MATH 556: MATHEMATICAL STATISTICS I

FAMILIES OF DISTRIBUTIONS: RESULTS AND EXAMPLES

1. **Parametric Family:** A parametric family, \mathcal{P} , of distributions is a collection of probability distributions indexed by an m-dimensional parameter, θ , $\mathcal{P} \equiv \{P_X(.;\theta): \theta \in \Theta \subseteq \mathbb{R}^m\}$, which may be written using the cdfs $F_X(.;\theta)$ for $\theta \in \Theta$. The family is *identifiable* if, for $\theta_1, \theta_2 \in \Theta$

$$F_X(x;\theta_1) = F_X(x;\theta_2)$$
 for all $x \iff \theta_1 = \theta_2$.

(a) Suppose $X \sim F_X(x; \theta_0)$ for $\theta_0 \in \Theta$. Suppose $\theta_1 \in \Theta$ and consider the *likelihood ratio*

$$R(X; \theta_0, \theta_1) = \frac{f_X(X; \theta_1)}{f_X(X; \theta_0)} = \frac{dF_X(X; \theta_1)}{dF_X(X; \theta_0)}$$

say. Then

$$\mathbb{E}_X[R(X;\theta_0,\theta_1)] = \int \frac{f_X(x;\theta_1)}{f_X(x;\theta_0)} dF_X(x;\theta_0) = \int \frac{dF_X(x;\theta_1)}{dF_X(x;\theta_0)} dF_X(x;\theta_0) = \int dF_X(x;\theta_1) = 1.$$

(b) **Score function:** Suppose that the pmf/pdf $f_X(x;\theta)$ is differentiable with respect to θ . The *score function*, $\mathbf{S}(x;\theta)$, is a $m \times 1$ vector with jth element equal to

$$S_j(x;\theta) = \frac{\partial}{\partial \theta_j} \log f_X(x;\theta).$$

The quantity $\mathbf{S}(X;\theta) = (S_1(X;\theta), \dots, S_m(X;\theta))^{\top}$ is an m-dimensional $random\ variable$. Under certain regularity conditions

$$\mathbb{E}_X[\mathbf{S}(X;\theta)] = \mathbf{0} \qquad (m \times 1).$$

Proof: Note first that by rule for differentiating a 'function of a function' we have that

$$\frac{\partial \log f_X(x;\theta)}{\partial \theta} = \frac{\partial f_X(x;\theta)}{\partial \theta} \frac{1}{f_X(x;\theta)} \tag{m \times 1}$$

Then, provided the differentiation wrt θ and the integration wrt x can be exchanged,

$$\mathbb{E}_{X}[\mathbf{S}(X;\theta)] = \int \mathbf{S}(x;\theta) f_{X}(x;\theta) dx = \int \left\{ \frac{\partial \log f_{X}(x;\theta)}{\partial \theta} \right\} f_{X}(x;\theta) dx$$
$$= \int \frac{\partial f_{X}(x;\theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \left\{ \int f_{X}(x;\theta) dx \right\} = \mathbf{0} \quad (m \times 1)$$

(c) **Fisher Information:** The *Fisher Information*, $\mathcal{I}(\theta)$, is an $m \times m$ matrix function of θ defined as the variance-covariance matrix of the score random variable **S**, that is

$$\mathcal{I}(\theta) = \mathrm{Var}_X[\mathbf{S}(X;\theta)] = \mathbb{E}_X[\mathbf{S}(X;\theta)\mathbf{S}(X;\theta)^\top] = \left[\mathbb{E}_X[S_j(X;\theta)S_k(X;\theta)]\right]_{jk}$$

Under certain regularity conditions, if the pmf/pdf is twice partially differentiable with respect to the elements of θ , then if where $\Psi(X;\theta)$ is the $m \times m$ matrix of second partial derivatives with (j,k)th element

$$\mathcal{I}(\theta) = -\mathbb{E}_X[\mathbf{\Psi}(X;\theta)] = -\left[\mathbb{E}_X\left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f_X(X;\theta)\right]\right]_{ik}$$

Proof: From (b), under regularity conditions

$$\int \left\{ \frac{\partial \log f_X(x;\theta)}{\partial \theta} \right\} f_X(x;\theta) \, dx = \mathbf{0} \qquad (m \times 1)$$

Differentiating again wrt θ^{\top} (i.e. differentiate wrt θ and take the transpose), we have

$$\int \left\{ \frac{\partial^2 \log f_X(x;\theta)}{\partial \theta \partial \theta^{\top}} f_X(x;\theta) + \frac{\partial \log f_X(x;\theta)}{\partial \theta} \frac{\partial f_X(x;\theta)}{\partial \theta^{\top}} \right\} dx = \mathbf{0} \qquad (m \times m)$$

that is, we have the equality of the two $(m \times m)$ matrices

$$-\int \frac{\partial^2 \log f_X(x;\theta)}{\partial \theta \partial \theta^{\top}} f_X(x;\theta) dx = \int \frac{\partial \log f_X(x;\theta)}{\partial \theta} \frac{\partial f_X(x;\theta)}{\partial \theta^{\top}} dx.$$
 (2)

The left-hand side of (2) is $-\mathbb{E}_X[\Psi(X;\theta)]$. For the right-hand side of (2), using (1), we have

$$\int \frac{\partial \log f_X(x;\theta)}{\partial \theta} \frac{\partial \log f_X(x;\theta)}{\partial \theta^{\top}} f_X(x;\theta) dx = \mathbb{E}_X[\mathbf{S}(X;\theta)\mathbf{S}(X;\theta)^{\top}]$$

and we can conclude that

$$-\mathbb{E}_X[\mathbf{\Psi}(X;\theta)] = \mathbb{E}_X[\mathbf{S}(X;\theta)\mathbf{S}(X;\theta)^\top].$$

Example: Binomial (n, θ) : $f_X(x; \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}$ for $x \in \{0, 1, \dots, n\}$, so that

$$S(x;\theta) = \frac{d}{d\theta} \log f_X(x;\theta) = \frac{x}{\theta} - \frac{n-x}{1-\theta} = \frac{x-n\theta}{\theta(1-\theta)}.$$

Hence

$$\mathbb{E}_X[S(X;\theta)] = \mathbb{E}_X\left[\frac{X - n\theta}{\theta(1 - \theta)}\right] = \frac{\mathbb{E}_X[X] - n\theta}{\theta(1 - \theta)} = 0$$

as $X \sim Binomial(n, \theta)$ yields $\mathbb{E}_X[X] = n\theta$. For the second derivative

$$\frac{d^2}{d\theta^2}\log f_X(x;\theta) = -\frac{x}{\theta^2} - \frac{n-x}{(1-\theta)^2}$$

so that

$$\mathcal{I}(\theta) = -\mathbb{E}_X \left[\frac{d^2}{d\theta^2} \log f_X(X; \theta) \right] = \frac{\mathbb{E}_X[X]}{\theta^2} + \frac{n - \mathbb{E}_X[X]}{(1 - \theta)^2}$$

and as $\mathbb{E}_X[X] = n\theta$, we have

$$\mathcal{I}(\theta) = \frac{n\theta}{\theta^2} + \frac{n - n\theta}{(1 - \theta)^2} = \frac{n}{\theta(1 - \theta)}$$

Example: $Poisson(\lambda)$: $f_X(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$, for $x \in \{0,1,\ldots\}$, so that

$$S(x; \lambda) = \frac{d}{d\lambda} \log f_X(x; \lambda) = \frac{x}{\lambda} - 1$$

Hence

$$\mathbb{E}_X[S(X;\lambda)] = \mathbb{E}_X\left[\frac{X}{\lambda} - 1\right] = \frac{\mathbb{E}_X[X]}{\lambda} - 1 = 0$$

as $X \sim Poisson(\lambda)$ yields $\mathbb{E}_X[X] = \lambda$. For the second derivative

$$\frac{d^2}{d\lambda^2}\log f_X(x;\lambda) = -\frac{x}{\lambda^2}$$

so that

$$\mathcal{I}(\lambda) = -\mathbb{E}_X \left[\frac{d^2}{d\lambda^2} \log f_X(X; \lambda) \right] = \frac{\mathbb{E}_X[X]}{\lambda^2} = \frac{1}{\lambda}.$$

2. **Location-Scale Family:** Suppose that $f_0(x)$ is a pdf. If μ and $\sigma > 0$ are constants then

$$f_X(x; \mu, \sigma) = \frac{1}{\sigma} f_0((x - \mu)/\sigma)$$

is also a pdf, and a member of a *location-scale family* based on f_0 .

- if $\sigma = 1$ we have a *location* family: $f_X(x; \mu) = f_0(x \mu)$
- if $\mu = 0$ we have a *scale* family: $f_X(x; \sigma) = f_0(x/\sigma)/\sigma$

Example: Normal distribution family

$$f_0(x) = \left(\frac{1}{2\pi}\right)^{1/2} \exp\left\{-\frac{1}{2}x^2\right\}$$

$$f_X(x;\mu,\sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Example: Exponential distribution family

$$f_0(x) = e^{-x} x > 0$$

$$f_X(x; \mu, \sigma) = \frac{1}{\sigma} e^{-(x-\mu)/\sigma} x > \mu$$

Note that X is a random variable with pdf $f_X(x) = f_X(x; \mu, \sigma)$ (the location-scale family member) **if and only if** there exists another random variable Z with $f_Z(z) = f_0(z)$ (the standard member) such that $X = \sigma Z + \mu$ that is, if X is a linear transformation of a standard random variable Z.

3. **Exponential Families:** A family of pdfs/pmfs is an *Exponential Family* if it can be expressed

$$f_X(x;\theta) = h(x) \exp\left\{ \sum_{j=1}^m c_j(\theta) T_j(x) - A(\theta) \right\} = h(x) \exp\left\{ c(\theta)^\top \mathbf{T}(x) - A(\theta) \right\}$$

for all $x \in \mathbb{R}$, where $\theta \in \Theta$ is a l-dimensional parameter vector (initially we take l = m).

- $h(x) \ge 0$ is a function that does not depend on θ
- $A(\theta)$ is a function that does not depend on x
- $\mathbf{T}(x) = (T_1(x), \dots, T_m(x))^{\mathsf{T}}$ is a vector of real-valued functions that do not depend on θ .
- $c(\theta) = (c_1(\theta), \dots, c_m(\theta))^{\top}$ is a vector of real-valued functions that do not depend on x.
- The support of $f_X(x;\theta)$ does not depend on θ .
- The family is termed *natural* if m = 1 and $T_1(x) = x$.

Example : $Binomial(n, \theta)$ for $0 < \theta < 1$

For $x \in \{0, 1, \dots, n\} \equiv \mathbb{X}$,

$$f(x;\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x} = \binom{n}{x} (1-\theta)^n \left(\frac{\theta}{1-\theta}\right)^x = \binom{n}{x} \exp\left\{\log\left(\frac{\theta}{1-\theta}\right)x - n\log(1-\theta)\right\}$$

- m = 1
- $h(x) = \mathbb{1}_{\mathbb{X}}(x) \binom{n}{x}$.
- $A(\theta) = n \log(1 \theta)$
- $T_1(x) = x$
- $c_1(\theta) = \log(\theta/(1-\theta)) = \log \theta \log(1-\theta)$

Example : $Normal(\mu, \sigma^2)$

For $x \in \mathbb{R}$,

$$f_X(x;\mu,\sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\} = \left(\frac{1}{2\pi}\right)^{1/2} \exp\left\{-\frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2} - \frac{1}{2}\log\sigma^2 - \frac{\mu^2}{2\sigma^2}\right\}$$

- $m = 2, \theta = (\mu, \sigma^2)^{\top}$
- $h(x) = 1/\sqrt{2\pi}$
- $A(\theta) = A(\mu, \sigma^2) = (\log \sigma^2 + \mu^2 / \sigma^2)/2$
- $T_1(x) = -x^2/2$, $T_2(x) = x$
- $c_1(\theta) = 1/\sigma^2$, $c_2(\theta) = \mu/\sigma^2$

Example: Suppose, for $\theta > 0$

$$f_X(x;\theta) = \mathbb{1}_{(\theta,\infty)} \frac{1}{\theta} \exp\left\{1 - \frac{x}{\theta}\right\}$$

As the support of $f_X(x;\theta)$ depends on θ so this is **not** an Exponential Family distribution.

(a) **Parameterization:** We can *reparameterize* from θ to $\eta = (\eta_1, \dots, \eta_m)^{\top}$ by setting $\eta_j = c_j(\theta)$ for each j, and write

$$f_X(x;\eta) = h(x) \exp\left\{ \sum_{j=1}^m \eta_j T_j(x) - K(\eta) \right\} = h(x) \exp\left\{ \eta^\top \mathbf{T}(x) - K(\eta) \right\}.$$

 η is termed the *natural* or *canonical* parameter and $K(\eta) = A(c^{-1}(\eta))$.

(b) **Parameter space:** Let \mathcal{H} be the region of \mathbb{R}^m defined by

$$\mathcal{H} \equiv \left\{ \eta : \int_{-\infty}^{\infty} h(x) \exp\left\{ \eta^{\top} \mathbf{T}(x) \right\} dx < \infty \right\}$$

 \mathcal{H} is termed the *natural parameter space*. For $\eta \in \mathcal{H}$, we must have

$$\exp\{K(\eta)\} = \int_{-\infty}^{\infty} h(x) \exp\left\{\eta^{\top} \mathbf{T}(x)\right\} dx$$

It can be shown that \mathcal{H} is a *convex* set, that is, for $0 \le \lambda \le 1$,

$$\eta_1, \eta_2 \in \mathcal{H} \implies \lambda \eta_1 + (1 - \lambda) \eta_2 \in \mathcal{H}.$$

Note that

$$\mathcal{H}_{\Theta} = \left\{ c(\theta) = (c_1(\theta), \dots, c_m(\theta))^{\top} : \theta \in \Theta \right\} \subseteq \mathcal{H}.$$

 \mathcal{H}_{Θ} can be considered the natural parameter space induced by Θ

Example : $Binomial(n, \theta)$

$$\eta = \log\left(\frac{\theta}{1-\theta}\right) \qquad \Longleftrightarrow \qquad \theta = \frac{e^{\eta}}{1+e^{\eta}}$$

so that

$$f_X(x;\eta) = \left\{ \binom{n}{x} \mathbb{1}_{\{0,1,\dots,n\}}(x) \right\} \exp\{\eta x - n \log(1 + e^{\eta})\}.$$

Natural parameter space:

$$\int_{-\infty}^{\infty} h(x) \exp\left\{\eta^{\top} \mathbf{T}(x)\right\} dx = \sum_{x=0}^{n} \binom{n}{x} \exp\left\{\eta x\right\} < \infty \quad \forall \, \eta \qquad \therefore \qquad \mathcal{H} \equiv \mathbb{R}.$$

Example : $Normal(\mu, \sigma^2)$

$$\eta = (\eta_1, \eta_2)^{\top} = (1/\sigma^2, \mu/\sigma^2)^{\top}$$

so that

$$f_X(x;\eta) = \left(\frac{\eta_1}{2\pi}\right)^{1/2} \exp\left\{-\frac{\eta_2^2}{2\eta_1}\right\} \exp\left\{-\frac{\eta_1 x^2}{2} + \eta_2 x\right\}$$

Natural parameter space: this density will be integrable with respect to x if and only if $\eta_1 > 0$, so $\mathcal{H} \equiv \mathbb{R}^+ \times \mathbb{R}$.

(c) **Regular Exponential Family:** The family is termed *regular* if

- (i) $\mathcal{H} \equiv \mathcal{H}_{\Theta}$.
- (ii) In the natural parameterization, neither the η_i nor the $T_i(x)$ satisfy linearity constraints.
- (iii) \mathcal{H} is an *open* set in \mathbb{R}^m .

If only (i) and (ii) hold, the exponential family is termed *full*. The family is termed *curved* if $\dim(\theta) = l < m$

(d) Moments for the Exponential Family: If

$$f_X(x;\theta) = h(x) \exp \left\{ \sum_{j=1}^m c_j(\theta) T_j(x) - A(\theta) \right\}$$

then, for $l = 1, \ldots, m$,

$$S_{l}(x;\theta) = \frac{\partial}{\partial \theta_{l}} \log f_{X}(x;\theta) = \sum_{j=1}^{m} \frac{\partial c_{j}(\theta)}{\partial \theta_{l}} T_{j}(x) - \frac{\partial A(\theta)}{\partial \theta_{l}} = \sum_{j=1}^{m} \dot{c}_{jl}(\theta) T_{j}(x) - \dot{A}_{l}(\theta)$$

say. But, for each l, $\mathbb{E}_X[S_l(X;\theta)] = 0$, so therefore, for $l = 1, \dots, m$,

$$\mathbb{E}_X \left[\sum_{j=1}^m \dot{c}_{jl}(\theta) T_j(X) \right] = \dot{A}_l(\theta).$$

By a similar calculation

$$\operatorname{Var}_{X}\left[\sum_{j=1}^{m}\dot{c}_{jl}(\theta)T_{j}(X)\right] = \ddot{A}_{ll}(\theta) - \mathbb{E}_{X}\left[\sum_{j=1}^{m}\ddot{c}_{jll}(\theta)T_{j}(X)\right]$$

where

$$\ddot{A}_{ll}(\theta) = \frac{\partial^2 A(\theta)}{\partial \theta_l^2} \qquad \ddot{c}_{jll}(\theta) = \frac{\partial^2 c_j(\theta)}{\partial \theta_l^2}$$

Note that in the natural (canonical) parameterization

$$\log f_X(x;\eta) = \log h(x) + \sum_{j=1}^m \eta_j T_j(x) - K(\eta)$$

so that, using the arguments above for l = 1, ..., m,

$$\mathbb{E}_{X} [T_{l}(X)] = \dot{K}_{l}(\theta) \qquad \operatorname{Var}_{X} [T_{l}(X)] = \ddot{K}_{ll}(\theta)$$

(e) Independent random variables from the Exponential Family

Suppose that $X_1, ..., X_n$ are independent and identically distributed rvs, with pmf or pdf $f_X(x;\theta)$ in the Exponential Family. Then the joint pmf/pdf for $\mathbf{X} = (X_1, ..., X_n)^{\top}$ is

$$\prod_{i=1}^{n} f_X(x_i; \theta) = \prod_{i=1}^{n} h(x_i) \exp \left\{ \sum_{j=1}^{m} c_j(\theta) T_j(x_i) - A(\theta) \right\} = H(\mathbf{x}) \exp \left\{ \sum_{j=1}^{m} c_j(\theta) T_j(\mathbf{x}) - nA(\theta) \right\}$$

where

$$H(\mathbf{x}) = \prod_{i=1}^{n} h(x_i) \qquad T_j(\mathbf{x}) = \sum_{i=1}^{n} T_j(x_i).$$

The random variables $T_i(\mathbf{x}), j = 1, \dots, m$ are termed sufficient statistics.

(f) **Alternative construction of the Exponential Family** Suppose that $f_0(x)$ is a pmf/pdf with corresponding mgf $M_0(t)$ (presumed to exist in a neighbourhood of zero), so that

$$M_0(t) = \int e^{tx} f_0(x) dx = \exp\{K_0(t)\}\$$

and $K_0(t) = \log M_0(t)$ is the cumulant generating function. If $f_0(x) = \exp\{g_0(x)\}\$, we have

$$\exp\{K_0(t)\} = M_0(t) = \int e^{tx} e^{g_0(x)} dx = \int e^{tx+g_0(x)} dx.$$

Thus, for all t for which $M_0(t)$ exists,

$$f_X(x;t) = \exp\{tx + g_0(x) - K_0(t)\} = f_0(x) \exp\{tx - K_0(t)\}\$$

is a valid pdf. If we set $t = \eta$, $h(x) = f_0(x) = \exp\{g_0(x)\}$ then

$$f_X(x;\eta) = h(x) \exp\{\eta x - K_0(\eta)\}\$$

and we see that $f_X(x;\eta)$ is an exponential family member with natural parameter η . The pmf/pdf $f_X(x;t)$ is termed the *exponential tilting* of $f_0(x)$, with expectation and variance $\dot{K}_0(\eta)$ and $\ddot{K}_0(\eta)$ respectively. Note further that for t small enough,

$$M_X(t) = \int e^{tx} h(x) \exp \{ \eta x - K_0(\eta) \} dx = \exp\{-K_0(\eta) \} \int h(x) \exp \{ (\eta + t)x \} dx$$
$$= \exp\{K_0(\eta + t) - K_0(\eta) \}.$$

(g) The Exponential Dispersion Model: Consider the model

$$f(x; \theta, \phi) = \exp \left\{ d(x, \phi) + \frac{1}{r(\phi)} \sum_{j=1}^{m} c_j(\theta) T_j(x) - \frac{A(\theta)}{r(\phi)} \right\}$$

where $r(\phi) > 0$ is a function of dispersion parameter $\phi > 0$.

In this model, using the previous results, we see that the expectation is unchanged compared to the Exponential Family model by the presence of the term $r(\phi)$, but the variance is modified by a factor of $1/r(\phi)$. Thus the exponential dispersion model allows separate modelling of mean and variance.

Example : $Binomial(n, \theta)$

$$f_X(x;\theta) = \binom{n}{x} \mathbb{1}_{\{0,1,\dots,n\}}(x) \exp\left\{\log\left(\frac{\theta}{1-\theta}\right)x - n\log(1-\theta)\right\}.$$

Let Y = X/n, so that

$$f_Y(y; \theta, \phi) = \binom{1/\phi}{y/\phi} \mathbb{1}_{\{0, \phi, 2\phi, \dots, 1\}}(y/\phi) \exp\left\{\frac{1}{\phi} \left[y \log\left(\frac{\theta}{1-\theta}\right) - \log(1-\theta)\right]\right\}$$

where $\phi = 1/n$. Note that $\mathbb{E}_Y[Y] = \theta = \mu$ say, and

$$Var_Y[Y] = \phi\theta(1-\theta) = \phi V(\mu)$$

where $V(\mu) = \mu(1 - \mu)$ is the variance function.

4. **Convolution Families:** The *convolution* of functions g and h, written $g \circ h$, is defined by

$$g \circ h(y) = \int_{-\infty}^{\infty} g(x)h(y-x) dx.$$

Now if X_1 and X_2 are independent random variables with marginal pdfs f_{X_1} and f_{X_2} respectively, then the random variable $Y = X_1 + X_2$ has a pdf that can be determined using the multivariate transformation result. If we use dummy variable $Z = X_1$, then

which is a transformation with Jacobian 1. Thus

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Z,Y}(z,y) \, dz = \int_{-\infty}^{\infty} f_{X_1,X_2}(z,y-z) \, dz = \int_{-\infty}^{\infty} f_{X_1}(x) f_{X_2}(y-x) \, dx$$

so we can see that the pdf of Y is computed as the convolution of f_{X_1} and f_{X_2} .

A family of distributions, \mathcal{F} , is closed under convolution if

$$f_1, f_2 \in \mathcal{F} \qquad \Longrightarrow \qquad f_1 \circ f_2 \in \mathcal{F}$$

For independent random variables X_1 and X_2 with pdfs f_1 and f_2 in a family \mathcal{F} , closure under convolution implies that the random variable $Y = X_1 + X_2$ also has a pdf in \mathcal{F} .

This concept is related to the idea of *infinite divisibility*, *decomposibility*, and *self decomposibility*.

• Infinite Divisibility: A probability distribution for rv X is *infinitely divisible* if, for all positive integers n, there exists a sequence of independent and identically distributed rvs Z_{n1}, \ldots, Z_{nn} such that

$$X \stackrel{d}{=} Z_n = \sum_{j=1}^n Z_{nj}$$

that is, the characteristic function (cf) of X can be written

$$\varphi_X(t) = \{\varphi_Z(t)\}^n$$

for some other cf φ_Z .

• **Decomposability**: A probability distribution for rv *X* is *decomposable* if

$$\varphi_X(t) = \varphi_{X_1}(t)\varphi_{X_2}(t)$$

for two cfs φ_{X_1} and φ_{X_2} so that

$$X \stackrel{d}{=} X_1 + X_2$$

where X_1 and X_2 are independent rvs with cfs φ_{X_1} and φ_{X_2} .

• **Self-Decomposability**: A probability distribution for rv X is *self-decomposable* if for all c, 0 < c < 1,

$$\varphi_X(t) = \varphi_X(ct)\varphi_{X_1}(t)$$

for cf φ_{X_1} so that

$$X \stackrel{d}{=} cX + X_1$$

where X and X_1 are independent rvs with cf φ_X and φ_{X_1} respectively.

5. **Hierarchical Models:** A *hierarchical model* is a model constructed by considering a series of distributions at different levels of a "hierarchy" that together, after marginalization, combine to yield the distribution of the observable quantities.

Example: A three-level model

LEVEL 3: $\lambda > 0$ Fixed parameter

LEVEL 2 : $N \sim Poisson(\lambda)$

LEVEL 1: $X|N = n, \theta \sim Binomial(n, \theta)$

Then the marginal pmf for X is given by

$$f_X(x;\theta,\lambda) = \sum_{n=0}^{\infty} f_{X|N}(x|n;\theta,\lambda) f_N(n;\lambda).$$

By elementary calculation, we see that $X \sim Poisson(\lambda \theta)$

$$f_X(x;\theta,\lambda) = \frac{(\lambda\theta)^x e^{-\lambda\theta}}{x!}$$
 $x = 0, 1, \dots$

Example : A three-level model

LEVEL 3: $\alpha, \beta > 0$ Fixed parameters

LEVEL 2: $Y \sim Gamma(\alpha, \beta)$

LEVEL 1: $X|Y = y \sim Poisson(y)$

Then the marginal pdf for *X* is given by

$$f_X(x; \alpha, \beta) = \int_0^\infty f_{X|Y}(x|y) f_Y(y; \alpha, \beta) dy.$$

A general *K*-level hierarchical model can be specified in terms of *K* vector random variables:

LEVEL
$$K$$
: $\mathbf{X}_K = (X_{K1}, \dots, X_{Kn_K})^{\top}$
 \vdots : \vdots
LEVEL 1: $\mathbf{X}_1 = (X_{11}, \dots, X_{1n_1})^{\top}$

The hierarchical model specifies the joint distribution as

$$f_{\mathbf{X}_1,\dots,\mathbf{X}_K}(\mathbf{x}_1,\dots,\mathbf{x}_K) = f_{\mathbf{X}_K}(\mathbf{x}_K) \prod_{k=1}^{K-1} f_{\mathbf{X}_k|\mathbf{X}_{k+1}}(\mathbf{x}_k|\mathbf{x}_{k+1})$$

where

$$f_{\mathbf{X}_k|\mathbf{X}_{k+1}}(\mathbf{x}_k|\mathbf{x}_{k+1}) = \prod_{j=1}^{n_k} f_k(x_{kj}|\mathbf{x}_{k+1})$$

that is, at level k in the hierarchy, the random variables are taken to be *conditionally independent* given the values of variables at level k + 1. The uppermost level, Level K, can be taken to be a degenerate model, with mass function equal to 1 at a set of fixed values.

Example: A three-level model

Consider the *three-level* hierarchical model:

LEVEL 3: $\theta, \tau^2 > 0$ Fixed parameters

LEVEL 2: $M_1, \ldots, M_L \sim Normal(\theta, \tau^2)$ Independent

LEVEL 1: For $l = 1, ..., L: X_{l1}, ..., X_{ln_l} | M_l = m_l \sim Normal(m_l, 1)$

where all the X_{lj} are conditionally independent given M_1, \dots, M_L

For random variables X, Y and Z, we write $X \perp Y \mid Z$ if X and Y are conditionally independent given Z, so that in the above model $X_{l_1j_1} \perp X_{l_2j_2} \mid M_1, \ldots, M_L$ for all l_1, j_1, l_2, j_2 .

(i) Finite Mixture Models

LEVEL 3:
$$L \ge 1$$
 (integer), π_1, \dots, π_l with $0 \le \pi_l \le 1$ and $\sum_{l=1}^L \pi_l = 1$, and $\theta_1, \dots, \theta_L$

LEVEL 2:
$$X \sim f_X(x; \pi, L)$$
 with $\mathbb{X} \equiv \{1, 2, \dots, L\}$ such that $P_X[X = l] = \pi_l$

LEVEL 1:
$$Y|X = l \sim f_l(y; \theta_l)$$

where f_l is some pmf or pdf with parameters θ_l . Then

$$f_Y(y; \pi, \theta, L) = \sum_{l=1}^{L} f_{Y|X}(y|x; \theta_l) f_X(x; \pi_l) = \sum_{l=1}^{L} f_l(y; \theta_l) \pi_l$$

This is a *finite mixture distribution*: the observed Y are drawn from L distinct sub-populations characterized by pmf/pdf f_1, \ldots, f_L and parameters $\theta_1, \ldots, \theta_L$, with sub-population proportions π_1, \ldots, π_L .

(ii) Random Sums

LEVEL 3: θ, ϕ (fixed parameters)

LEVEL 2: $X \sim f_X(x; \phi)$ with $\mathbb{X} \equiv \{0, 1, 2, \ldots\}$

LEVEL 1: $Y_1, \dots, Y_n | X = x \sim f_Y(y; \theta)$ (independent), and $S = \sum_{i=1}^x Y_i$

Then, by the law of iterated expectation,

$$M_{S}(t) = \mathbb{E}_{S} \left[e^{tS} \right] = \mathbb{E}_{X} \left[\mathbb{E}_{S|X} \left[e^{tS} \middle| X \right] \right] = \mathbb{E}_{X} \left[\mathbb{E}_{\mathbf{Y}|X} \left[\exp \left\{ t \sum_{i=1}^{X} Y_{i} \right\} \middle| X \right] \right] = \mathbb{E}_{X} \left[\left\{ M_{Y}(t) \right\}^{X} \right]$$

$$= G_{X}(M_{Y}(t))$$

where G_X is the factorial mgf (or pgf) for X defined in a neighbourhood (1-h,1+h) of 1 for some h>0 as

$$G_X(t) = M_X(\log t) = \mathbb{E}_X[t^X]$$
 $t \in (1 - h, 1 + h).$

By a similar calculation,

$$G_S(t) = G_X(G_Y(t)).$$

For example, if $X \sim Poisson(\phi)$, then

$$G_S(t) = \exp \left\{ \phi(G_Y(t) - 1) \right\}$$

is the pgf of S. Expanding the pgf as a power series in t yields the pmf of S.

(iii) Location-Scale Mixtures

LEVEL 3: θ Fixed parameters

LEVEL 2: $M, V \sim f_{M,V}(m, v; \theta)$

LEVEL 1: $Y|M=m, V=v \sim f_{Y|M,V}(y|m,v)$

where

$$f_{Y|M,V}(y|m,v) = \frac{1}{v} f\left(\frac{y-m}{v}\right)$$

that is a location-scale family distribution, mixed over different location and scale parameters with *mixing distribution* $f_{M,V}$.

Example: Scale Mixtures of Normal Distributions

LEVEL 3: θ

LEVEL 2: $V \sim f_V(v;\theta)$

LEVEL 1: $Y|V = v \sim f_{Y|V}(y|v) \equiv Normal(0, g(v))$

for some positive function g. For example, if

$$Y|V = v \sim Normal(0, v^{-1})$$
 $V \sim Gamma(1/2, 1/2)$

then by elementary calculations, we find that

$$f_Y(y) = \frac{1}{\pi} \frac{1}{1 + y^2}$$
 $y \in \mathbb{R}$ \therefore $Y \sim Cauchy$.

The scale mixture of normal distributions family includes the *Student*, *Double Exponential* and *Logistic* as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation. The location-scale mixture construction allows the modelling of

- skewness through the mixture over different locations
- *kurtosis* through the mixture over different *scales*

Example: Location-Scale Mixtures of Normal Distributions

Suppose *M* and *V* are independent, with

$$M \sim Exponential(1/2)$$
 $V \sim Gamma(2, 1/2)$

and

$$Y|M = m, V = v \sim Normal(m, 1/v)$$

Then the marginal distribution of *Y* is given by

$$f_Y(y) = \int_0^\infty \int_0^\infty f_{Y|M,V}(y|m,v) f_M(m) f_V(v) \, dm \, dv$$

which can most readily be examined by simulation. The figure below depicts a histogram of 10000 values simulated from the model, and demonstrates the skewness of the marginal of Y.

