MATH 556: MATHEMATICAL STATISTICS I

FAMILIES OF DISTRIBUTIONS: RESULTS AND EXAMPLES

1. Parametric Family: A parametric family, P, of distributions is a collection of probability distribu-
tions indexed by an m-dimensional parameter, 6§, P = {Px(.;6) : 6 € © C R™}, which may be
written using the cdfs Fx(.; ) for 6 € ©. The family is identifiable if, for 6,02 € ©

(a)

(b)

(©)

Fx(x;el) = Fx(x;eg) for all x — 0 = (92.

Suppose X ~ Fx(x;6p) for 6y € ©. Suppose 0; € © and consider the likelihood ratio
[x(X;01)  dFx(X;0q)
R(X;00,01) = =
(X560, 61) fx(X;00)  dFx(X;60)
say. Then
Ix (5 01) dFx(x;01)

Ex[R(X:00,01)] = dFx (x: 0) :/MMX(@@O) :/dFX(x;Hl) _ 1

fx(x;00)

Score function: Suppose that the pmf/pdf fx(z;6) is differentiable with respect to §. The
score function, S(z; ), is a m x 1 vector with jth element equal to

0
Si(z;0) = wlog fx(z;0).
J

The quantity S(X;0) = (S1(X;0),...,Snm(X;0))" is an m-dimensional random variable. Un-
der certain regularity conditions

Ex[S(X;6)]=0 (m x 1).

Proof: Note first that by rule for differentiating a “function of a function” we have that

Olog fx(x;0)  Ofx(w;0) 1
a0 00 fx(x;0)

(m x 1) M)

Then, provided the differentiation wrt 6 and the integration wrt 2 can be exchanged,

EX(SC0)] = [ Stso)fx(wi0)do = [{TELED fy(ai6) o

- ‘de:(%{/fx(x;e)dx}:O (m > 1)

Fisher Information: The Fisher Information, Z(0), is an m x m matrix function of 6 defined
as the variance-covariance matrix of the score random variable S, that is

Z(0) = Varx[S(X;0)] = Ex[S(X;0)S(X;0) '] = [Ex[S;(X;0)Sk(X;0)]] 4

Under certain regularity conditions, if the pmf/pdf is twice partially differentiable with
respect to the elements of ¢, then if where ¥(X;6) is the m x m matrix of second partial
derivatives with (7, k)th element

2

00,00,

700) = ~Ex[0(X:0)] = - [Ex | 5.0 g e (x:0)|

ik
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Proof: From (b), under regularity conditions

/{‘%g{;;(m} fx@i0)dz=0  (mx1)

Differentiating again wrt 07 (i.e. differentiate wrt 6 and take the transpose), we have

9% log fx (z;0) . dlog fx(x;0) 0fx(x;0) B
that is, we have the equality of the two (m x m) matrices
& log fx (x;0) dlog fx (x;6) dfx(x;6)

The left-hand side of (2) is —Ex[¥(X;6)]. For the right-hand side of (2), using (1), we have

91 10) 91 .0
Ogi(;);(x’ ) Ogggﬁ(“"’ ) f(:0) dz = Ex[S(X; 0)S(X;0)T]

and we can conclude that
—Ex[¥(X;0)] = Ex[S(X;0)S(X;0)"].

Example : Binomial(n,0): fx(x;0) = <n> 0*(1—0)" " forxz € {0,1,...,n}, so that
X
r m—zx x —nb

d
S<x;9):@logfx(x;9):§_ 1-6  6(1-6)

Hence

o e [f5)- S

as X ~ Binomial(n, ) yields Ex[X] = nf. For the second derivative

d? T n—x
g2 108 fx(@:0) = — 5 — 1-02
so that P2 Ex[X] Ex[X]
_ as ) _ Ex n—LEx

and as Ex[X] = n#, we have
n70+ n—nd n
02 (1-60)2 6(1-0)

ef)\ T

Example : Poisson(\): fx(z;\) = 7'/\, forz € {0,1,...}, so that
x!

d
S(@iA) = 7 log fx(w:id) = § —1

Hence

Ex[S(X;)\)] =Ex [)\ -1



as X ~ Poisson(\) yields Ex[X] = \. For the second derivative

d2 oz
so that ) X]
d [EX X 1
I(\) = —Ey | =1 X; .

2. Location-Scale Family: Suppose that fo(x) is a pdf. If x and o > 0 are constants then

1
Fx(@51,0) = —fol(@ = 1)/0)
is also a pdf, and a member of a location-scale family based on fj.

¢ if o = 1 we have a location family: fx(z;p) = fo(z — p)

e if 4 = 0 we have a scale family: fx(x;0) = fo(x/0)/0

Example : Normal distribution family

o - ()"l 2
fx(@ip,0) = (27T102>1/2exp{—2i2(x_u)2}

Example : Exponential distribution family

fo(z) = e x>0
fx(@mo) = e @W/e g5y
g

Note that X is a random variable with pdf fx (z) = fx(x; i, o) (the location-scale family member)
if and only if there exists another random variable Z with fz(z) = fo(z) (the standard member)
such that X = ¢Z + p that s, if X is a linear transformation of a standard random variable Z.

3. Exponential Families: A family of pdfs/pmfs is an Exponential Family if it can be expressed

Ix(x;0) x) exp {Z c;(6 (0)} = h(x)exp {C(Q)TT(x) - A(@)}

for all z € R, where § € O is a [-dimensional parameter vector (initially we take I = m).

* h(z) > 01is a function that does not depend on 6

* A(0) is a function that does not depend on z

e T(z) = (T1(x),...,Tm(z))" is a vector of real-valued functions that do not depend on 6.
e c(0) = (c1(0),...,cm(0))" is a vector of real-valued functions that do not depend on .

* The support of fx(z;6) does not depend on 6.

¢ The family is termed natural if m = 1 and 71 (z) = =.
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Example : Binomial(n,0) for0 < 6 <1
Forz € {0,1,...,n} =X

F(2:0) = (g) 0T (1 — 0)" = <Z) 1-0)" (&)x - (Z) exp {log (1:) z —nlog(l — 9)}
1

e A(6) log(1 —0)
e Ti(z)=u
e ¢1(0) =log(0/(1—0)) =logl —log(l —0)

Example : Normal(u,o?)

For z € R,

1 1/2 1 9 1\? x? pr 1 u?
= (e N I el | 2_ P
Fx (i, 0%) = <27T0’ ) exp{ 202 (x=n) } <27T> exp{ 202 T gz T3 087 202}

e m=20=(uo0%)"
h(z) = 1/v2n
o A(0) = A(p,0?) = (log o + pi?/0?) /2
o Ty(x) = —2%/2, Ta(z) = x
1(0) =1/02, c2(0) = p/0?

°
o

Example : Suppose, for 6 > 0

1 x
fx(z;0) = ]1(9700)5 exp {1 — 5}
As the support of fx(x;0) depends on 6 so this is not an Exponential Family distribution.

(a) Parameterization: We can reparameterize from 6 to n = (n1,...,mm,)" by setting ; = ¢;(0)
for each j, and write

fx(z;m) = h(z) exp {Zm )} = h(z)exp {nTT(m) - K(n)} :

n is termed the natural or canonical parameter and K () = A(c™*(n)).
(b) Parameter space: Let # be the region of R™ defined by

MW= {n : /_O; h(z) exp {nTT(:U)} do < oo}

H is termed the natural parameter space. For n € H, we must have
exp{K(n)} = / h(z) exp {nTT(ac)} dx
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(©)

(d)

It can be shown that H is a convex set, thatis, for 0 < A < 1,
m,meH = Ip+{1-NmpeH.

Note that
He = {c(e) — (c1(0),...,cm®)T : B e @} CH.

He can be considered the natural parameter space induced by ©

Example : Binomial(n, )

=1 L “— 0= el
=108 1-6 C14en
so that

fx(x5m) = { (Z) Jl{o,l,...,n}(x)} exp{nz —nlog(l +e")}.

Natural parameter space:

n

/OO h(z) exp {nTT(x)} de=3" (Z) exp{nz} <oo ¥y . H=R

- z=0

Example : Normal(p, 0?)
n=(m,m)" =1/ ujo*)’

)= (VY e [ _ma?
fx(x3m) = (27r> eXp{ ST e B
Natural parameter space: this density will be integrable with respect to x if and only if
n >0,s0 H=R" xR.

so that

Regular Exponential Family: The family is termed reqular if

(i) H=He.

(ii) In the natural parameterization, neither the n); nor the T} () satisfy linearity constraints.
(iii) H is an open set in R™.

If only (i) and (ii) hold, the exponential family is termed full. The family is termed curved if
dim(d) =1 <m

Moments for the Exponential Family: If

fx(z:0) x) exp {ch ((9)}

then, forl =1,...,m,

0 " 9 (6 .
Si(x;0) = 87911ng)<(3?; 0)=> 08]9(1 )Tj( - ae, Zcﬂ A(0)

say. But, for each [, Ex[S;(X;0)] = 0, so therefore, for i = 1,...,m,

= [0

= 4y(9).




(f)

By a similar calculation

Var X

> C’jl(Q)Tj(X)] = Au(0) — Ex {Z Eu (0
j=1

where 2 7(0) 5e.(0)

.. 0“A(0 c;i(6

Ap(f) = ——= Ein(0) = ==

u(9) o2 ju(0) 207
Note that in the natural (canonical) parameterization
log fx (x;7) = log h(z) + Zm ()
so that, using the arguments above forl =1,...,m,
Ex [T(X)] = Ki(6) Varx [Ty(X)] = Ku(0)

Independent random variables from the Exponential Family

Suppose that X7, ..., X,, are independent and identically distributed rvs, with pmf or pdf
fx(x;0) in the Exponential Family. Then the joint pmf/pdf for X = (X1,..., X,,)" is

1 #x(@i;0) = [[ hl@i) exp {Z ¢; (0)T;(x;) — A(e)} X) exp {Z c;i(0 - nA(e)}
i=1 i=1 j=1
where . .
=[] 7= Tj(x) =D Tj(w:).
i=1 i=1
The random variables Tj(x),j = 1, ..., m are termed sufficient statistics.

Alternative construction of the Exponential Family Suppose that fy(z) is a pmf/pdf with
corresponding mgf Mj(t) (presumed to exist in a neighbourhood of zero), so that

Mo(t) = [ o) dz = exp{Ka(t))

and K(t) = log My(t) is the cumulant generating function. If fy(z) = exp{go(z)}, we have

exp{Ko(t)} = Mo(t) = / o7 090(@) g / el ta0() gy
Thus, for all ¢ for which My(t) exists,

fx(z;t) = exp{tx + go(z) — Ko(t)} = fo(z) exp{tz — Ko(t)}
is a valid pdf. If we set t = 1), h(z) = fo(z) = exp{go(x)} then

fx (@) = h(z) exp{nz — Ko(n)}

and we see that fx(z;7) is an exponential family member with natural parameter 7. The
pmf/pdf fx(x;t) is termed the exponential tilting of fo(x), with expectation and variance

Ko(n) and Ky(n) respectively. Note further that for ¢ small enough,
My(t) = [ eha)exp o~ Kol)} do = exsp{~Ko(n)} [ h(a)exp {(n-+ 0)a} dao

= exp{Ko(n +t) — Ko(n)}.



(g) The Exponential Dispersion Model: Consider the model

; = eX x 1 ; C4 i\r) — A(e)
f($,9,¢)— p{d( ’¢)+T(¢)Z ](Q)T]( ) T(¢)}

Jj=1

where 7(¢) > 0 is a function of dispersion parameter ¢ > 0.

In this model, using the previous results, we see that the expectation is unchanged com-
pared to the Exponential Family model by the presence of the term 7(¢), but the variance
is modified by a factor of 1/r(¢). Thus the exponential dispersion model allows separate
modelling of mean and variance.

Example : Binomial(n,0)

0
s(ai0) = (") os,m @) exp g (25 ) o - ntog(1 - 0)}.
Let Y = X/n, so that

o
(0.0 = ()10 lo)exw {5 [ooe (125) < 1ogt1 - )|}
where ¢ = 1/n. Note that Ey[Y] = 6 = p say, and

Vary [Y] = ¢0(1 - 0) = ¢V (u)
where V(1) = (1 — p) is the variance function.

4. Convolution Families: The convolution of functions g and h, written g o h, is defined by

gohly)= [ gle)hty ) do.

—00

Now if X; and X, are independent random variables with marginal pdfs fx, and fx, respec-
tively, then the random variable Y = X; + X> has a pdf that can be determined using the multi-
variate transformation result. If we use dummy variable Z = X, then

Z = X3 X, = Z
<~
Y = Xi+Xo Xy, = Y-—Z

which is a transformation with Jacobian 1. Thus

fr(y) = /_OO fzy(z,y)dz = /_oo Ixi.x:(2,y —2)dz = /_OO fx (@) fx, (y — 2) dz

so we can see that the pdf of Y is computed as the convolution of fx, and fx,.

A family of distributions, F, is closed under convolution if
Ji,f2€F = fiofo € F

For independent random variables X; and X, with pdfs f; and f» in a family F, closure under
convolution implies that the random variable Y = X; + X5 also has a pdf in F.

This concept is related to the idea of infinite divisibility, decomposibility, and self decomposibility.
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¢ Infinite Divisibility : A probability distribution for rv X is infinitely divisible if, for all
positive integers n, there exists a sequence of independent and identically distributed rvs
Znls -y Znp such that

n

d
XEZy=) Zn
j=1

that is, the characteristic function (cf) of X can be written

ex(t) ={pz()}"

for some other cf ¢ .

* Decomposability : A probability distribution for rv X is decomposable if

px(t) = ox,(t)px, (t)
for two cfs ¢ x, and ¢x, so that
XL X+ X
where X; and X are independent rvs with cfs ¢ x, and ¢x,.

¢ Self-Decomposability : A probability distribution for rv X is self-decomposable if for all c,
O0<e<l,

px(t) = px(ct)px, (1)
for cf px, so that
XLex+X
where X and X are independent rvs with cf o x and ¢x, respectively.
5. Hierarchical Models: A hierarchical model is a model constructed by considering a series of distri-

butions at different levels of a “hierarchy” that together, after marginalization, combine to yield
the distribution of the observable quantities.

Example : A three-level model

LEVEL 3 : A>0 Fixed parameter
LEVEL 2 : N ~ Poisson(\)
LEVEL1: X|N =n,0 ~ Binomial(n, )

Then the marginal pmf for X is given by
Fx(@0,0) = fxin(@ln; 0,0) fy (n; \).
n=0

By elementary calculation, we see that X ~ Poisson(A\§)

A0 —\0
fx(llﬁ;e,)\):()m'e x=0,1,....
Example : A three-level model
LEVEL 3 : a,8>0 Fixed parameters
LEVEL 2 : Y ~ Gamma(a, )
LEVEL1: XY =y ~ Poisson(y)
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Then the marginal pdf for X is given by
i) = [ fv el (or0.5) dy

A general K-level hierarchical model can be specified in terms of K vector random variables:

LEVEL K : Xy = (Xg1,--, Xicng) '

LEVEL1 : X;=(Xi1,...,X1n,)"
The hierarchical model specifies the joint distribution as

K-1

X X (X150 XK) = fxp (XK) H I X1 (Xk[Xk11)
k=1

where
Fxxpes %k xig1) = [ [ Felonsxes)
j=1
that is, at level k in the hierarchy, the random variables are taken to be conditionally independent

given the values of variables at level £ + 1. The uppermost level, Level K, can be taken to be a
degenerate model, with mass function equal to 1 at a set of fixed values.

Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3 : 0,72 >0  Fixed parameters
LEVEL 2 : My, ...,Myp ~ Normal(,7?) Independent
LEVEL1: Forl=1,...,L: Xp,..., Xy, |M; = my ~ Normal(m,1)
where all the Xj; are conditionally independent given My, ..., My,

For random variables X,Y and Z, we write X L Y | Z if X and Y are conditionally independent
given Z, so that in the above model X; ;, L Xj,;, | M,..., My forall I, ji,l2, jo.

(i) Finite Mixture Models
L
LEVEL3: L > 1 (integer),m,...,mwith0<m <land » m=1,and#6,...,0,
=1
LEVEL2: X ~ fx(z;m, L)withX ={1,2,...,L}suchthat Px[X =] =m
LEVEL1: Y|X =1~ fi(y:6)

where f; is some pmf or pdf with parameters ¢;. Then

fy(y;m,0,L) = ZfY\X ylz; 61) fx (@5 m) Zfz y; 0)m

This is a finite mixture distribution: the observed Y are drawn from L distinct sub-populations
characterized by pmf/pdf fi,..., fr and parameters 61, ..., 6, with sub-population pro-
portions 7y, ..., 7.



(ii)

(iii)

Random Sums
LEVEL 3: 0, (fixed parameters)
LEVEL2: X ~ fx(z;¢)withX ={0,1,2,...}
LEVEL 1 : Yi,....Yo|X =2z ~ fy(y;0) (independent), and S = i Y;

i=1

Then, by the law of iterated expectation,

1=

X
Mgs(t) = Es [””] = Ex [Eg)x [¢"|X]] = Ex [[wa leXp{tZYi} ‘X

] ()]

= Gx(My(1))

where Gx is the factorial mgf (or pgf) for X defined in a neighbourhood (1 — h,1 + h) of 1
for some h > 0 as

Gx(t) = Mx(logt) =Ex[tX] te(1—h,1+h).
By a similar calculation,
Gs(t) = Gx(Gy (1))
For example, if X ~ Poisson(¢), then
Gs(t) = exp{o(Gy(t) — 1)}

is the pgf of S. Expanding the pgf as a power series in ¢ yields the pmf of S.
Location-Scale Mixtures

LEVEL3: 6 Fixed parameters

LEVEL2: M,V ~ fary(m,v;0)

LEVEL1: YIM =m,V =v~ fyv(ylm,v)

where

v

Py, o) =2 7 (457

that is a location-scale family distribution, mixed over different location and scale parame-
ters with mixing distribution fyry .

Example : Scale Mixtures of Normal Distributions
LEVEL3: 6

LEVEL2: V ~ fy(v:0)
LEVEL 1 : YV =v~ fyv(ylv) = Normal(0,g(v))

for some positive function g. For example, if
Y|V =v ~ Normal(0,v™}) V ~ Gamma (1/2,1/2)
then by elementary calculations, we find that

1 1

fY(y) = ;1_‘_y2

yeR Y ~ Cauchy.
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The scale mixture of normal distributions family includes the Student, Double Exponential
and Logistic as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation.
The location-scale mixture construction allows the modelling of

¢ skewness through the mixture over different locations

* kurtosis through the mixture over different scales

Example : Location-Scale Mixtures of Normal Distributions

Suppose M and V are independent, with
M ~ Ezxponential(1/2) V ~ Gamma(2,1/2)

and
Y|M =m,V =v ~ Normal(m,1/v)

Then the marginal distribution of Y is given by

fr(y) = /0 h /0 " Fy it (. v) far (m) fi (v) dm do

which can most readily be examined by simulation. The figure below depicts a histogram
of 10000 values simulated from the model, and demonstrates the skewness of the marginal
of Y.

1500
|

1000
J

Frequency

500
Il

-5 0 5 10 15 20

11



