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NONPARAMETRIC MAXIMUM LIKELIHOOD

Suppose that X7, ..., X,, are a random sample from a distribution with cdf Fx that is not specified
using a parametric model, that is, the whole function

Fx(z) = Pr[X < z] —00 < x <00

is the (infinite dimensional) parameter of the data-generating model. Denote by F the parameter
space, that is, the set of distribution functions (non-decreasing right-continuous functions mapping
R — [0, 1]). Finally, denote the probability measure associated with F'x by Pp,, so that

Fx(z) = Pry ((—00,2])

Given observed data X = x = (x1, ..., z,) we wish to estimate F.

The likelihood function for such data in this nonparametric setting takes the form
L(x;Fx) = [[ Prx({zi})  FxeF
i=1

matching precisely the definition in the parametric setting. It is evident from this definition that
Z(x;Fx) >0, and
ZL(x;Fx)=0 if Pr,({z;}) =0, for some .

so to find the maximum likelihood estimate, we attempt to maximize over functions Fx for which
Z(x; Fx) > 0. Let 0 < ¢ < 1, and denote by F, the subset of 7 whose elements satisfy

pi:PFx({SL'i})>O iZl,Q,...,TL

such that
n
i=1

Note that 0 < ¢ < 1, as P, assigns probabilities to sets in (the o-algebra defined on) R. To maximize
Z(x; Fx) for F'x € F. subject to the constraint, consider the function

G(plv" . ;pn,)\) = sz + A (Zpl - C)
i=1 i=1

where ) is a Lagrange multiplier. We have to solve the n + 1 equations
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simultaneously for p,...,p,, A. From the first set of equations, rearranging and summing over j we
have
n
> Dpi
n i=1
X T n



so that from the second equation
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and hence for the jth equation in the first batch

yielding

At this solution,

and it is easy to see (by the concavity of the log function) that for any probabilities p, . ..
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it follows that
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Thus we have a global maximum of .Z(x; Fx ) at the computed solution, that is,

c\"
20er0 = (1)
Anax L0 ) =

, Pp SUMMING

which is maximized when ¢ = 1. Hence the maximum likelihood estimate of F'x, denoted ﬁX, in this
nonparametric setting, is defined by the discrete probability measure

Di
Pp ({z}) =
0

SU:LU,L‘,’L:].,...,TZ J}::L‘Z,Z:l,

n

otherwise 0 otherwise

which may be equivalently written

1 n
PHX = 2] = = 3 10,y (0)
=1

Thus, the nonparametric maximum likelihood estimate of Fx is the empirical cdf
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ALTERNATIVE DERIVATION

An alternative derivation used in failure time data allows for a similar construction for potentially
censored data, that is, data for which for some 7, only the event X; > z is observed. Suppose that
data including values with censoring are collected; let t; < ... < t,, denote the n independent fail-
ure/censoring times sorted into non-descending order, and let (z1, ..., 2,) denote the corresponding
censoring variables, where z; = 1 if failure is observed, and is zero otherwise. For completeness,
define ty = —o0, t41 = 0

Failure modelling for such data is achieved via functions such as the failure pmf f, survivor function
S, hazard function h and cumulative hazard H, where, in discrete time,

JO=q=PIX=j]  SG=S=PX>j hi=pyia=gt =) h

Nonparametric Likelihood: Define a partition of the observed data range into the disjoint, half-open
intervals
(—OO, tl] , (tl, tQ] y eeey (tn_l, tn] y (tn, OO)

with corresponding interval probabilities g1, 2, ..., gn—1, Gn, Gn+1,
q; = Fx(tj) — Fx(tj_l) = SX(tj—l) - S(tj)

and discrete hazards

q;
hy = hi =
e a Tl — . =g
so that ¢1 = hq,
Jj—1 J J
qj:th(l—hi) SjZP[X>tj]=1—Zqi=H(1—
i=1 i=1 i=1

Suppose now that, for time point ¢;, there are IN; observed failures/censorings, defined by binary
indicators (zjl, ey 2§ Nj) (this generalizes the IV; = 1 case described in the first section, and allows for
the possibility of ties). The likelihood for such observed data is

n N,
Za 1—2z;
2ma) = [[{ [["s" ) M
j=1 | k=1

that will form the basis for inference.

For the data (¢, z), the log likelihood from (1) is

n [N Nj
log Z(t,z;q) = Z szk log q; + Z(l — zji) log S
j=1 | k=1 k=1

which, in terms of the hazard parameterization yields

n [ N Jj—1 Nj J
log Z(t,z;h) = Z szk; log h; + Zlog (I—hy)| + Z(l — Zjk) [Z log (1 — hz)]
j=1 | k=1 i=1 k=1 i=1
n Nj j—1 Njoj
= ZZz]klogh +ZZZz]klog +ZZZ 1 — zji)log (1 — hy)
7j=1k=1 7j=1k=11=1 7j=1k=11i=1



n N; n—1 n Nj n n Nj

= Z szk: loghj+z szk 10g(1—hi)+z Z(l—zjk) log (1 — hy)

j=1 | k=1 i=1 | j=i+1 k=1 i=1 | j=i k=1

Z {myjlogh; + mao;log (1 —h;)}

j=1
where
n Nj n NJ'
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In terms of the hazard parameters, the likelihood is the of the form of a product binomial expression.
The expression for my; simplifies to be

moj= > Y Azt (L—zin)}+ > (1—zp) = ZN+N szk—ZN szk
i=j+1 k=1 k=1 i=j+1 k=1
The maximum likelihood estimates of the hazard probabilities are thus
Nj
2 Zjk
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and thus
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and if all z; = 1 we obtain
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and so on, so that ¢; = 1/n for all .



