
MATH 556: MATHEMATICAL STATISTICS I

MULTIVARIATE PROBABILITY DISTRIBUTIONS

1. The Multinomial Distribution
The multinomial distribution is a multivariate generalization of the binomial distribution. The
binomial distribution can be derived from an “infinite urn” model with two types of objects
being sampled without replacement. Suppose that the proportion of “Type 1” objects in the urn
is θ (so 0 ≤ θ ≤ 1) and hence the proportion of “Type 2” objects in the urn is 1− θ. If n objects are
sampled, and X is the random variable corresponding to the number of “Type 1” objects in the
sample. Then X ∼ Bin(n, θ).

Now consider a generalization; suppose that the urn contains d+1 types of objects (d = 1, 2, . . .),
with θi being the proportion of Type i objects, for i = 1, . . . , d+ 1. Let Xi be the random variable
corresponding to the number of type i objects in a sample of size n, for i = 1, . . . , d. Then the
joint pmf of vector X = (X1, . . . , Xd)

⊤ is given by

fX1,...,Xd
(x1, . . . , xd) =

n!

x1! . . . , xd!xd+1!
θx1
1 . . . .θxd

d θ
xd+1

d+1 =
n!

x1! . . . , xd!xd+1!

d+1∏
i=1

θxi
i

where 0 ≤ θi ≤ 1 for all i, and θ1 + · · ·+ θd + θd+1 = 1, and where xd+1 is defined by

xd+1 = n− (x1 + . . .+ xd).

This is the joint pmf for the multinomial distribution. We write

X ∼ Multinomial(n, θ1, . . . , θd).

2. The Dirichlet Distribution
The Dirichlet distribution is a multivariate generalization of the Beta distribution that gives a dis-
tribution for random variables on a simplex. The joint pdf of vector X = (X1, . . . , Xd)

⊤ where
0 ≤ Xi ≤ 1 for i = 1, . . . , d, and

0 ≤
d∑

i=1

Xi ≤ 1.

is given by

fX1,...,Xd
(x1, . . . , xd) =

Γ(α)

Γ(α1) . . .Γ(αd)Γ(αd+1)
xα1−1
1 . . . , xαd−1

d xd+1
αd+1−1

for 0 ≤ xi ≤ 1 for all i such that x1 + · · · + xd + xd+1 = 1, where α = α1 + · · · + αd+1 and where
xd+1 is defined by

xd+1 = 1− (x1 + · · ·+ xd).

This is the density function which reduces to the Beta distribution if d = 1. It can also be shown
that the marginal distribution of Xi is Beta(αi, α− αi). We write

X ∼ Dirichlet(α1, . . . , αd+1).

The Dirichlet distribution can be generated by considering independent random variables Z1, . . . , Zd+1,
with Zj ∼ Gamma(αj , 1), and then defining

Xj =
Zj

d+1∑
k=1

Zk

j = 1, . . . , d+ 1.
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3. The Multivariate Normal Distribution
The multivariate normal distribution is a multivariate generalization of the normal distribution.
The joint pdf of X = (X1, . . . , Xd)

⊤ takes the form

fX1,...,Xd
(x1, . . . , xd) =

(
1

2π

)d/2 1

|Σ|
1
2

exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
where x = (x1, . . . , xd)

⊤, µ is a d × 1 vector, and Σ is a symmetric, positive-definite d × d ma-
trix. The distribution is obtained by taking a vector Z = (Z1, . . . , Zd)

⊤ of independent standard
Normal random variables with joint pdf

fZ1,...,Zd
(z1, . . . , zd) =

(
1

2π

)d/2

exp

{
−1

2

d∑
i=1

z2i

}
=

(
1

2π

)d/2

exp

{
−1

2
z⊤z

}
and taking the linear transformation

X = LZ+ µ

where L is the Cholesky factor of Σ, that is,

Σ = LL⊤.

Using the multivariate transformation result, we can deduce the multivariate Normal joint pdf.
It can be shown that for any linear combination

Y = AX+ b

for constant matrix A and vector b (compatible in dimension) also has a multivariate normal
distribution; this result can be derived using moment generating functions; we have for t =
(t1, . . . , td)

⊤ ∈ Rd, by independence

MZ(t) = exp

{
1

2

d∑
i=1

t2i

}
= exp

{
1

2
t⊤t

}
so therefore

MX(t) = EX[exp{t⊤X}] = EZ[exp{t⊤(LZ+ µ)}]

= exp{t⊤µ}EZ[exp{(t⊤L)Z)}]

= exp{t⊤µ}MZ(L
⊤t)

= exp{t⊤µ} exp
{
1

2
(L⊤t)⊤(L⊤t)

}

= exp

{
t⊤µ+

1

2
t⊤(LL⊤)t

}

= exp

{
t⊤µ+

1

2
t⊤Σt

}
.

The distribution of Y = AX+ b can be deduced using similar methods as

Y ∼ Normald(Aµ+ b,AΣA⊤).
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Marginal And Conditional Distributions

All marginal and all conditional distributions derived from the multivariate normal are also mul-
tivariate normal; for the marginal distributions, the result follows immediately from the deriva-
tion above
Suppose that vector random variable X = (X1, X2, . . . , Xd)

⊤ has a multivariate normal distribu-
tion with pdf given by

fX(x) =

(
1

2π

)d/2 1

|Σ|1/2
exp

{
−1

2
x⊤Σ−1x

}
(1)

where Σ is the d×d variance-covariance matrix (we can consider here the case where the expected
value µ is the d×1 zero vector; results for the general case are easily available by transformation).

Consider partitioning X into two components X1 and X2 of dimensions d1 and d2 = d − d1
respectively, that is,

X =

[
X1

X2

]
.

We attempt to deduce

(a) the marginal distribution of X1, and
(b) the conditional distribution of X2 given that X1 = x1.

First, write

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ11 is d1 × d1, Σ22 is d2 × d2, Σ21 = Σ⊤

12, and

Σ−1 = V =

[
V11 V12

V21 V22

]
so that ΣV = Id (Ir is the r × r identity matrix) gives[

Σ11 Σ12

Σ21 Σ22

] [
V11 V12

V21 V22

]
=

[
Id1 0
0 Id2

]
where 0 represents the zero matrix of appropriate dimension. More specifically,

Σ11V11 +Σ12V21 = Id1 (2)
Σ11V12 +Σ12V22 = 0 (3)
Σ21V11 +Σ22V21 = 0 (4)
Σ21V12 +Σ22V22 = Id2 . (5)

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as

x⊤Σ−1x = x⊤
1 V11x1 + x⊤

1 V12x2 + x⊤
2 V21x1 + x⊤

2 V22x2. (6)

In order to compute the marginal and conditional distributions, we must complete the square in
x2 in this expression. We can write

x⊤Σ−1x = (x2 −m)⊤M(x2 −m) + c (7)
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and by comparing with equation (6) we can deduce that, for quadratic terms in x2,

x⊤
2 V22x2 = x⊤

2 Mx2 ∴ M = V22

for linear terms
x⊤
2 V21x1 = −x⊤

2 Mm ∴ m = −V−1
22 V21x1

and for constant terms

x⊤
1 V11x1 = c+m⊤Mm ∴ c = x⊤

1 (V11 −V⊤
21V

−1
22 V21)x1

thus yielding all the terms required for equation (7), that is

x⊤Σ−1x = (x2 +V−1
22 V21x1)

⊤V22(x2 +V−1
22 V21x1) + x⊤

1 (V11 −V⊤
21V

−1
22 V21)x1,

which, crucially, is a sum of two terms, where the first can be interpreted as a function of x2,
given x1, and the second is a function of x1 only.

Hence we have a factorization of the joint pdf using the chain rule for random variables;

fX(x) = fX2|X1
(x2|x1)fX1(x1) (8)

where

fX2|X1
(x2|x1) ∝ exp

{
−1

2
(x2 +V−1

22 V21x1)
⊤V22(x2 +V−1

22 V21x1)

}
giving that

X2|X1 = x1 ∼ Normald2
(
−V−1

22 V21x1,V
−1
22

)
(9)

and

fX1(x1) ∝ exp

{
−1

2
x⊤
1 (V11 −V⊤

21V
−1
22 V21)x1

}
giving that

X1 ∼ Normald1

(
0, (V11 −V⊤

21V
−1
22 V21)

−1
)
. (10)

But, from equation (3), Σ12 = −Σ11V12V
−1
22 , and then from equation (2), substituting in Σ12,

Σ11V11−Σ11V12V
−1
22 V21 = Id ∴ Σ11 = (V11−V12V

−1
22 V21)

−1 = (V11−V⊤
21V

−1
22 V21)

−1.

Hence, by inspection of equation (10), we conclude that

X1 ∼ Normald1 (0,Σ11) ,

that is, we can extract the Σ11 block of Σ to define the marginal sigma matrix of X1.

Using similar arguments, we can define the conditional distribution from equation (9) more pre-
cisely. First, from equation (3), V12 = −Σ−1

11 Σ12V22, and then from equation (5), substituting in
V12

−Σ21Σ
−1
11 Σ12V22 +Σ22V22 = Id−d ∴ V−1

22 = Σ22 − Σ21Σ
−1
11 Σ12 = Σ22 − Σ⊤

12Σ
−1
11 Σ12.

Finally, from equation (3), taking transposes on both sides, we have that V21Σ11 + V22Σ21 = 0.
Then pre-multiplying by V−1

22 , and post-multiplying by Σ−1
11 , we have

V−1
22 V21 +Σ21Σ

−1
11 = 0 ∴ V−1

22 V21 = −Σ21Σ
−1
11 ,

so we have, substituting into equation (9), that

X2|X1 = x1 ∼ Normald2
(
Σ21Σ

−1
11 x1,Σ22 − Σ21Σ

−1
11 Σ12

)
.

Thus any marginal, and any conditional distribution of a multivariate normal joint distribution
is also multivariate normal, as the choices of X1 and X2 are arbitrary.
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