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THE GLIVENKO-CANTELLI LEMMA

The Empirical Distribution Function Let X1, . . . , Xn be a collection of i.i.d. random variables with
cdf FX . Then the empirical distribution function will be denoted F̂n(x), and de�ned for x ∈ R by

F̂n(x) =
1

n

n∑
i=1

1[Xi,∞)(x)

where 1A(ω) is the indicator function for set A. If data x1, . . . , xn are available, then the observed or
estimated empirical distribution function is de�ned by

F̂n(x) =
1

n

n∑
i=1

1[xi,∞)(x).

For any �xed x ∈ R, the Strong Law of Large Numbers ensures that

F̂n(x)
a.s.−→ FX(x) as n −→ ∞

as
E[1[Xi,∞)(x)] = P [1[Xi,∞)(x) = 1] = P [Xi ≤ x] = FX(x).

This result is strengthened by the following Theorem.

Theorem. The Glivenko-Cantelli Theorem
Let X1, . . . , Xn be a collection of i.i.d. random variables with cdf FX , and let F̂n(x) denote the empirical distri-
bution function. Then, as n −→ ∞,

P

[
sup
x∈R

∣∣∣F̂n(x)− FX(x)
∣∣∣ −→ 0

]
= 1

or equivalently

P

[
lim

n−→∞
sup
x∈R

∣∣∣F̂n(x)− FX(x)
∣∣∣ = 0

]
= 1.

that is, the convergence is uniform in x.

Proof. Let ϵ > 0. Then �x k > 1/ϵ, and then consider points t0, . . . , tk such that

−∞ = t0 < t1 < t2 < . . . < tk−1 < tk = ∞

that de�ne a partition of R into k disjoint intervals such that

FX(t−j ) ≤
j

k
≤ FX(tj) j = 1, . . . , k − 1

where for t ∈ R, FX(t−) = lim
s−→t−

FX(s) = P [X < t] = FX(t)− P [X = t]. Then, by construction

FX(t−j )− FX(tj−1) ≤
j

k
− (j − 1)

k
=

1

k
< ϵ.
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Recall that F̂n(x) is a random quantity for each x. Now, by the Strong Law, we have pointwise conver-
gence, so that, as n −→ ∞, for j = 1, . . . , k − 1.

F̂n(tj)
a.s.−→ FX(tj) and F̂n(t

−
j )

a.s.−→ FX(t−j )

or equivalently for each j,

|F̂n(t
−
j )− FX(t−j )|

a.s.−→ 0 and |F̂n(t
−
j )− FX(t−j )|

a.s.−→ 0

as n −→ ∞, so looking at the maximum over all j,

△n = max
j=1,...,k−1

{
|F̂n(tj)− FX(tj)|, |F̂n(t

−
j )− FX(t−j )|

}
a.s.−→ 0 as n −→ ∞.

For any x, �nd the interval within which x lies, that is, identify j such that

tj−1 ≤ x < tj .

Then we have

F̂n(tj−1) ≤ F̂n(x) ≤ F̂n(t
−
j ) and FX(tj−1) ≤ FX(x) ≤ FX(t−j )

so that, as from above FX(t−j )− FX(tj−1) < ϵ,

F̂n(x)− FX(x) ≤ F̂n(t
−
j )− FX(tj−1) ≤ F̂n(t

−
j )− FX(t−j ) + ϵ

F̂n(x)− FX(x) ≥ F̂n(tj−1)− FX(t−j ) ≥ F̂n(tj−1)− FX(tj−1)− ϵ

and thus for any x,

F̂n(tj−1)− FX(tj−1)− ϵ ≤ F̂n(x)− FX(x) ≤ F̂n(t
−
j )− FX(t−j ) + ϵ

and thus ∣∣∣F̂n(x)− FX(x)
∣∣∣ ≤ max

{
|F̂n(tj−1)− FX(tj−1)|, |F̂n(t

−
j )− FX(t−j )|

}
+ ϵ

≤ △n + ϵ
a.s.−→ ϵ as n −→ ∞.

Hence, as this holds for arbitrary x, it follows that

sup
x∈ R

∣∣∣F̂n(x)− FX(x)
∣∣∣ a.s.−→ ϵ as n −→ ∞.

This holds for every ϵ > 0: if Aϵ denotes the set of ω on which this convergence is observed, then
P (Aϵ) = 1, and then by de�nition

A ≡
∩
ϵ>0

Aϵ ≡ lim
ϵ−→0

Aϵ =⇒ P (A) = P
(
lim
ϵ−→0

Aϵ

)
= lim

ϵ−→0
P (Aϵ) = 1

and it follows that

P

[
lim

n−→∞
sup
x∈R

∣∣∣F̂n(x)− FX(x)
∣∣∣ = 0

]
= 1.

and the convergence is uniform in x.
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