MATH 557 - EXERCISES 2

These exercises are not for assessment

1. Suppose that $X_1 \sim Binomial(n_1, \theta_1)$ and $X_2 \sim Binomial(n_2, \theta_2)$ be independent random variables. Derive the maximum likelihood estimator of the odds ratio ψ defined by

$$\psi = \frac{\theta_1 / (1 - \theta_1)}{\theta_2 / (1 - \theta_2)}.$$

2. Suppose that $X_1, ..., X_n$ are a random sample from a $Gamma(\alpha, \beta)$ distribution. Find the *method* of moments estimators of α and β , that is, the estimators $\hat{\alpha}$ and $\hat{\beta}$ defined by equating the first two moments of the distribution, $\mathbb{E}_X[X]$ and $\mathbb{E}_X[X^2]$ to the first two empirical moments

$$\frac{1}{n}\sum_{i=1}^{n}x_i \qquad \qquad \frac{1}{n}\sum_{i=1}^{n}x_i^2$$

respectively.

- 3. Find the maximum likelihood estimators of the unknown parameters in the following probability densities on the basis of a random sample of size *n*.
 - (i) $f_X(x;\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \theta > 0.$ (ii) $f_X(x;\theta) = (\theta + 1)x^{-\theta-2}, \ 1 < x, \theta > 0.$ (iii) $f_X(x;\theta) = \theta^2 x \exp\{-\theta x\}, \ 0 < x, \theta > 0.$ (iv) $f_X(x;\theta) = 2\theta^2 x^{-3}, \ \theta \le x, \theta > 0.$ (v) $f_X(x;\theta) = \frac{\theta}{2} \exp\{-\theta |x|\}, \ -\infty < x < \infty, \ \theta > 0.$ (vi) $f_X(x;\theta_1,\theta_2) = \frac{1}{\theta_2 - \theta_1}, \ \theta_1 \le x \le \theta_2.$ (vii) $f_X(x;\theta_1,\theta_2) = \theta_1 \theta_2^{\theta_1} x^{-\theta_1 - 1}, \ \theta_2 \le x, \ \theta_1, \theta_2 > 0.$
- 4. An estimator, *T*, is an *unbiased* estimator of function $\tau(\theta)$ of parameter θ if

$$\mathbb{E}_T[T;\theta] = \tau(\theta)$$

where f_T is the sampling distribution of T. The bias, $b_{\theta}(T)$, and Mean Squared Error, $MSE_{\theta}(T)$, of an estimator T of $\tau(\theta)$ are defined respectively by

$$b_{\theta}(T) = \mathbb{E}_T[T; \theta] - \tau(\theta)$$
 $MSE_{\theta}(T) = \mathbb{E}_T[(T - \tau(\theta))^2; \theta]$

Suppose that $X_1, ..., X_n$ are a random sample from a $Poisson(\lambda)$ distribution. Find the maximum likelihood estimator of λ , and show that this estimator is unbiased. Also, find the maximum likelihood estimator of $\tau(\lambda) = e^{-\lambda} = P_{\theta}[X = 0]$, and find the approximate bias for this estimator using a Taylor expansion.

5. Suppose that $X_1, ..., X_n$ are a random sample from the probability distribution with pdf

$$f_X(x;\lambda,\eta) = \lambda e^{-\lambda(x-\eta)} \quad x > \eta$$

and zero otherwise. Find the maximum likelihood estimators of λ and η .

MATH 557 EXERCISES 2

Page 1 of 2

6. Suppose that $X_1, ..., X_n$ are a random sample from the probability distribution with pdf

$$f_X(x;\theta) = \frac{1}{\theta}e^{-x/\theta}$$
 $x > 0.$

Show that the sample mean \overline{X} is an unbiased estimator of θ . Show also that, if random variable Y_1 is defined as $Y_1 = \min \{X_1, ..., X_n\}$ then random variable $Z = nY_1$ is also unbiased for θ .

- 7. Suppose that $X_1, ..., X_n$ are a random sample from a $Uniform(\theta 1, \theta + 1)$ distribution. Show that the sample mean \overline{X} is an unbiased estimator of θ . Let Y_1 and Y_n be the smallest and largest order statistics derived from $X_1, ..., X_n$. Show also that random variable $M = (Y_1 + Y_n)/2$ is an unbiased estimator of θ .
- 8. Suppose that $X_1, ..., X_n$ are a random sample from a $Gamma(2, \lambda)$ distribution.
 - (i) Find the maximum likelihood estimator of λ .
 - (ii) Find the maximum likelihood estimator, denoted *T* say, of $\tau = 1/\lambda$.
 - (iii) Find $\mathbb{E}_T[T; \lambda]$ and $\mathbb{E}_T[T^2; \lambda]$.
- 9. Consider the location family pdf with standard member the Cauchy distribution

$$f_X(x;\theta) = \frac{1}{\pi} \frac{1}{1 + (x-\theta)^2} \qquad -\infty < x < \infty$$

for location parameter $\theta \in \Theta \equiv \mathbb{R}$.

(a) Derive the *score equation* for θ defined for a random sample X_1, \ldots, X_n from this pdf by

$$\frac{\partial \ell(\mathbf{x}; \theta)}{\partial \theta} = 0$$

where $l(\mathbf{x}; \theta) = \log \mathscr{L}(\mathbf{x}; \theta) = \log f_{\mathbf{X}}(\mathbf{x}; \theta)$

(b) Using a computer package, plot the log-likelihood function $\ell(\mathbf{x}; \theta)$ for a suitable range of θ for the following observed *x* values:

 $7.36\ 5.14\ 3.71\ 3.15\ 6.00\ 6.38\ 1.34\ 6.73$

and hence find the maximum likelihood (ML) estimate.

10. Carry out a simulation study to examine the sampling distribution of the maximum likelihood estimator $\hat{\theta}(\mathbf{X})$ in the Cauchy location family example in the previous problem.

For example, in R:

- Produce N = 5000 simulated data sets of size n = 8, using a specific value of θ , and using the random number generation function reauchy.
- For each simulated data set, use pointwise evaluation of the likelihood (or the function optimize) to evaluate the ML estimate in each case.
- Display using a histogram the distribution of the *N* stored ML estimates.

The sample median is an alternative estimator of θ . Repeat the computations above using this alternative estimator.

MATH 557 EXERCISES 2