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1. (a) Suppose that X; and X, are independent random variables with Gamma (a1,1) and
Gamma (ag, 1) distributions respectively, for parameters o, ag > 0. Let

1 1

Yi = — Yy — —
1 X 2 X,

(i) Find the pdf of Yj.
4 MARKS

(i) Find the expectation and variance of Ys. State explicitly conditions for the expectation and
variance to exist.

6 MARKS
The distribution of Y7 and Y5 is termed the inverse-Gamma distribution.
(b) Find the joint pdf of random variables
Z1 = X1+ Xo Zy=Y1+Ys
and show that marginally Z; has a Gamma distribution.
5 MARKS
Marginally, does Z5 have an inverse-Gamma distribution ? Justify your answer.
5 MARKS
2. (a) For a scalar random variable X, the cumulant generating function (cgf), Kx, is defined in
terms of the moment generating function, Mx, by
Kx(t) =log Mx(t) t € (=h,h), some h >0
Find expressions for the expectation and variance of X in terms of Kx.
6 MARKS

(b) For random variable X, consider the one parameter Exponential Family distribution,

fx(z|n) = h(z)e(n) exp {nz}

Find the form of Kx(t), and an expression for Ef, [X] in terms of one or more of the functions
and parameters that appear in the pdf.

8 MARKS

(c) Show how the cumulant generating function plays a role in the exponential tilting construction
of the Exponential Family of distributions. lllustrate your description with specific reference to
the Normal(6,1) distribution.

6 MARKS
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3. (a) Consider scalar random variable X.

(i) Define the characteristic function of X, Cx(t).

2 MARKS
(i) Show that [Cx ()| < 1 for all t € R.

2 MARKS

(iii) Describe how to diagnose whether a characteristic function corresponds to a discrete or a
continuous distribution.

4 MARKS
(iv) State the inversion formula for a characteristic function known to belong to a discrete
distribution.
2 MARKS
(b) Find Cx(t) if X is a continuous random variable with
fx(z) =exp{—z —e "} r € R.
5 MARKS
(c) Find fx(x) if Cx(t) is given by
Cx(t)=1—|t -1l<t<1
and zero otherwise.
5 MARKS
4. (a) State and prove Jensen's Inequality in the univariate case. Define the Kullback-Leibler

divergence between two pdfs fi and fo each with support R, K(f1, f2), and prove that

[K(flu f2) 2 O
10 MARKS
(b) Suppose that X ~ Normal(0,0?). Find a function of o, I(c), such that
Px[-2< X <2]> (o)
which does not involve the standard normal cdf. Justify your answer.
4 MARKS
(c) If X ~ Poisson(u), show that
Px[ X > 2u] < ee™3)
Justify your answer.
6 MARKS
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5. (a) A finite mixture model is a specific form of hierarchical model whose density, fy, takes the form

L
fr(ylm,0,L) = filyl0n)m.
=1

Explain the components of this specification, that is, the functions fi,..., fr, the parameters
01,...,01, and the parameters m1,..., 7.

4 MARKS
Find the form of the moment generating function, My, corresponding to fy.

4 MARKS

(b) Suppose that Xi,...,X,, is a random sample from a Normal(u,1) distribution. Find the
distribution of the statistic

V= i(xi - X)?
=1

You may quote without proof results concerning the sampling distribution of statistics derived
from a normal random sample.
8 MARKS

(c) Suppose that Xi,..., X, is a random sample from an Exzponential(\) distribution. Find the

distribution of the statistic

Y1 = min{Xy,..., X, }
You may quote without proof results concerning the sampling distribution of order statistics
derived from a random sample.

4 MARKS
6. (a) Suppose {X,,} are an independent sequence of random variables with cdf
1
F = R
x () = x €

Let Y,, = max{Xy,...,X,}. Show that for large n and y > 0,

P[Y, > y] =1 —exp{—ne Y}.
6 MARKS

(b) Suppose {X,,} are an independent sequence of Poisson()) random variables. Let
1 n
M, =— X;

Show that M, L2, Xasn —> oco. If random variable T,, is defined by T,, = e~ M=, find an
approximation to the distribution of T,, for large n.

8 MARKS
(c) Suppose that X ~ Gamma(a,1). By considering the variable
X —«
y—
« \/a
or otherwise, construct an approximation to the distribution of Z, for large «.
6 MARKS
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