MATH 556: MATHEMATICAL STATISTICS |
BASIC PROPERTIES OF MULTIVARIATE DISTRIBUTIONS

A random vector (or vector random variable) X = (X1,..., X;) is a d-dimensional extension of a
random variable. We define

* Joint cdf: Fx(x) = Fx,,.. x,(z1,...,z4) defined by

j=1 j=1
This function has the following properties:
(i) Limit behaviour:

) lim FXl,_”’Xd(JJl,...,{Ed):O hm FX17...,Xd($1,...,"L‘d):1
Any j : xz;——00 Allj : zj—00

(ii) Non-decreasing in each dimension: for all j and any » > 0
FXl,...,Xj _____ Xd(:Bl,...,I'j,...,:L'd)SFXI 77777 Xj’.__7Xd(.1‘1,...,xj—I—h,...,l'd)
(iii) Right-continuous in each dimension: for all j

lim FXl,...,Xj,...,Xd(‘rl? N i h,..., a;d) = Fle__.7Xj7'..7Xd(.Z‘1, ey Ty ey xd)
h—0t

(iv) Marginalization: without loss of generality, consider 21 — oo. We have from the definition
of the joint cdf that

zlhiﬂloo Fle---de(xl’ e 7$d) = Iy, Xy (z2,- .., Tq)

where the right-hand side is the joint cdf of (X5, ..., X;). This result holds whichever com-
ponent we allow to increase to infinity. It also holds if we allow more than one component
to increase to infinity.

The joint distribution of (X7, ..., X;) thus defines the marginal distribution of any subset of
the components of (X1,..., Xg).

¢ Joint pmf: If all the elements of X are discrete, then we can consider the joint pmf denoted
fx(X) = le,,,.7Xd(x1, . ,xd) defined by

This function has the following properties:

(i) Boundedness: 0 < fx, . x,(z1,...,2q4) < 1L
(ii) Summability: by the probability axioms, if X denotes the support of the joint pmf

Z Ixi,x,(®1,. 0, mq) = 1

xeX



¢ Joint pdf: If we can represent

1 T4
FXl,._,7Xd(.C61,...,LIZd):/ / fX17,,.7Xd(t1,...,td) dtd...dtl
—00 —00

then X is absolutely continuous with joint pdf fx(x) = fx,,..x,(z1,...,24). This function has
the following properties:

(i) Non-negativity: fx, . x,(z1,...,2q4) > 0.
(ii) Integrability:

/ / lev_,,Xd(.CCl,...,l'd) dwl...d:cd:

In the continuous case, we have that

0 0

fX1,...,Xd(131, . ,.'L‘d) = — ..

ot ‘%{Fxl,...,xd(th--.,td)}

t1=x1,...,tg=xq

wherever Fx, . x, is differentiable.

-----

¢ Conditional pmf/pdf: for any partition of X = (X, X3), we may define the conditional pmf/pdf
for X, given that X; = x; as
fx(x)

Ixax, (%2]x1) = T, (%)

provided fx, (x1) > 0. This allows us to deduce the chain rule factorization

j=2
provided all the conditional distributions are well-defined. In the factorization, the labelling of

the variables is arbitrary.

e Independence: X, ..., X, are independent if, for all (z1,...,z4)

d
FX17._.7Xd(x1, e ,md) = HFXJ' (J?])
7j=1

or equivalently

d
le,...,Xd(xla v ,l’d) = H fXj (x])
j=1
This definition is equivalent to saying that

fxixa,. x. (@122 2a) = fxy (21)

for all possible selections of 1, ..., z4; note that the labelling of the variables is arbitrary, so this
definition applies equivalently for any permutation of the labels.



* Region probabilities: Let A C R%. To compute Px, . x,[(X1,...,Xq) € A] we may write

PXl,...,Xd[(X].)' . '7Xd) S A] — / : / dFX1,...,Xd(x17 .. .,l'd)
A

Z Ixi,x,(x, .0 2q) Discrete case
x €A

/ ce / th--‘,Xd (131, ey l‘d) dxy...dxrgy Continuous case
A

where the dF notation is used to unify the discrete and continuous cases.

¢ 1-1 Transformations: For continuous variables (X7, ..., X;) with joint pdf fx, . x, we can con-
struct the pdf of a transformed set of variables (Y7,...,Y;) where Y = ¢(X) is a d-dimensional
transformation by noting that for arbitrary B  R?

Py[Y € B]= Px[X € B

where
B! = {x:g(x) € B}.

That is, we have that

/ @) dy= [ fx(x) dx
B B-1

and we may compute fy(y) from fx(x) by changing variables in the right-hand integral and
then equating the integrands.

In the 1-1 case, the computation proceeds using the following steps:

1. Write down the set of component transformation functions g1, ..., g4

Y].:.gl(le"';Xd)

Yq = ga(X1,...,Xa)
2. Write down the set of component inverse transformation functions g;° Lo, o

X =97 (V1,...,Yy)

Xa=g;' (Y1,...,Yy)

3. Consider the joint support of the new variables, Y(*).
4. Compute the Jacobian of the transformation: first form the matrix of partial derivatives

[ Ox1 Oz Ooxr1 ]
oy dyy  Oya
Oxy  Oxo Oxo
b= | on o om
dxq  Org 4
L Oy1 Oy Oya |

3



where, for each (i, 5)
ox;

0y;
and then set |J (y1,...,yq)| = |det D,|

= 8yj {7 (1, va)}

Note that
det D, = det D;

so that an alternative but equivalent Jacobian calculation can be carried out by forming D). Note

also that
1

S (21, za)

where J (x1,...,xq) is the Jacobian of the transformation regarded in the reverse direction (that is,
if we start with (Y1, ...,Yy) and transfrom to (X1, ..., Xqa))

5. Write down the joint pdf of (Y7,...,Yy) as

|J(y17 7yd)‘

fY ..... (yla"'7yd):fX1 ..... Xd(gl_l(y17'-'7yd)a"'7gd_1(ylv"'ayd))X|J(y17"'>yd)‘
for (y1,...,yq) € R%

In practice, it is useful to consider how the minimal support of fx, X, maps under g, to deduce
the minimal support of fv, Y, say.

¢ Expectations: If ¢(.) is some k-dimensional function, then

Ex[9(X)] = Ex,,...x,[9(X1, - .., Xq)]

:/ / g(x1,...,xq) dFx, . x,(T1,...,2q)

E g(x1, .. xa) fx, x, (1, 2q) Discrete case
x €X
/ / g(x1, ... za) fx,..x,(x1,...,2q) dz1 ...dzs Continuous case

The result of the calculation is a k-dimensional constant.



