MATH 556: MATHEMATICAL STATISTICS I
GENERAL RESULTS FOR THE SAMPLE MEAN AND VARIANCE STATISTICS

Suppose that X1, ..., X, is a random sample from a distribution, with finite expectation x and variance
o2. Consider the sample mean and sample variance statistics X, and s2 and denote

_ 1 & < 12
Tl_Xn_n2Xi TQ:SQ: Z(Xz_Xn) .
Then

(@ Eqn]=p

o2
(b) Varp, [T1] = o

(©  Ep[lh] =0

(a) and (b) follow from elementary properties of expectations and variances for independent random

variables. For (c), note that
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where line (1) follows from the fact that for any random variable X

2
L ety - (D) =)

o = Ex[X?] - Ex[X]* = Ex[X?] - p?
and the result of parts (a) and (b).

Normal case: For the same calculations in the Normal case, recall the fundamental transformation
results for Normal random variables that can be established easily using mgfs,
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(iii) If Y7 ~ x2 and Y3 ~ x?2, are independent random variables, then
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Suppose that X1, ..., X, is a random sample from a normal distribution, say X; ~ Normal(u, a?).
Define the sample mean and sample variance statistics X,, and s? as the random variables

n
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Then
(@) X, ~ Normal(p,o?/n)
(b) X, is independent of {X; — X,,,i =1,...,n}, and X,, and s* are independent random variables

(c) The random variable
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has a chi-squared distribution with n — 1 degrees of freedom.

For (a) the proof straightforward using mgfs. For (b) the result follows by considering the multivariate
transformation theorem: the joint pdf Xi, ..., X, is the normal density
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Thus Y = AX, or equivalently X = A~'Y, where A is the n x n matrix with (4, j)th element
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that is, we have a linear transformation. Note that, as in an earlier result, we have
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where 7, = 1 3" 2, is the observed sample mean. Thus the joint pdf of X7, ..., X,, takes the form
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Now
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The Jacobian of the transformation is n, so the joint density of Y7, ..., Y}, is given by the multivariate
transformation theorem as
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and therefoE Y) is independent of Yy, ..., Y. Hence X, is indepe&dent of the random variables
{Y; =X, — X,,i=2,...,n}. Finally, X, is also independent of X; — X, as
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and of s?, which is a function only of {X; — X,,, i = 1,...,n}. As X, is independent of these variables,
X, and s? are also independent.

For (c) the random variables that appear as sums of squares terms in the joint pdf are

or Vi = Vo + V3, say. Now, X; ~ Normal(u, 02), so therefore by elementary transformation results
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as the X;s are independent, and, using mgfs, the sum of n independent Gamma(1/2,1/2) variables
has a Gamma(n/2,1/2) distribution. Similarly, as X,, ~ Normal(u,c?/n), V3 ~ x} By part (b), V2 and
V3 are independent, and so the mgfs of V7, V5 and V3 are related by
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As Vi and V3 are Gamma random variables, My, and My, are given by

My, (t) = (1/12/;)”/2 and My, (t) = (1/12/;)1/2.

So therefore

My, (t) = (1/12/3 t)("—lw

which is also the mgf of a Gamma random variable, and hence
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and the result follows.

Alternative inductive proof of (c): Let X, and s?, k = 1,2, ..., n denote the sample mean and sample
variance random variables derived from the first k variables. Now, for k& > 2, it can be shown after
some manipulation that
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say, where Z ~ Normal(0,1). Thus s3 ~ x3. Now for the inductive hypothesis, presume that
(k —1)s ~ Xi-1

so that, using the identity in (2),
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The two terms on the right hand side are independent (using the result in (b)); the first term is x3_,
distributed, the second term is x7 distributed, so ks7_, is x}, distributed and the inductive argument is
completed.



