Name: ID:

McGill University

Faculty of Science

Final Examination

MATH 556: Mathematical Statistics I

Examiner: Professor J. Nešlehová Date: Thursday, December 18, 2013

Associate Examiner: Professor D.B. Wolfson Time: 9:00 A.M. – 12:00 P.M.

Instructions

- This is a closed book exam.
- The exam comprises one title page, three pages of questions and two pages of formulas.
- Answer all six questions in the examination booklets provided.
- Calculators and translation dictionaries are permitted.
- A formula sheet is provided.

Good Luck!

Problem 1

The Fisher–Snedecor F_{ν_1,ν_2} distribution with parameters $\nu_1 > 0$ and $\nu_2 > 0$ has density

$$f(x) = \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2} x^{\nu_1/2 - 1} \left(1 + \frac{\nu_1 x}{\nu_2}\right)^{-(\nu_1 + \nu_2)/2}$$

whenever x > 0. Suppose that X is a random variable with the F_{ν_1,ν_2} distribution.

- (a) Compute the expectation of X. What can you say about the moment generating function of X? (5 Marks)
- (b) Compute $\operatorname{corr}(X, 1/X)$ and list three drawbacks of Pearson's correlation coefficient. You can use, without proof, that $\operatorname{var}(X) = \{2\nu_2^2(\nu_1 + \nu_2 2)\}/\{\nu_1(\nu_2 2)^2(\nu_2 4)\}$. (4 Marks)
- (c) Prove that the random variable

$$Y = \frac{\nu_1 X}{\nu_2 + \nu_1 X}$$

has a Beta($\nu_1/2, \nu_2/2$) distribution.

(5 Marks)

- (d) Suppose that Y is as in part (c) with $\nu_1 = 2$. Determine a transformation h so that h(Y) is Geometric(1/2) as given on the formula sheet. State all results that you use. (5 Marks)
- (e) Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be two random samples, each from respective univariate distributions and let S_n^2 and T_m^2 , respectively, denote the corresponding sample variances. State all conditions under which S_n^2/T_m^2 has an $F_{n-1,m-1}$ distribution. (3 Marks)

Problem 2

Suppose that the random pair (X,Y) has a bivariate Normal distribution with density given by

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2 + y^2 - 2\rho xy}{2(1-\rho^2)}\right\}$$

for all $x, y \in \mathbb{R}$ and some $\varrho \in (-1, 1)$. Let also $W = X^2$ and $Z = Y^2$.

(a) Show that the joint density of (W, Z) is given, for w, z > 0, by

$$\frac{1}{4\pi\sqrt{(1-\rho^2)wz}} \left\{ 1 + \exp\left(-\frac{2\varrho\sqrt{wz}}{1-\varrho^2}\right) \right\} \exp\left\{-\frac{w+z-2\varrho\sqrt{wz}}{2(1-\varrho^2)}\right\}.$$
 (5 Marks)

- (b) Determine the conditional density of Z given W = w. (5 Marks)
- (c) Determine the joint distribution of (U, V), where

$$U = Z + W, \quad V = \frac{Z}{Z + W}.$$

Under which condition are U and V independent? Which well-known distributions do they have in this case? (5 Marks)

Problem 3

(a) Consider the following family of densities with parameters $\sigma > 0$ and $\mu \in \mathbb{R}$:

$$f(x; \mu, \sigma) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}, \quad x > 0.$$

- (i) Show that the family $\{f(\cdot; \mu, \sigma)\}$ constitutes an exponential family. (2 Marks)
- (ii) Determine the natural parametrization and the natural parameter space. (3 Marks)
- (iii) Compute $E(\ln X)^3$ when X has density $f(\cdot; \mu, \sigma)$. (5 Marks)
- (b) Explain how a new family of densities can be constructed from a given density g by exponential tilting. Can this approach be used when $g(x) = f(x; \mu, \sigma)$ from part (a) with some given values of μ and σ ? If yes, give the tilted family, if not, explain why. (5 Marks)
- (c) Give an example of a family of distributions that is not an exponential family. (3 Marks)

Problem 4

The logarithmic series (LS) distribution is a discrete distribution with parameter $p \in (0,1)$ and probability mass function

$$f(x) = -\frac{1}{\ln(p)} \frac{(1-p)^x}{x}, \quad x \in \{1, 2, 3, \dots\}.$$

- (a) Derive the moment generating function of the LS(p) distribution and compute the mean and variance of $X \sim LS(p)$. (5 Marks)
- (b) Consider the following two-level hierarchical model:

$$N \sim \text{Poisson}(\lambda), \quad \lambda > 0$$

 $S|N = n \sim X_1 + \dots + X_n,$

where X_1, \ldots, X_n are i.i.d. with LS(p) distribution, $p \in (0,1)$. Compute the mean and variance of the marginal (unconditional) distribution of S. (5 Marks)

- (c) Determine the marginal (unconditional) distribution of S. (5 Marks)
- (d) Prove that for any two variables X and Y with finite variances, X and Y E(Y|X) are uncorrelated. (5 Marks)

Problem 5

(a) Suppose that X and Y are random variables such that $E|X|^p < \infty$ and $E|Y|^p < \infty$ for some $p \ge 1$. Using any result shown in class, prove the so-called Minkowski inequality, viz.

$$(E|X + Y|^p)^{1/p} \le (E|X|^p)^{1/p} + (E|Y|^p)^{1/p}.$$

(5 Marks)

(b) Suppose that X and Y are Normal(μ, σ^2) random variables that are not necessarily independent or jointly Normal. Show that for any x > 0,

$$\Pr(X + Y \ge x) \le \frac{4(\sigma^2 + \mu^2)}{x^2}.$$

(5 Marks)

Problem 6

Let X_1, \ldots, X_n be a random sample of size $n \geq 2$ from the uniform distribution on the interval $(0, \theta)$. When θ is unknown, it can be estimated by the "maximum likelihood estimator"

$$\hat{\theta}_n = \max(X_1, \dots, X_n).$$

- (a) Show that $\hat{\theta}_n$ converges in probability to θ as $n \to \infty$; estimators that have this property are said to be "consistent." (5 Marks)
- (b) Show that as $n \to \infty$, $n(\theta \hat{\theta}_n)$ converges in distribution to an exponential random variable with mean θ . (5 Marks)
- (c) A differentiable function g is said to be a "variance stabilizing transformation" whenever the limiting variance of $g(\hat{\theta}_n)$ does not depend on θ . Identify this transformation and compute the limiting distribution of $n\{g(\theta) g(\hat{\theta}_n)\}$. (5 Marks)

	1			1		
	MGF M_X	$1 - \theta + \theta e^t$	$n\theta(1-\theta) \qquad (1-\theta+\theta e^t)^n$	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$	$\left(\frac{p}{1-e^t(1-p)}\right)^r$
DISCRETE DISTRIBUTIONS	$\operatorname{var}_{f_{X}}[X]$	$\theta(1-\theta)$	$n\theta(1-\theta)$	~	$\frac{(1-\theta)}{\theta^2}$	$\frac{r(1-p)}{p^2}$
	$\mathrm{E}_{f_X}\left[X ight]$	θ	θu	~	θ	$\frac{r(1-p)}{p}$
	CDF_{K}				$1-(1- heta)^x$	
	$\begin{array}{c} \text{MASS} \\ \text{FUNCTION} \\ f_X \end{array}$	$\theta^x (1-\theta)^{1-x}$	$\binom{n}{x} heta^x (1- heta)^{n-x}$	$\frac{e^{-\lambda \lambda x}}{x!}$	$(1- heta)^{x-1} heta$	$\binom{r+x-1}{x}p^r(1-p)^x$
	PARAMETERS	$ heta \in (0,1)$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	λ ∈隔+	$\theta \in (0,1)$	$r \in \mathbb{Z}^+, p \in (0,1)$
	RANGE	{0,1}	$\{0,1,,n\}$	{0,1,2,}	{1,2,}	$\{0,1,2,\}$
		Bernoulli(heta)	$Binomial(n, \theta)$	$Poisson(\lambda)$	Geometric(heta)	NegBinomial(r,p)

For ${\bf CONTINUOUS}$ distributions (see over), define the ${\bf GAMMA\ FUNCTION}$

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \quad \alpha > 0$$

and the LOCATION/SCALE transformation $Y = \mu + \sigma X$ gives

$$f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma}$$
 $F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right)$ $M_Y(t) = e^{\mu t}M_X(\sigma t)$ $E_{f_Y}\left[Y\right] = \mu + \sigma E_{f_X}\left[X\right]$

$$\operatorname{var}_{f_Y}[Y] = \sigma^2 \operatorname{var}_{f_X}[X]$$

$$X$$
] $\operatorname{var}_{f_Y}[Y] = \sigma^2 \operatorname{var}_{f_Y}[Y]$

	MGF	M_X	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$	$\left(\frac{\lambda}{\lambda-t}\right)$	$\left(rac{eta}{eta-t} ight)^lpha$	$e\{\mu t + \sigma^2 t^2/2\}$	$(1-2t)^{-\nu/2}$		
CONTINUOUS DISTRIBUTIONS	$\operatorname{var}_{f_X}[X]$		$\frac{(\beta - \alpha)^2}{12}$	$\frac{1}{\lambda^2}$	$\frac{lpha}{eta_2^2}$	σ^2	2ν	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha > 2$)	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
	$\mathbb{E}_{f_X}[X]$		$\frac{(\alpha+\beta)}{2}$	<	$\beta \mid \alpha$	η	λ	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha}{\alpha + \beta}$
	CDF	F_X	$\frac{x-\alpha}{\beta-\alpha}$	$1 - e^{-\lambda x}$				$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	
	PDF	f_X	$\frac{1}{eta-lpha}$	$\lambda e^{-\lambda x}$	$\frac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\frac{1}{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu/2}} x^{(\nu/2)-1} e^{-x/2}$	$\frac{\alpha \theta^{\alpha}}{(\theta + x)^{\alpha + 1}}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$
	PARAMS.		$\alpha < \beta \in \mathbb{R}$	λ ∈ ℝ+	$\alpha, \beta \in \mathbb{R}^+$	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$Z \in \mathbb{Z}$	$\theta, \alpha \in \mathbb{R}^+$	$\alpha, \beta \in \mathbb{R}^+$
		×	(α, β)	+	+ ≅	K	+	+ 2	(0,1)
			$Uniform(\alpha,\beta)$ (standard: $\alpha=0,\beta=1$)	Exponential(λ) (standard: $\lambda = 1$)	$Gamma(\alpha, \beta)$ (standard: $\beta = 1$)	$Normal(\mu, \sigma^2)$ (standard: $\mu = 0, \sigma = 1$)	χ^2_{ν}	Pareto(heta, lpha)	Beta(lpha,eta)