MATH 557 - EXERCISES 4

These exercises are not for assessment

- 1. Let X_1, \ldots, X_n be a random sample from the $Beta(1, \theta)$ probability model, for parameter $\theta > 0$.
 - (a) Find the Uniformly Most Powerful (UMP) level α test (that is, the form of the test statistic and rejection region) of hypotheses

$$\begin{array}{rcl} H_0 & : & \theta = 1 \\ H_1 & : & \theta > 1 \end{array}$$

(b) Find the Likelihood Ratio Test (LRT) for testing

$$\begin{array}{rcl} H_0 & : & \theta = 1 \\ H_1 & : & \theta \neq 1 \end{array}$$

that has level α .

2. Find the UMP level α test (that is, the form of the test statistic and rejection region) for hypotheses

$$\begin{array}{rcl} H_0 & : & \theta \leq \theta_0 \\ H_1 & : & \theta > \theta_0 \end{array}$$

where $\theta > 0$, and θ_0 is a fixed positive constant, based on a random sample of size *n* from the following probability models:

(a) Exponential $(1/\theta)$:

$$f_X(x;\theta) = \frac{1}{\theta}e^{-x/\theta} \qquad x > 0$$

(b) Normal $(1, \theta)$:

$$f_X(x;\theta) = \left(\frac{1}{2\pi\theta}\right)^{1/2} \exp\left\{-\frac{(x-1)^2}{2\theta}\right\} \qquad -\infty < x < \infty$$

3. Suppose that $X_1, \ldots, X_n \sim \text{Poisson}(\theta)$ for $\theta > 0$ is a random sample. Construct a test of the hypotheses

$$\begin{array}{rcl} H_0 & : & \theta \leq 2 \\ H_1 & : & \theta > 2 \end{array}$$

that is a UMP level $\alpha = 0.05$ test, that is, where

$$\alpha = \Pr[T(\mathbf{X}) \in \mathcal{R}_T; \theta]$$

for suitably chosen test statistic $T(\mathbf{X})$ and rejection region \mathcal{R}_T . Report the outcome of the test for the data set

$$2 \quad 3 \quad 5 \quad 1 \quad 5 \quad 2.$$

Note: As the *X* values are discrete, the test required here is a *randomized* test. $T(\mathbf{X})$ is also discrete, and as the critical region takes the form $T(\mathbf{x}) \ge c$, where *c* is an integer, to match the required level α , the test function must take the form

$$\phi_{\mathcal{R}_T}(t) = \begin{cases} 1 & t > c \\ \gamma & t = c \\ 0 & t < c \end{cases}$$

with γ chosen so that $\mathbb{E}_T[\phi_{\mathcal{R}_T}(T)] = \alpha$. That is, if $T(\mathbf{x}) = c$, we reject with probability γ .

- 4. Suppose that $X_1, \ldots, X_n \sim \text{Bernoulli}(\theta)$ are a random sample, where $0 < \theta < 1$, and suppose that $\tau(\theta) = \theta(1 \theta)$.
 - (a) Find the maximum likelihood estimator of $\tau(\theta)$, $\hat{\tau}_n(\mathbf{X})$.
 - (b) Find large sample approximation to the distribution of $\hat{\tau}_n(\mathbf{X})$ for each $\theta \in (0, 1)$.
- 5. Suppose that X_1, \ldots, X_n is a random sample from a distribution with pdf f_X , with

 $\mathbb{E}_{X}[X_{i};\mu,\gamma] = \mu \qquad \qquad \text{Var}_{X}[X_{i};\mu,\gamma] = 1 \qquad \qquad \text{Var}_{X}[X_{i}^{2};\mu,\gamma] = \gamma \qquad \qquad \mathbb{E}_{X}[X_{i}^{4};\mu,\gamma] < \infty$

for $i = 1, \ldots, n$. Denote by

$$T_{1n}(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 1 \qquad T_{2n}(\mathbf{X}) = \overline{X}^2 - \frac{1}{n}$$

two estimators of $\tau(\mu) = \mu^2$.

- (a) Compute the *asymptotic bias* of each of these estimators.
- (b) The *Asymptotic Relative Efficiency* (ARE) of T_{1n} with respect to T_{2n} is defined as the ratio of their rescaled asymptotic mean-square errors (AMSE)

$$\operatorname{ARE}_{\mu}(T_{1n}, T_{2n}) = \frac{\operatorname{AMSE}_{\mu}(T_{2n})}{\operatorname{AMSE}_{\mu}(T_{1n})}$$

where

$$AMSE_{\mu}(T_{jn}) = \lim_{n \longrightarrow \infty} n \mathbb{E}_{f_{T_{jn}|\mu}}[(T_{jn} - \tau(\mu))^2] \qquad j = 1, 2$$

Find $ARE_{\mu}(T_{1n}, T_{2n})$.

6. Suppose that (X_i, Y_i) , i = 1, ..., n are independent pairs of random variables with joint pdf

$$f_{X,Y}(x,y;\theta,\phi) = \phi^2 \theta \exp\left\{-\left[\phi x + \theta \phi y\right]\right\} \qquad x,y > 0$$

for parameters θ , $\phi > 0$. Find the maximum likelihood estimator, $\hat{\theta}_n$, of $\theta = (\theta, \phi)^{\top}$, and a large sample approximation its distribution, given in this regular case by

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{d}{\longrightarrow} Z \sim Normal(\mathbf{0}_2, \{\mathcal{I}_{\boldsymbol{\theta}_0}(\boldsymbol{\theta}_0)\}^{-1})$$

where $\mathcal{I}_{\boldsymbol{\theta}_0}(\boldsymbol{\theta}_0)$ is the Fisher Information.

7. Derive the forms of the Wald, Score and Likelihood Ratio statistics for testing

$$\begin{array}{rcl} H_0 & : & \lambda = \lambda_0 \\ H_1 & : & \lambda \neq \lambda_0 \end{array}$$

if the data follow a Poisson distribution with parameter $\lambda > 0$. For each case, use the correspondence with test statistic acceptance regions to construct approximate $1 - \alpha$ confidence intervals.