557: MATHEMATICAL STATISTICS II SUFFICIENCY, ANCILLARITY AND COMPLETENESS

For a random sample **X** from a probability model with pmf/pdf $f_{\mathbf{X}}(\mathbf{x}; \theta)$. Let $\mathbf{x} \in \mathbb{X}^n \subseteq \mathbb{R}^n$ be a possible realization of **X**.

• Sufficiency

A statistic, T(X), is **sufficient** for θ (or θ -sufficient) if the conditional distribution of X given T(X) does not depend on θ .

• Minimal Sufficiency

A statistic, $\mathbf{T}(\mathbf{X})$, is **minimal sufficient** for θ if it is a sufficient statistic, and for any other sufficient statistic $\mathbf{T}^*(\mathbf{X})$, \mathbf{T} is a function of \mathbf{T}^* , that is, for $\mathbf{x}, \mathbf{y} \in \mathbb{X}^n$,

 $\mathbf{T}^*(\mathbf{x}) = \mathbf{T}^*(\mathbf{y}) \implies \mathbf{T}(\mathbf{x}) = \mathbf{T}(\mathbf{y})$

A sufficient condition for minimal sufficiency is that for two realizations $\mathbf{x} = x_{1:n}$ and $\mathbf{y} = y_{1:n}$,

$$T(\mathbf{x}) = T(\mathbf{y}) \qquad \iff \qquad \frac{f_{\mathbf{X}}(\mathbf{x};\theta)}{f_{\mathbf{X}}(\mathbf{y};\theta)} \text{ does not depend on } \theta.$$

• Ancillarity

A statistic, S(X), is **ancillary** for θ if the conditional distribution of S(X) does not depend on θ .

• Completeness

A statistic, **T**, with pmf/pdf $f_{\mathbf{T}}(\mathbf{t}; \theta)$ is **complete** if, for every real-valued (technically, measurable with respect to the corresponding probability measure, P_{θ}) function **g**,

$$\mathbb{E}_{\mathbf{T}}[\mathbf{g}(\mathbf{T});\theta] = \mathbf{0} \implies P_{\theta}[\mathbf{g}(\mathbf{T}) = \mathbf{0}] = 1$$

that is $\mathbf{g}(\mathbf{T}) \equiv 0$ with probability 1 for all $\theta \in \Theta$.

T is **boundedly complete** if, for every **bounded** real-valued function g,

$$\mathbb{E}_{\mathbf{T}}[\mathbf{g}(\mathbf{T});\theta] = \mathbf{0} \implies P[\mathbf{g}(\mathbf{T}) = \mathbf{0};\theta] = 1.$$