MATH 556: MATHEMATICAL STATISTICS I

GENERAL RESULTS FOR THE SAMPLE MEAN AND VARIANCE STATISTICS

Suppose that $X_1, ..., X_n$ is a random sample from a distribution, with finite expectation μ and variance σ^2 . Consider the sample mean and sample variance statistics \overline{X}_n and s^2 and denote

$$T_1 = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 $T_2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

Then

(a) $\mathbb{E}_{T_1}[T_1] = \mu$

(b)
$$Var_{T_1}[T_1] = \frac{\sigma^2}{n}$$

(c)
$$\mathbb{E}_{T_2}[T_2] = \sigma^2$$

(a) and (b) follow from elementary properties of expectations and variances for independent random variables. For (c), note that

$$\sum_{i=1}^{n} (X_i - \overline{X}_n)^2 = \sum_{i=1}^{n} X_i^2 - n \overline{X}_n^2.$$

Hence

$$\mathbb{E}_{T_2}[T_2] = \frac{1}{n-1} \mathbb{E}_{\mathbf{X}} \left[\sum_{i=1}^n X_i^2 - n \overline{X}_n^2 \right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^n \mathbb{E}_{X_i}[X_i^2] - n \mathbb{E}_{X} \left[\overline{X}_n^2 \right] \right] = \frac{1}{n-1} \left[n(\sigma^2 + \mu^2) - n \left(\frac{\sigma^2}{n} + \mu^2 \right) \right] = \sigma^2 \quad (1)$$

where line (1) follows from the fact that for any random variable *X*

$$\sigma^2 = \mathbb{E}_X[X^2] - \mathbb{E}_X[X]^2 = \mathbb{E}_X[X^2] - \mu^2$$

and the result of parts (a) and (b).

Normal case: For the same calculations in the Normal case, recall the fundamental transformation results for Normal random variables that can be established easily using mgfs,

(i) If $X \sim Normal(0, 1)$, then

$$X^2 \sim \chi_1^2 \equiv Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$

(ii) If $X_1, \ldots, X_r \sim Normal(0, 1)$ are independent random variables, then

$$Y = \sum_{i=1}^{r} X_i^2 \sim \chi_r^2 \equiv Gamma\left(\frac{r}{2}, \frac{1}{2}\right)$$

(iii) If $Y_1 \sim \chi^2_{r_1}$ and $Y_2 \sim \chi^2_{r_2}$ are independent random variables, then

$$Y = Y_1 + Y_2 \sim \chi^2_{r_1 + r_2}$$

1

Suppose that $X_1,...,X_n$ is a random sample from a normal distribution, say $X_i \sim Normal(\mu, \sigma^2)$. Define the sample mean and sample variance statistics \overline{X}_n and s^2 as the random variables

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

Then

- (a) $\overline{X}_n \sim Normal(\mu, \sigma^2/n)$
- (b) \overline{X}_n is independent of $\{X_i \overline{X}_n, i = 1, ..., n\}$, and \overline{X}_n and s^2 are independent random variables
- (c) The random variable

$$\frac{(n-1)s^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

has a **chi-squared distribution** with n-1 degrees of freedom.

For (a) the proof straightforward using mgfs. For (b) the result follows by considering the multivariate transformation theorem: the joint pdf $X_1, ..., X_n$ is the normal density

$$f_{X_1,...,X_n}(x_1,...,x_n) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right\}$$

Consider the multivariate transformation to $Y_1, ..., Y_n$ where

$$\begin{array}{ll} Y_1 &= \overline{X}_n \\ Y_i &= X_i - \overline{X}_n, \ i = 2, ..., n \end{array} \right\} \Longleftrightarrow \left\{ \begin{array}{ll} X_1 &= Y_1 - \sum\limits_{i=2}^n Y_i \\ \\ X_i &= Y_i + Y_1, \ i = 2, ..., n \end{array} \right.$$

Thus $\mathbf{Y} = \mathbf{A}\mathbf{X}$, or equivalently $\mathbf{X} = \mathbf{A}^{-1}\mathbf{Y}$, where \mathbf{A} is the $n \times n$ matrix with (i, j)th element

$$[\mathbf{A}]_{ij} = \begin{cases} \frac{1}{n} & i = 1, j = 1, 2, \dots, n \\ 1 - \frac{1}{n} & i = j = 2, 3, \dots, n \\ -\frac{1}{n} & \text{otherwise} \end{cases}$$

that is, we have a linear transformation. Note that, as in an earlier result, we have

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} (x_i - \overline{x}_n + \overline{x}_n - \mu)^2 = \sum_{i=1}^{n} \left[(x_i - \overline{x}_n)^2 + 2(x_i - \overline{x}_n)(\overline{x}_n - \mu) + (\overline{x}_n - \mu)^2 \right]$$
$$= \sum_{i=1}^{n} (x_i - \overline{x}_n)^2 + n(\overline{x}_n - \mu)^2$$

where $\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ is the observed sample mean. Thus the joint pdf of $X_1, ..., X_n$ takes the form

$$f_{X_1,..,X_n}(x_1,..,x_n) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i - \overline{x}_n)^2 + n(\overline{x}_n - \mu)^2\right]\right\}.$$

Now

$$x_1 - \overline{x}_n = -\sum_{i=2}^n (x_i - \overline{x}_n) = -\sum_{i=2}^n y_i$$

and so

$$\sum_{i=1}^{n} (x_i - \overline{x}_n)^2 = (x_1 - \overline{x})^2 + \sum_{i=2}^{n} (x_i - \overline{x}_n)^2 = \left(-\sum_{i=2}^{n} y_i\right)^2 + \sum_{i=2}^{n} y_i^2$$

The Jacobian of the transformation is n, so the joint density of $Y_1, ..., Y_n$ is given by the multivariate transformation theorem as

$$f_{Y_1,..,Y_n}(y_1,..,y_n) = n \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2} \left[\left(-\sum_{i=2}^n y_i\right)^2 + \sum_{i=2}^n y_i^2 + n (y_1 - \mu)^2\right]\right\}$$

$$= n \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2} \left[\left(-\sum_{i=2}^n y_i\right)^2 + \sum_{i=2}^n y_i^2\right]\right\} \times \exp\left\{-\frac{n}{2\sigma^2} (y_1 - \mu)^2\right\}$$

$$= f_{Y_2,...,Y_n}(y_2,..,y_n) f_{Y_1}(y_1)$$

and therefore Y_1 is independent of $Y_2,...,Y_n$. Hence \overline{X}_n is **independent** of the random variables $\{Y_i=X_i-\overline{X}_n, i=2,...,n\}$. Finally, \overline{X}_n is also independent of $X_1-\overline{X}_n$ as

$$X_1 - \overline{X}_n = -\sum_{i=2}^n \left(X_i - \overline{X}_n \right)$$

and of s^2 , which is a function only of $\{X_i - \overline{X}_n, i = 1, ..., n\}$. As \overline{X}_n is independent of these variables, \overline{X}_n and s^2 are also independent.

For (c) the random variables that appear as sums of squares terms in the joint pdf are

$$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{\sigma^2} + \frac{n(\overline{X}_n - \mu)^2}{\sigma^2}$$

or $V_1 = V_2 + V_3$, say. Now, $X_i \sim Normal(\mu, \sigma^2)$, so therefore by elementary transformation results

$$\frac{(X_i - \mu)^2}{\sigma^2} \sim Normal(0, 1) \quad \Longrightarrow \quad \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi_1^2 \equiv Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$

and hence

$$V_1 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} \sim \chi_n^2$$

as the X_i s are independent, and, using mgfs, the sum of n independent Gamma(1/2, 1/2) variables has a Gamma(n/2, 1/2) distribution. Similarly, as $\overline{X}_n \sim Normal(\mu, \sigma^2/n)$, $V_3 \sim \chi_1^2$ By part (b), V_2 and V_3 are independent, and so the mgfs of V_1 , V_2 and V_3 are related by

$$M_{V_1}(t) = M_{V_2}(t)M_{V_3}(t) \Longrightarrow M_{V_2}(t) = \frac{M_{V_1}(t)}{M_{V_3}(t)}$$

As V_1 and V_3 are Gamma random variables, M_{V_1} and M_{V_3} are given by

$$M_{V_1}(t) = \left(rac{1/2}{1/2-t}
ight)^{n/2} \quad ext{and} \quad M_{V_3}(t) = \left(rac{1/2}{1/2-t}
ight)^{1/2}.$$

So therefore

$$M_{V_2}(t) = \left(\frac{1/2}{1/2 - t}\right)^{(n-1)/2}$$

which is also the mgf of a Gamma random variable, and hence

$$V_2 = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

and the result follows.

Alternative inductive proof of (c): Let \overline{X}_k and s_k^2 , $k=1,2,\ldots,n$ denote the sample mean and sample variance random variables derived from the first k variables. Now, for $k\geq 2$, it can be shown after some manipulation that

$$(k-1)s_k^2 = (k-2)s_{k-1}^2 + \left(\frac{k-1}{k}\right)(X_k - \overline{X}_{k-1})^2$$
 (2)

For k=2

$$(2-1)s_2^2 = \frac{1}{2}(X_2 - X_1)^2 = \left(\frac{X_2 - X_1}{\sqrt{2}}\right)^2 = Z^2$$

say, where $Z \sim Normal(0,1)$. Thus $s_2^2 \sim \chi_1^2$. Now for the inductive hypothesis, presume that

$$(k-1)s_k^2 \sim \chi_{k-1}^2$$

so that, using the identity in (2),

$$ks_{k+1}^2 = (k-1)s_k^2 + \left(\frac{k}{k+1}\right)(X_{k+1} - \overline{X}_k)^2$$

The two terms on the right hand side are independent (using the result in (b)); the first term is χ^2_{k-1} distributed, the second term is χ^2_1 distributed, so ks^2_{k+1} is χ^2_k distributed and the inductive argument is completed.