MATH 556: MATHEMATICAL STATISTICS I
MULTIVARIATE PROBABILITY DISTRIBUTIONS

1. The Multinomial Distribution

The multinomial distribution is a multivariate generalization of the binomial distribution. The
binomial distribution can be derived from an “infinite urn” model with two types of objects
being sampled without replacement. Suppose that the proportion of “Type 1” objects in the urn
is § (so 0 < # < 1) and hence the proportion of “Type 2” objects in the urn is 1 — 6. If n objects are
sampled, and X is the random variable corresponding to the number of “Type 1” objects in the
sample. Then X ~ Bin(n, ).

Now consider a generalization; suppose that the urn contains d + 1 types of objects (d = 1,2, ...),
with §; being the proportion of Type i objects, fori = 1,...,d + 1. Let X; be the random variable
corresponding to the number of type ¢ objects in a sample of size n, for i« = 1,...,d. Then the
joint pmf of vector X = (X1,...,X4)" is given by
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where 0 < 0; <1foralli,and 6; + --- + 04 + 0411 = 1, and where x4, is defined by
ZTagr1 =n— (x1+ ...+ zq).
This is the joint pmf for the multinomial distribution. We write

X ~ Multinomial(n, 01, . ..,04).

2. The Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of the Beta distribution that gives a dis-
tribution for random variables on a simplex. The joint pdf of vector X = (Xy,... 7Xd)T where
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is given by
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z4+1 is defined by

Tgp1=1— (214 +249).

This is the density function which reduces to the Beta distribution if d = 1. It can also be shown
that the marginal distribution of X; is Beta(a;, o — ;). We write

X ~ Dirichlet(ai,...,agq41)-

The Dirichlet distribution can be generated by considering independent random variables Z1, ..., Zg41,
with Z; ~ Gamma(a;,1), and then defining
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3. The Multivariate Normal Distribution

The multivariate normal distribution is a multivariate generalization of the normal distribution.
The joint pdf of X = (X1,...,X4)" takes the form
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where x = (21,...,24)", pisa d x 1 vector, and ¥ is a symmetric, positive-definite d x d ma-
trix. The distribution is obtained by taking a vector Z = (Z1,...,Z,)" of independent standard
Normal random variables with joint pdf
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fri,2,(21, .0 24) = <27r> exp —2;,21- = <27r> exp{—Qz z}

and taking the linear transformation
X=LZ+p

where L is the Cholesky factor of ¥, that is,
»=LL".

Using the multivariate transformation result, we can deduce the multivariate Normal joint pdf.
It can be shown that for any linear combination

Y=AX+b

for constant matrix A and vector b (compatible in dimension) also has a multivariate normal
distribution; this result can be derived using moment generating functions; we have for t =
(t1,...,tq)" € RY, by independence

Mz(t) = exp {; Zd:t?} = exp {;tTt}
i=1
so therefore
Mx(t) = Ex[exp{t’ X}] = Ezlexp{t" (LZ + p)}]
= exp{t " u}Ez[exp{(t"L)Z)}]

= exp{t' u} Mz(L't)
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1
= exp {tTu + 2tTEt} .
The distribution of Y = AX + b can be deduced using similar methods as

Y ~ Normalg(Ap+b,ASAT).



Marginal And Conditional Distributions

All marginal and all conditional distributions derived from the multivariate normal are also mul-
tivariate normal; for the marginal distributions, the result follows immediately from the deriva-
tion above

Suppose that vector random variable X = (X, X»,..., X, 4) | has a multivariate normal distribu-
tion with pdf given by

/2
fx(x) = <217'r> ‘2’11/2 exp {—;XTzlx} (1)

where ¥ is the d x d variance-covariance matrix (we can consider here the case where the expected
value 1 is the d x 1 zero vector; results for the general case are easily available by transformation).

Consider partitioning X into two components X; and X, of dimensions d; and dy = d — d;
respectively, that is,
X = [ X1 ] .

X2
We attempt to deduce

(a) the marginal distribution of X, and
(b) the conditional distribution of X5 given that X; = x;.

First, write
Y11 Y2
Y —
[ Yo1 Yo ]
where Y1118 dy X d1, X991 dg X do, Y91 = EB, and
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so that ¥V = I; (I, is the r x r identity matrix) gives
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where 0 represents the zero matrix of appropriate dimension. More specifically,

Y11V + X312V = Iy, (2)
Y11Vizg + 212V = 0 3)
201Vi1 +222Ver = 0 4)
Y91 Vi + 322 Vo = Ig,. %)

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as
x' N lx = XITV11X1 + XlTVQXQ + X;mel + X;VQQXQ. (6)

In order to compute the marginal and conditional distributions, we must complete the square in
x5 in this expression. We can write

x'Y71x = (xg —m) "M(xo —m) + ¢ (7)



and by comparing with equation (6) we can deduce that, for quadratic terms in x5,
X;—VQQXQ = X;—MXQ M= V22

for linear terms
X;—V21X1 = —X;Mm m = —V2_21V21X1

and for constant terms
T _ T . _ T T~r—1
X1 Viixi =c+m Mm . cC =X, (VH — V21V22 V21)X1
thus yielding all the terms required for equation (7), that is
XTE_IX = (Xg =+ V;21V21X1)TV22(X2 + V521V21X1) =+ XI (VH — V;V521V21>X1,

which, crucially, is a sum of two terms, where the first can be interpreted as a function of x»,
given x;, and the second is a function of x; only.

Hence we have a factorization of the joint pdf using the chain rule for random variables;

Ix(x) = fxox, (Xa2]x1) fx, (x1) (8)
where .
fX2\X1 (X2|X1) X exp {—2(X2 + V521V21X1)TV22 (X2 + V221V21X1)}
giving that
X2|X1 =X1 Normald2 (—V2_21V21X1, V2_21) (9)
and .
le (Xl) X exp {—QX]— (VH — V;1V2_21V21)X1}
giving that
X, ~ Normaly, (o, (Vi1 — V;V;;Vm)—l) . (10)
But, from equation (3), X12 = —211V12V521, and then from equation (2), substituting in ¥9,
Y11 Vi1 =211 V12V, Voy = 1 Y11 = (V11— V12V Vo)™t = (Vi1 =V, Vo, Vg ) 7L

Hence, by inspection of equation (10), we conclude that

‘Xl ~ Normaldl (0, 211) s ‘

that is, we can extract the 31, block of ¥ to define the marginal sigma matrix of X;.

Using similar arguments, we can define the conditional distribution from equation (9) more pre-

cisely. First, from equation (3), V12 = —EfllElngg, and then from equation (5), substituting in
Vi
9157, 12Vas + L2 Voo = Iy_a Vi =S — 81871 S1p = 8o — Th51 Sia.

Finally, from equation (3), taking transposes on both sides, we have that V1X1; + V22391 = 0.
Then pre-multiplying by V521, and post-multiplying by Eﬁl, we have

Vi Vai + 3157 =0 . V,!'Vy = -5 %7,

so we have, substituting into equation (9), that

Xg‘Xl =X1 Normald2 (22121_11)(1, 222 — 22121_11212) .

Thus any marginal, and any conditional distribution of a multivariate normal joint distribution
is also multivariate normal, as the choices of X; and X3 are arbitrary.



