MATH 557 - Practice Mid-Term Examination

Marks can be obtained by answering all questions. 40 marks available. Rescaling of the final mark may occur.

- 1. (a) Suppose that $X \sim Uniform(-\theta, \theta)$ for some $\theta > 0$. Let Y = |X|. Is Y sufficient for θ ? Justify your answer. 4 *Marks*
 - (b) Suppose that X_1, \ldots, X_n are a random sample from the $Uniform(-\theta, 2\theta)$ distribution. Find the maximum likelihood estimator of θ , $\hat{\theta} \equiv \hat{\theta}_{ML}(\mathbf{X})$. Is $\hat{\theta}_{ML}(\mathbf{X})$ sufficient for θ ? Justify your answer.

6 Marks

2. (a) Show that the family $Normal(0, \theta)$ for $0 < \theta < \infty$ is *not complete*.

4 Marks

(b) Consider a random sample X_1, \ldots, X_n from the pdf

$$f_X(x;\theta_1,\theta_2) = \frac{1}{\theta_2} \exp\{-(x-\theta_1)/\theta_2\}\mathbb{1}_{(\theta_1,\infty)}(x)$$

for $-\infty < \theta_1 < \infty$, $\theta_2 > 0$. Find the (two-dimensional) minimal sufficient statistic for the vector (θ_1, θ_2) .

- 3. Suppose that X_1, \ldots, X_n is a random sample from a $Poisson(\lambda)$ distribution.
 - (a) Find the maximum likelihood estimator of $\tau(\lambda) = \{P_{\lambda}[X_1 = 0]\}^2$

4 Marks

(b) Consider the estimator of $\tau(\lambda)$, $\hat{\tau}_1(\mathbf{X}) = (-1)^{X_1}$. Show that $\hat{\tau}_1(\mathbf{X})$ is *unbiased* for τ , that is

$$\mathbb{E}_{\mathbf{X}}[\widehat{\tau}_1(\mathbf{X});\lambda] = \tau(\lambda).$$

4 Marks

(c) Comment on $\hat{\tau}_1(\mathbf{X})$ as an estimator of τ .

2 Marks

4. (a) Suppose that X_1, \ldots, X_n is a random sample from a $Normal(\theta, 1)$ distribution. Consider parameter $\phi(\theta) = P_{\theta}[X \leq c]$ for some fixed *c*. Find an *unbiased* estimator for $\phi(\theta)$, that is, and estimator $T = T(\mathbf{X})$ for which $\mathbb{E}_T[T; \theta] = \phi(\theta)$.

5 Marks

(b) Suppose that X_1, \ldots, X_n is a random sample from a continuous distribution with cdf $F_X(x)$. Let $\theta = P[X \le a]$ for some fixed *a*. Show that the estimator

$$T(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{(-\infty,a]}(X_i)$$

is unbiased for θ , and find $\operatorname{Var}_T[T; \theta]$.

Hint: Consider the random variables $Y_i = \mathbb{1}_{(-\infty,a]}(X_i)$, i = 1, ..., n and their distribution. 5 Marks