557: MATHEMATICAL STATISTICS II COMPLETE STATISTICS IN THE EXPONENTIAL FAMILY

Suppose that f is a one-parameter natural Exponential Family distribution in canonical form, written using the "tilting" formulation as

$$f(x;\theta) = f_0(x) \exp\{\theta x - K(\theta)\}\$$

for pdf $f_0(x)$, for all θ in some open interval. $K(\theta)$ is the cumulant generating function:

$$\int_{-\infty}^{\infty} f_0(x) \exp\{\theta x\} dx = e^{K(\theta)}.$$

EXAMPLE: $Normal(\theta, 1)$

$$f(x;\theta) = \left(\frac{1}{2\pi}\right)^{1/2} \exp\left\{-\frac{1}{2}(x-\theta)^2\right\} = f_0(x) \exp\{\theta x - K(\theta)\}$$

where

$$f_0(x) = \left(\frac{1}{2\pi}\right)^{1/2} \exp\left\{-\frac{1}{2}x^2\right\}$$
 $K(\theta) = \frac{t^2}{2}$

Suppose that there exists g(x) such that

$$\int_{-\infty}^{\infty} g(x)f(x;\theta) dx = \int_{-\infty}^{\infty} g(x)f_0(x) \exp\{\theta x - K(\theta)\} dx = 0$$
 (1)

for all θ . Write

$$g(x) = g_{+}(x) - g_{-}(x)$$

where

$$g_{+}(x) = \max\{0, g(x)\}$$
 $g_{-}(x) = \max\{0, -g(x)\}$

are the positive and negative part functions. Note that $g_+(x) \ge 0$ and $g_-(x) \ge 0$ for all x. Thus for a specific value θ_0 , multiplying equation (1) by $e^{K(\theta)}$ and rearranging, we have

$$\int_{-\infty}^{\infty} g_{+}(x) f_{0}(x) \exp\{\theta x\} dx = \int_{-\infty}^{\infty} g_{-}(x) f_{0}(x) \exp\{\theta x\} dx = c(\theta) \ge 0$$
 (2)

for all θ in a neighbourhood of θ_0 . At θ_0 , write $c(\theta_0) = c_0$. If $c_0 = 0$, then we must have

$$g_{+}(x) = g_{-}(x) = g(x) = 0$$

for all x, as all terms in the integrands are non-negative. If $c_0 > 0$, the functions

$$f_{+}(x) = \frac{g_{+}(x)f_{0}(x)}{c_{0}} \exp\{\theta_{0}x\}$$
 $f_{-}(x) = \frac{g_{-}(x)f_{0}(x)}{c_{0}} \exp\{\theta_{0}x\}$

are probability densities in x, and the moment generating function of f_+ is

$$M_{+}(t) = \int_{-\infty}^{\infty} e^{tx} f_{+}(x) dx = \int_{-\infty}^{\infty} e^{tx} \frac{g_{+}(x) f_{0}(x)}{c_{0}} \exp\{\theta_{0}x\} dx = \int_{-\infty}^{\infty} \frac{g_{+}(x) f_{0}(x)}{c_{0}} \exp\{(\theta_{0} + t)x\} dx$$

and similarly

$$M_{-}(t) = \int_{-\infty}^{\infty} \frac{g_{-}(x)f_{0}(x)}{c_{0}} \exp\{(\theta_{0} + t)x\} dx.$$

But $\theta_0 + t$ is in a neighbourhood of θ_0 for t in a neighbourhood of zero, and thus by equation (2), it follows that

$$M_{+}(t) = M_{-}(t) = \frac{c(\theta_{0} + t)}{c(\theta_{0})}.$$

Due to the uniqueness of mgfs, this implies that $f_+(x) = f_-(x)$ for all x, which consequently implies that $g_+(x) = g_-(x)$ for all x. Therefore we must have that $g(x) = g_+(x) - g_-(x) \equiv 0$ for all x. Hence X is complete.