MATH 557 - EXERCISES 1

These exercises are not for assessment

- 1. Find sufficient statistics for random samples (that is, iid collections) of size n from the following distributions. Note that the sufficient statistics may be multidimensional, but must have dimension no greater than two.
 - (a) The Beta density with parameters α and β

$$f_X(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \qquad 0 < x < 1$$

and zero otherwise, for $\alpha, \beta > 0$.

(b) The pmf

$$f_X(x;\theta) = \frac{(\log \theta)^x}{\theta x!} \qquad x = 0, 1, 2, \dots$$

and zero otherwise, for $\theta > 1$.

(c) The Uniform density given by

$$f_X(x;\theta) = \frac{1}{\theta} \qquad \theta < x < 2\theta$$

and zero otherwise, for $\theta > 0$.

2. Suppose that $\mathbf{X} = (X_1, \dots, X_n)^\top$ are a random sample from an *Exponential*(λ) distribution,

$$f_X(x;\lambda) = \lambda e^{-\lambda x}$$
 $x > 0$

and zero otherwise, for $\lambda > 0$.

(a) A sufficient statistic $T(\mathbf{X})$ is termed a *minimal sufficient statistic* if, for any other sufficient statistic, $T^*(\mathbf{X})$, $T(\mathbf{x})$ is a function of $T^*(\mathbf{x})$: for $\mathbf{x}, \mathbf{y} \in \mathbb{X}^n$, if $T(\mathbf{X})$ is minimal sufficient then

$$T^*(\mathbf{x}) = T^*(\mathbf{y}) \implies T(\mathbf{x}) = T(\mathbf{y})$$

A necessary and sufficient condition for T to be a minimal sufficient statistic is that for two realizations x and y,

$$T(\mathbf{x}) = T(\mathbf{y}) \qquad \Longleftrightarrow \qquad rac{f_X(\mathbf{x}; heta)}{f_X(\mathbf{y}; heta)} ext{ does not depend on } heta.$$

Using this result, derive a minimal sufficient statistic for λ in the Exponential model.

(b) Suppose now that only the *m* smallest of the X_i s are observed. Derive a sufficient statistic for λ based on this reduced sample of size *m*.

Hint: Construct the joint density of the first m order statistics $X_{(1)}, \ldots, X_{(m)}$ by noting that

$$X_{(m)} = x \quad \iff \quad X_{(r)} > x, \text{ for all } r > m.$$

3. Suppose that $\mathbf{X} = (X_1, \dots, X_n)^{\top}$ are a random sample from a $Poisson(\theta)$ distribution. It can be shown that

$$T(\mathbf{X}) = \sum_{i=1}^{n} X_i$$

is a sufficient statistic for θ . Find the conditional mass function of **X** given that $T(\mathbf{X}) = t$.

MATH 557 EXERCISES 1

Page 1 of 2

- 4. Let $\mathbf{X} = (X_1, \dots, X_n)^{\top}$ be a random vector with joint density in $\mathcal{F}_k = \{f_i(\mathbf{x}) : i = 0, \dots, k\}$, so that \mathcal{F}_k is parameterized by index $i \in \{0, \dots, k\}$. Assume that the densities in \mathcal{F}_k have common support.
 - (a) Show that the statistic

$$T(\mathbf{X}) = \left(\frac{f_1(\mathbf{X})}{f_0(\mathbf{X})}, \dots, \frac{f_k(\mathbf{X})}{f_0(\mathbf{X})}\right)^{\top}$$

is minimal sufficient for *i*.

- (b) Let $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$ be a family of densities with common support, and suppose that
 - $f_i \equiv f_{\theta_i} \in \mathcal{F}, \, \theta_i \text{ distinct, for } i = 0, \dots, k \text{ and}$
 - $T(\mathbf{X})$ as defined in part (a) is sufficient for θ .

Show that $T(\mathbf{X})$ is minimal sufficient for θ .

- (c) Show that 1-1 functions of minimal sufficient statistics are minimal sufficient statistics.
- (d) Use the results from parts (b) and (c) to show that the sample mean \overline{X} is minimal sufficient for β if **X** is a random sample from an Exponential distribution with expectation $\beta > 0$.
- 5. Suppose that X_1, \ldots, X_n are a random sample from a $Multinomial(3, \theta)$ distribution defined by the probabilities

$$\Pr[X_i = j] = \theta_j \qquad j = 1, 2, 3$$

and zero otherwise, where $0 < \theta_1, \theta_2, \theta_3 < 1$, and $\theta_1 + \theta_2 + \theta_3 = 1$.

- (a) Find a (possibly vector-valued) sufficient statistic for θ .
- (b) Find the (joint) pmf of the sufficient statistic.
- (c) Find the form of the maximum likelihood estimator for θ , that is, the vector of values of θ for which the (log-)likelihood is maximized.

MATH 557 EXERCISES 1