MATH 557 - EXERCISES 3

These exercises are not for assessment

1 Suppose that $X \sim Binomial(n, \theta)$ for $0 < \theta < 1$.

- (a) Verify that the estimator T(X) = X/n is unbiased for θ .
- (b) Consider $\tau(\theta) = 1/\theta$. Does there exist an unbiased estimator of $\tau(\theta)$? Justify your answer.

2 Suppose that $X_1, \ldots, X_n \sim Uniform(0, \theta)$ for $\theta > 0$ is a random sample.

- (a) Find an unbiased estimator, $T(\mathbf{X})$, of θ .
- (b) Compute the variance/mean square error of $T(\mathbf{X})$.
- (c) It can be shown that the variance of an unbiased estimator of parameter θ derived from a random sample of size *n* can be no smaller than the bound

$$\frac{1}{n} \{ \mathcal{I}_{\theta}(\theta) \}^{-1}$$

where $\mathcal{I}_{\theta}(\theta)$ is the Fisher information; this is termed the *Cramér-Rao lower bound*. Any unbiased estimator that achieves the variance bound is termed the *best* or *minimum variance* unbiased estimator.

Compute the amount by which the variance of $T(\mathbf{X})$ exceeds the Cramér-Rao lower bound for this non-regular model.

3 Suppose that $X_1, \ldots, X_n \sim Beta(\theta, 1)$ for $\theta > 0$ is a random sample, so that

$$f_X(x;\theta) = \theta x^{\theta - 1} \qquad 0 < x < 1$$

and zero otherwise.

- (a) Find the maximum likelihood estimator of θ , to be denoted $\hat{\theta}_n(\mathbf{X})$.
- (b) Is $\hat{\theta}_n(\mathbf{X})$ unbiased for θ ? Justify your answer.
- (c) Does $\widehat{\theta}_n(\mathbf{X})$ attain the Cramér-Rao lower bound ? Justify your answer.

4 Suppose that $f_X(x; \theta) = f(x - \theta)$ is a location family distribution.

- (a) Show that for this class of models, the Fisher information for θ , $\mathcal{I}_{\theta}(\theta)$, does not depend on θ .
- (b) Compute $\mathcal{I}_{\theta}(\theta)$ if

$$f(x) = \frac{1}{2}e^{-|x|} \qquad -\infty < x < \infty$$

(c) Compute $\mathcal{I}_{\theta}(\theta)$ if

$$f(x) = \frac{e^{-x}}{(1+e^{-x})^2} \qquad -\infty < x < \infty$$

5 Suppose that X_1, \ldots, X_n is a random sample from the distribution with pdf

$$f_X(x;\theta) = \frac{3\theta^3}{(x+\theta)^4} \qquad 0 < x < \infty$$

and zero otherwise, for parameter $\theta > 0$.

Find an unbiased estimator for θ , and the variance of this estimator.

MATH 557 EXERCISES 3

THE RAO-BLACKWELL THEOREM

Theorem. The Rao-Blackwell Theorem

Let T be an unbiased estimator of $\tau(\theta)$, and S be a sufficient statistic for θ . Define statistic T^{*} by

$$T^* \equiv g(S) = \mathbb{E}_{T|S}[T|S;\theta]$$

Then T^* *is an unbiased estimator of* $\tau(\theta)$ *, and for all* θ

$$Var_{T^*}[T^*;\theta] \leq Var_T[T;\theta].$$

- 6 Using the Rao-Blackwell Theorem in the following examples, demonstrate the construction of an estimator T^* defined by $T^* = \mathbb{E}[T|S] = g(S)$, where *T* is an unbiased estimator of $\tau(\theta)$, and *S* is sufficient for θ , which is unbiased and has variance not greater than *T*.
 - (a) If $X_1, \ldots, X_n \sim Poisson(\lambda), \tau(\lambda) = \lambda$

$$S = \sum_{i=1}^{n} X_i \qquad \qquad T = X_1$$

(b) If $X_1, \ldots, X_n \sim Poisson(\lambda), \tau(\lambda) = e^{-\lambda}$

$$S = \sum_{i=1}^{n} X_i \qquad T = \mathbb{1}_{\{0\}}(X_1)$$

(c) If $X_1, \ldots, X_n \sim Uniform(0, \theta), \tau(\theta) = \theta$

$$S = \max\{X_1, \dots, X_n\} \qquad T = 2X_1$$

Demonstrate the improvement in variance using simulation if necessary.

- 7 Suppose X_1, \ldots, X_n are independent random variables uniformly distributed over $(\theta, 2\theta)$. Find a (minimal) sufficient statistic *S*, and that $T = 2X_1/3$ is an unbiased estimator of θ . Using the Rao-Blackwell Theorem, find an unbiased estimator of θ with variance no greater than *T*.
- 8 Suppose X_1, \ldots, X_n are independent random variables identically distributed as $Bernoulli(\theta)$. Let $\tau(\theta) = (1 - \theta)^2$.
 - (a) Find the ML estimator of $\tau(\theta)$ as a function of the τ -sufficient statistic $T = \sum_{i=1}^{n} X_i$.
 - (b) Show that *T* is biased for τ .
 - (c) Find the *best* (or *minimum variance*) unbiased estimator of τ .

MATH 557 EXERCISES 3