lack of memory property

EZi|Yi
[Zi|Yi = yi; θ] = ti +

1

θ

Thus

Q(θ|θ̂(t)) = (n+m) log θ − θ

[
n∑

i=1

yi +

n+m∑
i=n+1

ti +
m

θ̂(t)

]
which is readily maximized to yield

θ̂(t+1) =
n+m

n∑
i=1

yi +
n+m∑
i=n+1

ti +
m

θ̂(t)

For the following data

3.479 0.57 1.067⋆ 1.736⋆ 0.156⋆ 0.265 0.044⋆ 0.595 4.515⋆ 1.617

where the ⋆ superscript indicates censored values, we have n = m = 5. If θ(0) = 1, we have

r θ̂(t) r θ̂(t)

1 0.525137 11 0.356170
2 0.424376 12 0.356114
3 0.387227 13 0.356086
4 0.370989 14 0.356072
5 0.363370 15 0.356065
6 0.359677 16 0.356061
7 0.357858 17 0.356060
8 0.356956 18 0.356059
9 0.356506 19 0.356058

10 0.356282 20 0.356058

indicating that convergence to the maximum value is slower than in earlier examples. Note that in the
exponential model, the maximum likelihood estimate is available directly as

fY,T(y, t; θ) = θn exp

{
−θ

[
n∑

i=1

yi +

n+m∑
i=n+1

ti

]}
so

θ̂(y, t) =
n

n∑
i=1

yi +
n+m∑
i=n+1

ti

=
5

6.525 + 7.518
= 0.356058.
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